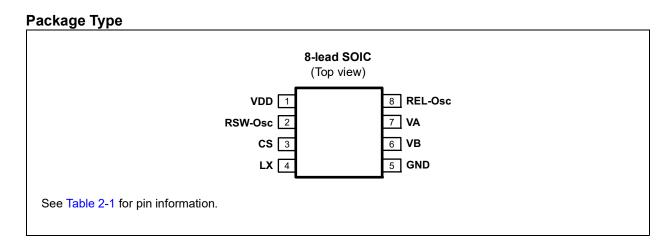


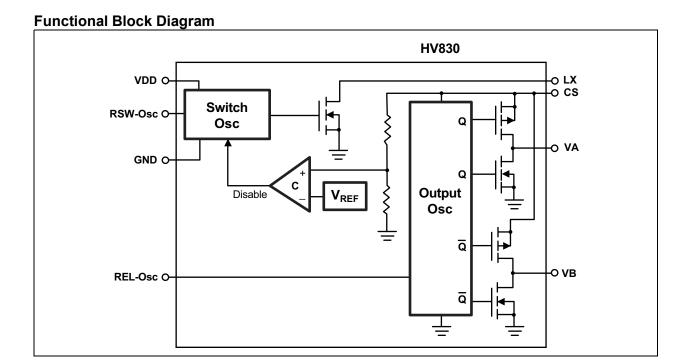
High-Voltage EL Lamp Driver IC

Features

- 2V to 9.5V Operating Supply Voltage
- · DC to AC Conversion
- · 200V Peak-to-Peak Typical Output Voltage
- · Large Output Load Capability, typically 50 nF
- Permits the use of High-resistance Elastomeric Lamp Components
- Adjustable Output Lamp Frequency to Control Lamp Color, Lamp Life and Power Consumption
- Adjustable Converter Frequency to Eliminate Harmonics and Optimize Power Consumption
- · Enable/Disable Function
- · Low Current Draw under No-load Condition

Applications


- · Handheld Personal Computers
- · Electronic Personal Organizers
- GPS Units
- · Pagers
- · Cellular Phones
- · Portable Instrumentation


General Description

The HV830 is a high-voltage driver designed for driving EL lamps of up to 50 nF. EL lamps greater than 50 nF can be driven for applications not requiring high brightness. The input supply voltage range is from 2V to 9.5V. The device uses a single inductor and a minimum number of passive components. The nominal regulated output voltage that is applied to the EL lamp is ± 100 V. The chip can be enabled by connecting the resistors on the RSW-Osc and REL-Osc pins to the VDD pin. The chip can be disabled by connecting the resistors on RSW-Osc and REL-Osc to Ground.

The HV830 has two internal oscillators, a switching MOSFET, and a high-voltage EL lamp driver. The frequency of the switching converter MOSFET is set by an external resistor connected between the RSW-Osc and the VDD pins. The EL lamp driver frequency is set by an external resistor connected between the REL-Osc and the VDD pins. An external inductor is connected between the LX and VDD pins. A 0.01 μF to 0.1 μF capacitor is connected between the C $_S$ pin and the GND. The EL lamp is connected between the VA and VB pins.

The switching MOSFET charges the external inductor and discharges it into the C_S capacitor. The voltage at C_S will start to increase. Once the voltage at C_S reaches a nominal value of 100V, the switching MOSFET is turned OFF to conserve power. The output pins, VA and VB, are configured as an H-bridge and are switched in opposite states to achieve 200V peak-to-peak across the EL lamp.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

Supply Voltage, V _{DD}	–0.5V to 10V
Output Voltage, V _{CS}	
Operating Temperature, T _A	
Storage Temperature, T _S	
Power Dissipation:	
8-lead SOIC	400 mW

[†] Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

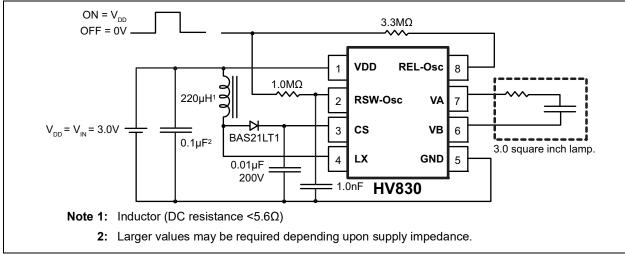
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V_{DD}	2	_	9.5	V	
V _{A-B} Output Drive Frequency	f _{EL}	_	_	1.5	KHz	
Operating Temperature	T _A	-25		+85	°C	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications : V_{IN} = 3V, R_{SW} = 1 M Ω , R_{EL} = 3.3 M Ω , T_A = 25°C unless otherwise specified.								
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions		
On Resistance of Switching Transistor	R _{DS(ON)}		2	4	Ω	I = 100 mA		
Output Voltage V _{CS} , Regulation	V_{CS}	90	100	110	V	V _{DD} = 2V to 9.5V		
Output Peak-to-Peak Voltage	$V_A - V_B$	180	200	220	V	V _{DD} = 2V to 9.5V		
Quiescent V _{DD} Supply Current, Disabled	I _{DDQ}	_	30	_	nA	R _{SW-Osc} = Low		
V _{DD} Supply Current	I _{DD}	1	100	150	μΑ			
Input Current Including Inductor Current	I _{IN}	_	35	40	mA			
Output Voltage on V _{CS}	V _{CS}	_	95	_	V	V _{DD} = 3V (See Figure 3-1.)		
V _A –V _B Output Drive Frequency	f _{EL}	220	250	280	Hz			
Inductor Switching Frequency	f _{SW}	55	65	75	KHz			
Switching Transistor Duty Cycle	D	_	88	_	%			

