FEATURES

www.ti.com

RUMENTS

- Control Inputs V_{IH}/V_{IL} Levels Are Referenced to V_{CCA} Voltage
- V_{CC} Isolation Feature If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 16-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

	(101	•••=•••	
1DIR 1B1 1B2 GND 1B3 1B4 V _{CCB}	1 2 3 4 5 6 7	48 47 46 45 44 43 42	1A3 1A4
1B5 1B6	8 9	41 40	1A5
1B6 GND	9 10	40 39	1A6 GND
1B7	11	38	1A7
1B8	12	37	1A8
2B1	13	36	2A1
2B2	14	35	2/ 12
GND	15	34	
2B3	16	33	-
2B4	17	32	2A4
V _{CCB}	18	31	V_{CCA}
2B5	19	30	2A5
2B6	20	29	2A6
GND	21	28	GND
2B7	22	27	2A7
2B8	23	26	2A8
2DIR	24	25	2 <mark>0E</mark>

SCES636A-AUGUST 2005-REVISED AUGUST 2005

DGG OR DGV PACKAGE

(TOP VIEW)

The SN74LVC16T245 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (\overline{OE}) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ}.

The SN74LVC16T245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by V_{CCA}.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

T _A	PACKAGE ⁽¹)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74LVC16T245DGGR	LVC16T245
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74LVC16T245DGVR	LDT245
-40 C 10 65 C	VFBGA – GQL	Tape and reel	SN74LVC16T245GQLR	LDT245
	VFBGA – ZQL (Pb-free)	Tape and reel	SN74LVC16T245ZQLR	PREVIEW

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, then both ports are in the high-impedance state.

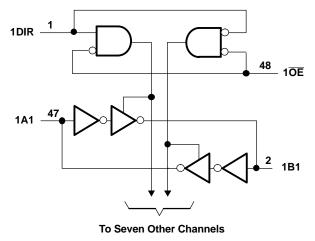
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

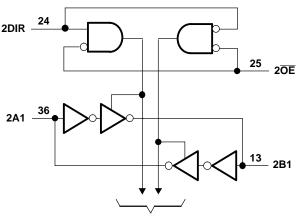
GQL OR ZQL PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 Α в 000000 000000 С 000000 D OOCO Е OOCO F 000000 G 000000 н 000000 J 000000 κ

TERMINAL ASSIGNMENTS⁽¹⁾

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 0E
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CCB}	V _{CCA}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
н	2B5	2B6	V _{CCB}	V _{CCA}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
К	2DIR	NC	NC	NC	NC	2 0E

(1) NC - No internal connection


FUNCTION TABLE⁽¹⁾ (EACH 16-BIT SECTION)


CONTRO	L INPUTS	OUTPUT C	CIRCUITS	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
н	Х	Hi-Z	Hi-Z	Isolation

(1) Input circuits of the data I/Os always are active.

SCES636A-AUGUST 2005-REVISED AUGUST 2005

LOGIC DIAGRAM (POSITIVE LOGIC)

To Seven Other Channels

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$V_{CCA} V_{CCB}$	Supply voltage range		-0.5	6.5	V
		I/O ports (A port)	-0.5	6.5	
VI	Input voltage range ⁽²⁾	I/O ports (B port)	-0.5	6.5	V
		Control inputs	-0.5	6.5	
v	Voltage range applied to any output	A port	-0.5	6.5	V
Vo	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	6.5	v
v	Voltage represential to provide the birth of law state $\binom{2}{3}$	A port	-0.5 V	_{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state $^{(2)(3)}$	B port	-0.5 V	_{ССВ} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current	i.		±50	mA
	Continuous current through each V _{CCA} , V _{CCB} , and GND			±100	mA
		DGG package		70	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		58	°C/W
		GQL/ZQL package		28	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

