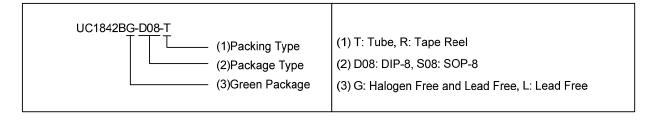


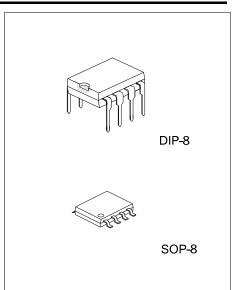
LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS

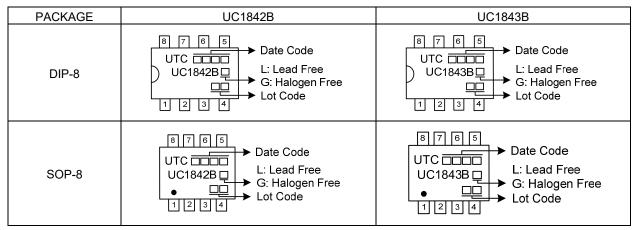
DESCRIPTION

The UTC **UC1842B/1843B** are high performance fixed frequency current mode controllers that specifically designed for Off-Line and DC to DC converter applications with minimal external parts count.

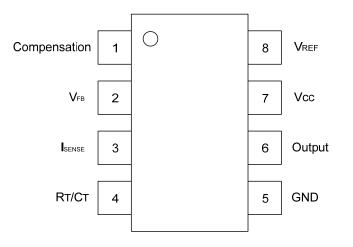

The differences between **UC1842B** and **UC1843B** are the under-voltage lockout thresholds. The **UC1842B** ideally suited to off-line applications with UVLO thresholds of $16V_{(ON)}$ and $10V_{(OFF)}$, and **UC1843B** has UVLO thresholds of $8.4V_{(ON)}$ and $7.6V_{(OFF)}$ for lower voltage applications.


FEATURES

- * Operation output switching frequency up to 500 kHz
- * Automatic feed forward compensation
- * Latching PWM for cycle-by-cycle current limiting
- * High current totem pole output
- * Internally trimmed reference with under voltage lockout
- * UVLO with hysteresis
- * Low startup and operating current

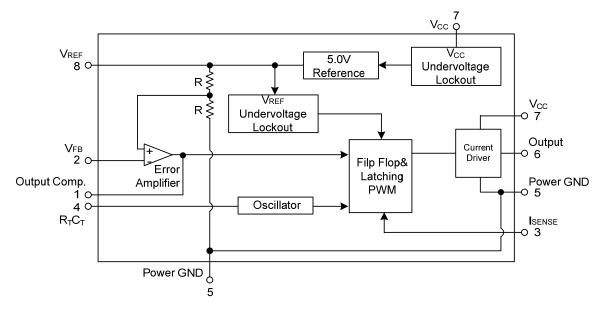

ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Halogen Free Package		
UC1842BL-D08-T	UC1842BG-D08-T	DIP-8	Tube	
UC1842BL-S08-R	UC1842BG-S08-R	SOP-8	Tape Reel	
UC1843BL-D08-T	UC1843BG-D08-T	DIP-8	Tube	
UC1843BL-S08-R	UC1843BG-S08-R	SOP-8	Tape Reel	



MARKING

■ PIN CONFIGURATION


PIN DESCRIPTION

PIN NO	PIN NAME	FUNCTION
1	Compensation	Error amplifier output, this pin is made available for loop compensation.
2	Vfb	Voltage Feedback, the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	Isense	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The Oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_T to V_{REF} and capacitor C_T to ground. Operation to 1 MHz is possible.
5	GND	Power ground.
6	Output	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency.
7	V _{CC}	Positive supply.
8	V _{REF}	Reference output, provides charging current for capacitor C_T though resistor R_T .

LINEAR INTEGRATED CIRCUIT

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Current Sense and Voltage feedback Inputs		V _{IN}	-0.3 ~ +5.5	V
Supply Voltage (Low Impedance Source)		V _{cc}	30	V
Supply Voltage (I _{CC} <30mA)		V _{cc}	Self Limiting	V
Error Amp Output Sink Current		I _{SINK}	10	mA
Output Current, Source or Sink (Note 2)		I _{OUT}	1.0	А
Output Energy (Capacitive Load per cycle)		W	5.0	μJ
Power Dissipation	DIP-8	D	1250	mW
	SOP-8	P _D	800	mW
Junction Temperature		TJ	+150	°C
Operation Temperature		T _{OPR}	-40 ~ +125	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Maximum package power dissipation limits must be observed.