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
TEMPERATURE RANGE							
Operating Temperature	T _A	-25	_	+85	°C		
Storage Temperature	T _S	-65	_	+150	°C		
PACKAGE THERMAL RESISTANCE							
8-lead SOIC	θ_{JA}	_	101	_	°C/W		


2.0 PIN DESCRIPTION

The details on the pins of HV830 are listed in Table 2-1. See location of pins in **Functional Block Diagram**.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	VDD	VDD supply input pin of the IC
2	RSW-Osc	The switching frequency of the converter is controlled via an external resistor, $R_{SW,}$ between the R_{SW-Osc} and V_{DD} pins of the device. The switching frequency increases as R_{SW} decreases. With a given inductor, as the switching frequency increases, the amount of current drawn from the battery will decrease and the output voltage V_{CS} will also decrease.
2	1300-030	A 1 nF capacitor is recommended between the R_{SW-Osc} pin and GND when a 0.01 μ F C_S capacitor is used. This capacitor is used to shunt any switching noise that may couple into the R_{SW-Osc} pin. The C_{SW} capacitor may also be needed when driving large EL lamp due to an increase in switching noise. A C_{SW} larger than 1 nF is not recommended.
3	CS	A fast recovery diode (BAS21LT1 or equivalent) should be used here, and a 0.01 μ F to 0.1 μ F 200V capacitor to GND needs to be used to store the energy transferred from the inductor as indicated in the Typical Application Diagram in Figure 3-1.
4	LX	The inductor L_X is used to boost the low input voltage by inductive flyback. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge stored in the inductor will be transferred to the high-voltage capacitor C_S . The energy stored in the capacitor is connected to the internal H-bridge and therefore to the EL lamp. In general, smaller value inductors, which can handle more current, are more suitable to drive larger-sized lamps. As the inductor value decreases, the switching frequency of the inductor (controlled by R_{SW}) should be increased to avoid saturation. 220 µH inductors with 5.4 Ω series DC resistance are typically recommended. For inductors with the same inductance value but with lower series DC resistance, a
		lower R _{SW} value is needed to prevent high current draw and inductor saturation.
5	GND	Ground pin
6,7	VA, VB	The EL lamp terminals are connected to the VA and VB pins. As the EL lamp size increases, more current will be drawn from the battery to maintain high voltage across the EL lamp. The input power, ($V_{\text{IN}} \times I_{\text{IN}}$), will also increase. If the input power is greater than the power dissipation of the package (400 mW), an external resistor in series with one side of the lamp is recommended to help reduce the package power dissipation.
8	REL-Osc	The EL lamp frequency is controlled via an external R_{EL} resistor connected between $R_{EL\text{-}Osc}$ and V_{DD} pins of the device. The lamp frequency increases as R_{EL} decreases. As the EL lamp frequency increases, the amount of current drawn from the battery will increase and the output voltage V_{CS} will decrease. The color of the EL lamp is dependent upon its frequency. A 3.3 $M\Omega$ resistor would provide a lamp frequency of 220 Hz to 280 Hz. Decreasing the $R_{EL\text{-}Osc}$ by a factor of two will increase the lamp frequency by a factor of two.

3.0 APPLICATION INFORMATION

FIGURE 3-1: Test Circuit, $V_{IN} = 3V$.

3.1 Enable/Disable Configuration

The HV830 can be easily enabled and disabled by using a logic control signal on the R_{SW} and R_{EL} resistors as shown in Figure 3-2. The control signal can be from a microprocessor. R_{SW} and R_{EL} are typically very high values. Therefore, only tens of microamperes will be drawn from the logic signal when it is at a logic high (enable) state. When the microprocessor signal is high, the device is enabled, but when the signal is low, it is disabled.

TABLE 3-1: ENABLE/DISABLE

R _{SW} Resistor	HV830
V_{DD}	Enable
0V	Disable

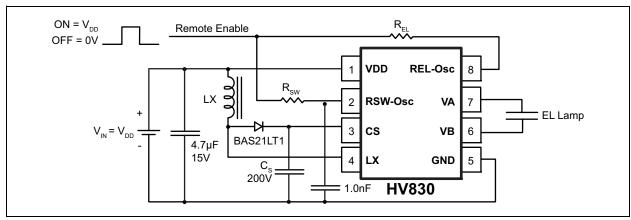


FIGURE 3-2: Enable/Disable Configuration.