SCES636A-AUGUST 2005-REVISED AUGUST 2005

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}					1.65	5.5	.,
V _{CCB}	Supply voltage				1.65	5.5	V
			1.65 V to 1.95 V		$V_{CCI} imes 0.65$		
	High-level	- (5)	2.3 V to 2.7 V		1.7		
VIH	input voltage	Data inputs ⁽⁵⁾	3 V to 3.6 V		2		V
			4.5 V to 5.5 V		$V_{CCI} imes 0.7$		
			1.65 V to 1.95 V			$V_{CCI} imes 0.35$	
	Low-level		2.3 V to 2.7 V			0.7	
VIL	input voltage	Data inputs ⁽⁵⁾	3 V to 3.6 V			0.8	V
			4.5 V to 5.5 V			$V_{CCI} imes 0.3$	
			1.65 V to 1.95 V		$V_{CCA} imes 0.65$		
	High-level	Control inputs	2.3 V to 2.7 V		1.7		
V _{IH}	input voltage	(referenced to V_{CCA}) ⁽⁶⁾	3 V to 3.6 V		2		V
			4.5 V to 5.5 V		$V_{CCA} imes 0.7$		
			1.65 V to 1.95 V		00/1	$V_{CCA} \times 0.35$	
	Low-level	Control inputs	2.3 V to 2.7 V			0.7	
VIL	input voltage	(referenced to V_{CCA}) ⁽⁶⁾	3 V to 3.6 V			0.8	V
			4.5 V to 5.5 V			$V_{CCA} imes 0.3$	
VI	Input voltage	Control inputs			0	5.5	V
		Active state			0	V _{CCO}	
V _{I/O}	Input/output voltage	3-State			0	5.5	V
				1.65 V to 1.95 V		-4	
				2.3 V to 2.7 V		-8	
ОН	High-level output curre	ent		3 V to 3.6 V		-24	mA
				4.5 V to 5.5 V		-32	
				1.65 V to 1.95 V		4	
				2.3 V to 2.7 V		8	
OL	Low-level output curre	ent		3 V to 3.6 V		24	mA
				4.5 V to 5.5 V		32	
			1.65 V to 1.95 V			20	
	Input transition		2.3 V to 2.7 V			20	
∆t/∆v	rise or fall rate	Data inputs	3 V to 3.6 V			10	ns/V
			4.5 V to 5.5 V			5	
T _A	Operating free-air tem	perature			-40	85	°C

(1) V_{CCI} is the V_{CC} associated with the data input port. (2) V_{CCO} is the V_{CC} associated with the output port.

All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably V_{CCI} or GND) to ensure (3) proper device operation and minimize power. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(4) All unused data inputs of the device must be held at V_{CCA} or GND to ensure proper device operation. (5) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V. (6) For V_{CCA} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

SCES636A-AUGUST 2005-REVISED AUGUST 2005

Electrical Characteristics⁽¹⁾⁽²⁾

over recommended operating free-air temperature range (unless otherwise noted)