THERMAL DATA

PARAMETER		SYMBOL RATINGS		UNIT
hun stiens te Anshienst	DIP-8	0	100	°C/W
Junction to Ambient	SOP-8	θJA	156	°C/W

ELECTRICAL CHARACTERISTICS

(T_A=25°C, V_{CC}=15V, R_T=10k, C_T=3.3nF, -40°C \leq T_A \leq +125°C, unless otherwise specified)

01-0.011							
	SYMBOL	TEST CONDITIONS	MIN	IYP	MAX	UNIT	
Reference Output Voltage		I _{OUT} =1.0mA,T _J =25°C	4.9	5.0	5.1	V	
	∆V _{OUT}	V _{CC} =12V ~ 25V		2.0	20	mV	
	∆V _{OUT}	I _{OUT} =1.0mA ~ 20mA		15	30	mV	
	t _s			0.2		mV/°C	
ne,	V		1 92		5 1 9	V	
	V REF		4.02		5.10	v	
	e _N	f=10Hz ~ kHz, T _J =25°C		50		μV	
	S	T _A =125°C for 1000 Hours		5		mV	
Output Short Circuit Current			-50	-155	-280	mA	
Oscillator Voltage Swing				1.6		V	
	I _{DSG}	V _{OSC} =2.0V, T _J =25°C		10.8		mA	
	f _{osc}	TJ=25°C	47	52	57	kHz	
		-40°C ≤ T _A ≤ +125°C	46		60		
je	$\Delta f_{OSC} / \Delta V$	V _{CC} =12V ~ 25V		0.2	1.0	%	
erature	$\Delta f_{OSC} / \Delta T$	-40°C ≤ T _A ≤ +125°C		5.0		%	
N							
	V _{FB}	V _{OUT} =2.5V	2.42	2.50	2.58	V	
High	V _{OH}	R _L =15k to ground, V _{FB} =2.3V	5.0	6.2		V	
Low	V _{OL}	R _L =15k to V _{REF} , V _{FB} =2.7V		0.8	1.1		
Sink	I _{SINK}	V _{OUT} =1.6V, V _{FB} =2.7V	2.0	12		mA	
Source	ISOURCE	V _{OUT} =5.0V, V _{FB} =2.3V	-0.5	-1.0			
Input Bias Current		V _{FB} =2.7V		-0.1	-2.0	μA	
Open Loop Voltage Gain		V _{OUT} =2.0V ~ 4.0V	65	90		dB	
Power Supply Rejection Ratio		V _{CC} =12V ~ 25V	60	70		dB	
Unity Gain Bandwidth		TJ=25°C	0.7	1.0		MHz	
	ge erature N High Low Sink	$\begin{tabular}{ c c c } & SYMBOL \\ \hline & V_{REF} \\ \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONDITIONS \\ \hline V_{REF} & I_{0UT}=1.0mA, T_J=25^{\circ}C \\ \hline \bigtriangleup V_{0UT} & V_{CC}=12V \sim 25V \\ \hline \bigtriangleup V_{OUT} & I_{0UT}=1.0mA \sim 20mA \\ \hline t_S & \\ \hline \hline & t_S & \\ \hline &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c } \hline SYMBOL & TEST CONDITIONS & MIN & TYP \\ \hline V_{REF} & I_{OUT}=1.0mA, T_J=25^{\circ}C & 4.9 & 5.0 \\ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