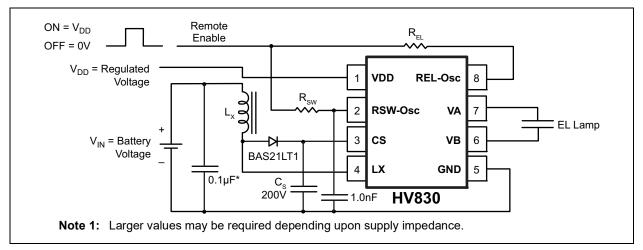
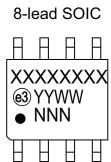


FIGURE 3-3: Split Supply Configuration.

3.2 Split Supply Configuration Using a Single Cell (1.5V) Battery


The HV830 can also be used for handheld devices operating from a single-cell 1.5V battery where a regulated voltage is available. This is shown in Figure 3-3. The regulated voltage can be used to run the internal logic of the HV830. The amount of current necessary to run the internal logic is typically 100 μA at a V_{DD} of 3V. Therefore, the regulated voltage could easily provide the current without being loaded down. The HV830 used in this configuration can also be enabled/disabled by applying a logic control signal on the R_{SW} and R_{EL} resistors as shown in Figure 3-2.

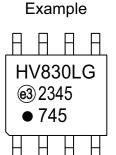

3.3 Split Supply Configuration for Battery Voltages of Higher than 9.5V

Figure 3-3 can also be used with high battery voltages, such as 12V, as long as the input voltage VDD of the HV830 is within the range of 2V to 9.5V.

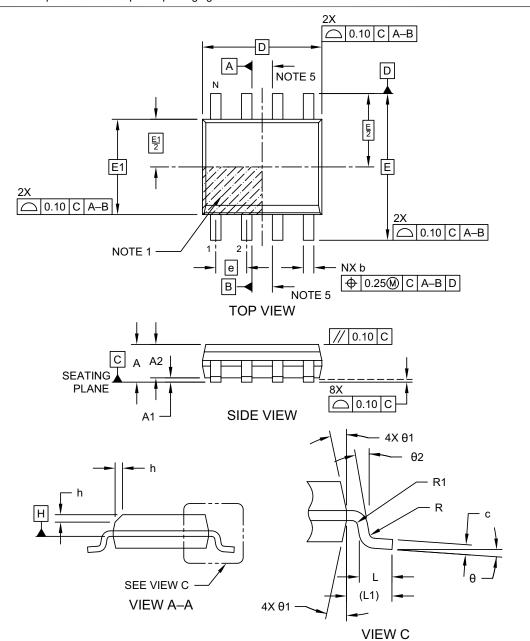
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

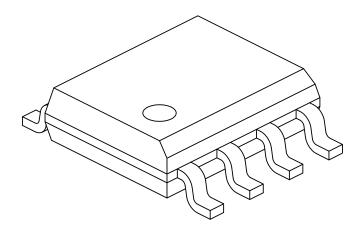
e3 Pb-free JEDEC® designator for Matte Tin (Sn)


* This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC] Atmel Legacy Global Package Code SWB


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC] Atmel Legacy Global Package Code SWB

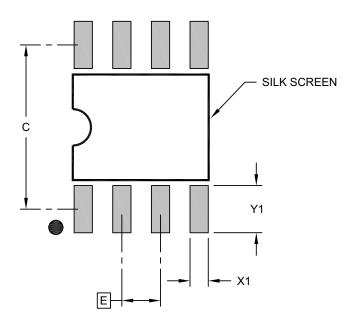
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N					
Pitch	е		1.27 BSC			
Overall Height	Α	ı	1	1.75		
Molded Package Thickness	A2	1.25	1	-		
Standoff §	A1	0.10	ı	0.25		
Overall Width	Е		6.00 BSC			
Molded Package Width	E1		3.90 BSC			
Overall Length	D	4.90 BSC				
Chamfer (Optional)	h	0.25 – 0.50				
Foot Length	L	0.40	ı	1.27		
Footprint	L1		1.04 REF			
Lead Thickness	С	0.17	ı	0.25		
Lead Width	b	0.31	-	0.51		
Lead Bend Radius	R	0.07 –				
Lead Bend Radius	R1	0.07	-	_		
Foot Angle	θ	0°	_	8°		
Mold Draft Angle	θ1	5°	_	15°		
Lead Angle	θ2	0°	_	_		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 2 of 2

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing		5.40		
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)			1.55	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-C2X Rev K

APPENDIX A: REVISION HISTORY

Revision A (July 2023)

- Converted Supertex Doc# DSFP-HV830 to Microchip DS20005635A
- Changed the quantity of the LG package from 2500/Reel to 3300/Reel to align packaging specifications with the actual BQM
- Updated package outline drawings
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	XX		- <u>X</u> - <u>X</u>	Exa	ample:	
Device	Package Options		Environmental Media Type	a)	HV830LG-G:	High-Voltage EL Lamp Driver IC, 8-lead SOIC Package, 3300/Reel
Device:	HV830	=	High-Voltage EL Lamp Driver IC			
Packages:	LG	=	8-lead SOIC			
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank)	=	3300/Reel for an LG Package			

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2823-1

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-598 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820