	AMETER	TEST CONDITIONS	V	v	T _A = 25°C	–40°C to 85°C	UNIT
PAR	AMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP MAX	MIN MAX	UNI
		$I_{OH} = -100 \ \mu A$, $V_I = V_{IH}$	1.65 V to 4.5 V	1.65 V to 4.5 V		V _{CCO} – 0.1	
		$I_{OH} = -4 \text{ mA}, \qquad V_I = V_{IH}$	1.65 V	1.65 V		1.2	
V _{OH}		$I_{OH} = -8 \text{ mA}, \qquad V_I = V_{IH}$	2.3 V	2.3 V		1.9	V
		$I_{OH} = -24 \text{ mA}, \qquad V_I = V_{IH}$	3 V	3 V		2.4	
		$I_{OH} = -32 \text{ mA}, \qquad V_I = V_{IH}$	4.5 V	4.5 V		3.8	
		$I_{OL} = 100 \ \mu A, \qquad V_I = V_{IL}$	1.65 V to 4.5 V	1.65 V to 4.5 V		0.1	
		$I_{OL} = 4 \text{ mA}, \qquad V_I = V_{IL}$	1.65 V	1.65 V		0.45	
V _{OL}		$I_{OL} = 8 \text{ mA}, \qquad V_I = V_{IL}$	2.3 V	2.3 V		0.3	V
		$I_{OL} = 24 \text{ mA}, \qquad V_I = V_{IL}$	3 V	3 V		0.55	
		$I_{OL} = 32 \text{ mA}, \qquad V_I = V_{IL}$	4.5 V	4.5 V		0.55	
I _I	Control inputs	$V_{I} = V_{CCA}$ or GND	1.65 V to 5.5 V	1.65 V to 5.5 V	±1	±2	μA
1	A or B	$V_1 \text{ or } V_0 = 0 \text{ to } 5.5 \text{ V}$	0 V	0 to 5.5 V	±1	±2	۸
off	port	$v_1 \text{ or } v_0 = 0 \text{ to 5.5 } v$	0 to 5.5 V	0 V	±1	±2	μA
l _{oz}	A or B port	$V_O = V_{CCO}$ or GND, $\overline{OE} = V_{IH}$	1.65 V to 5.5 V	1.65 V to 5.5 V	±1	±2	μA
			1.65 V to 5.5 V	1.65 V to 5.5 V		20	
I _{CCA}		$V_I = V_{CCI}$ or GND, $I_O = 0$	5 V	0 V		20	μA
		10 - 0	0 V	5 V		-2	
			1.65 V to 5.5 V	1.65 V to 5.5 V		20	
I _{CCB}		$V_I = V_{CCI}$ or GND, $I_O = 0$	5 V	0 V		-2	μA
		10 - 0	0 V	5 V		20	
I _{CCA} + I	ссв	$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$	1.65 V to 5.5 V	1.65 V to 5.5 V		30	μA
	A port	One A port at $V_{CCA} - 0.6 V$, DIR at V_{CCA} , B port = open				50	
ΔI _{CCA}	DIR	DIR at $V_{CCA} - 0.6 V$, B port = open, A port at V_{CCA} or GND	3 V to 5.5 V	3 V to 5.5 V		50	μA
ΔI_{CCB}	B port	One B port at $V_{CCB} - 0.6 V$, DIR at GND, A port = open	3 V to 5.5 V	3 V to 5.5 V		50	μA
C _i	Control inputs	$V_{I} = V_{CCA}$ or GND	3.3 V	3.3 V	4	5	pF
C _{io}	A or B port	$V_{O} = V_{CCA/B}$ or GND	3.3 V	3.3 V	8.5	10	pF

 $\begin{array}{ll} \mbox{(1)} & V_{CCO} \mbox{ is the } V_{CC} \mbox{ associated with the output port.} \\ \mbox{(2)} & V_{CCI} \mbox{ is the } V_{CC} \mbox{ associated with the input port.} \end{array}$

SCES636A-AUGUST 2005-REVISED AUGUST 2005

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CCB} = 1.8 V ± 0.15 V		2.5 V 2 V	V _{CCB} = ± 0.3		V _{ССВ} = ± 0.5		UNIT	
		(001-01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	A	В	1.7	21.9	1.3	9.2	1	7.4	0.8	7.1	ns	
t _{PHL}												
t _{PLH}	В	А	0.9	23.8	0.8	23.6	0.7	23.4	0.7	23.4	ns	
t _{PHL}			0.0	2010	0.0	20.0	•	2011	•	2011		
t _{PHZ}	ŌĒ	A	1.6	29.6	1.5	29.4	1.5	29.3	1.4	29.2	ns	
t _{PLZ}	UL	Λ	1.0	23.0	1.5	23.4	1.5	29.5	1.4	23.2	115	
t _{PHZ}	OE	В	2.4	32.2	1.9	13.1	1.7	12	1.3	10.3	ns	
t _{PLZ}	02	d	2.7	52.2	1.5	10.1	1.7	12	1.5	10.0	113	
t _{PZH}	OE	А	0.4	24	0.4	23.8	0.4	23.7	0.4	23.7	ns	
t _{PZL}	UL UL	~	0.4	24	0.4	20.0	0.4	20.1	0.4	20.1	115	
t _{PZH}	OE	В	1.8	32	1.6	16	1.2	12.6	0.9	10.8	ns	
t _{PZL}	UL UL	d	1.0	52	1.0	10	1.2	12.0	0.3	10.0	115	