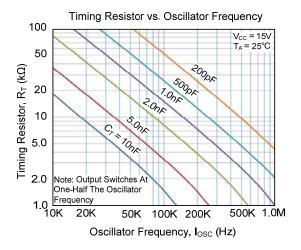
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT SENSE SEC	TION						
Current Sense Input Voltage Gain (Note 2, 3)		Gv		2.85	3.0	3.15	V/V
Maximum Current Sense Input Threshold (Note 2)		V _{I(THR)}		0.9	1.0	1.1	V
Input Bias Current		I _{I(BIAS)}			-2.0	-10	μA
Power Supply Rejection I	Ratio	PSRR	V _{CC} =12V ~ 25V (Note 4)		70		dB
Propagation Delay		t _{PLH(IN/OUT)}			150	300	ns
OUTPUT SECTION			_				
	Law		I _{SINK} =20mA		0.2	0.8	V
Output Valtage	Low	V _{OL}	I _{SINK} =200mA		1.6	2.2	V
Output Voltage	Llinda	N/	I _{SINK} =20mA	11	13.5		V
	High	V _{OH}	I _{SINK} =200mA	11	13.4		V
Output Voltage with U _{VLO} Activated		V _{OL(UVLO)}	V _{CC} =6.0V, I _{SINK} =1.0mA		0.7	1.2	V
Output Voltage Rise Time		t _R	C _L =1.0nF, T _J =25°C		50	150	ns
Output Voltage Fall Time		t _F	C _L =1.0nF, T _J =25°C		50	150	ns
UNDERVOLTAGE LOCH	KOUT SECTION	ON					
Ctautur Thusshald	UC1842B	V _{THR}		14.5	16.0	17.5	V
Startup Threshold	UC1843B			7.8	8.4	9.0	V
Minimum Operating	UC1842B	M		8.5	10.0	11.5	V
Voltage After Turn-On	UC1843B	V _{CC(MIN)}		7.0	7.6	8.2	V
PWM SECTION							
Duty Cycle	MAX	DC _{MAX}		95	97	100	%
Duty Cycle	MIN	DC _{MIN}				0	%
TOTAL DEVICE							·
Power Supply Zener Volt	age	Vz	I _{CC} =25mA	30	34		V
Power Supply Current (Note 4)		I _{CC}	Start Up		0.25	0.5	mA
			Operating		12	17	mA

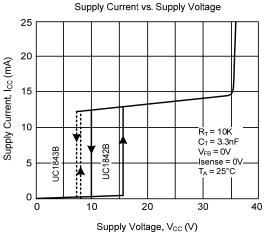
Notes: 1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

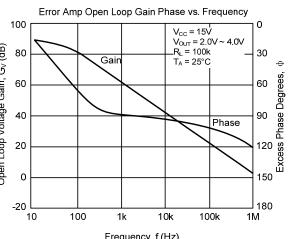
2. This parameter is measured at the latch trip point with V_{FB} =0V.

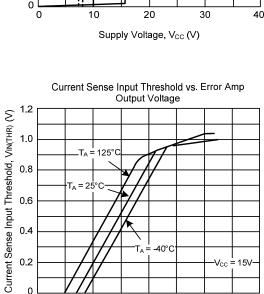
3. Comparator gain is defined as: ΔV Output Compensation

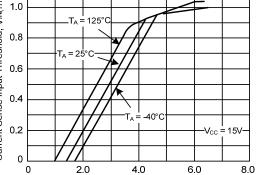
A_V= _____

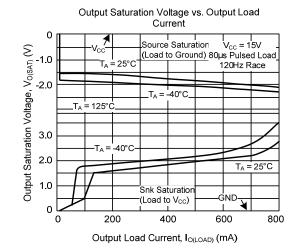

∆V Current Sense Input

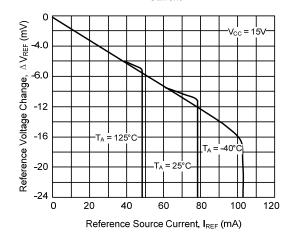

4. Adjust V_{CC} above the startup threshold before setting to 15V.


LINEAR INTEGRATED CIRCUIT


TYPICAL CHARACTERISTICS




Error Amp Open Loop Gain Phase vs. Frequency 100 0 $V_{CC} = 15V$ $V_{OUT} = 2.0V$ $R_L = 100k$ $T_A = 25^{\circ}C$ 4.0V Open Loop Voltage Gain, G_V (dB) 80 30 Gair Ф 60 60 40 90 Phase 20 120 0 150 180 -20 10 100 1k 10k 100k 1M Frequency, f (Hz)



Error Amp Output Voltage, VOUT (V)

Reference Voltage Change vs. Reference Source Current

LINEAR INTEGRATED CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