Switching Characteristics

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{ССВ} = ± 0.1			= 2.5 V .2 V	V _{ССВ} = ± 0.		V _{CCB} 0.5		UNIT
	(INPUT)	(001901)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	А	В	1.6	21.4	1.2	9	0.8	6.2	0.6	4.8	ns
t _{PHL}	A	В	1.0	21.4	1.2	9	0.0	0.2	0.0	4.0	115
t _{PLH}	В	А	1.2	9.3	1	9.1	1	8.9	0.9	8.8	ns
t _{PHL}	В	~	1.2	3.5	•	3.1	I	0.3	0.3	0.0	113
t _{PHZ}	OE	A	1.4	9	1.4	9	1.4	9	1.4	9	ns
t _{PLZ}	UL	7	1.4	5	1.4	5	1.4	3	1.4	3	113
t _{PHZ}	OE	В	2.3	29.6	1.8	11	1.7	9.3	0.9	6.9	ns
t _{PLZ}	UL	D	2.5	23.0	1.0		1.7	9.5	0.3	0.3	113
t _{PZH}	OE	А	1	10.9	1	10.9	1	10.9	1	10.9	ns
t _{PZL}	OE	~	· ·	10.9	-	10.9	I	10.9	I	10.9	113
t _{PZH}	OE	В	1.7	28.2	1.6	12.9	1.2	9.4	1	6.9	ns
t _{PZL}	UL UL	в	1.7	20.2	1.0	12.9	1.2	9.4	I	0.9	115

SCES636A-AUGUST 2005-REVISED AUGUST 2005

TEXAS INSTRUMENTS www.ti.com

Switching Characteristics

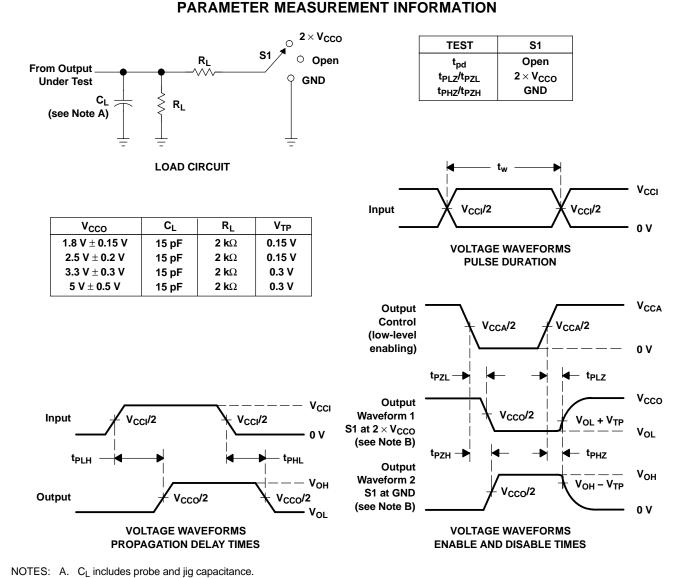
over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		V_{CCB} = 1.8 V ± 0.15 V		= 2.5 V 2 V	V _{CCB} = ± 0.3		V _{ССВ} ± 0.		UNIT
	(INFOT)	(001P01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A	В	1.5	21.2	1.1	8.8	0.8	6.1	0.5	4.4	ns
t _{PHL}	~	В	1.5	21.2	1.1	0.0	0.8	0.1	0.5	4.4	115
t _{PLH}	В	А	0.9	7.2	0.8	6.2	0.7	6.1	0.6	6	ns
t _{PHL}	D	~	0.5	1.2	0.0	0.2	0.7	0.1	0.0	0	115
t _{PHZ}	OE	A	1.6	8.2	1.6	8.2	1.6	6.2	1.6	8.2	ns
t _{PLZ}	UL	~	1.0	0.2	1.0	0.2	1.0	0.2	1.0	0.2	115
t _{PHZ}	OE	В	2.1	29	1.7	10.3	1.5	8.6	0.8	6.3	ns
t _{PLZ}	02	, D	2.1	25	1.7	10.5	1.0	0.0	0.0	0.0	113
t _{PZH}	OE	А	0.8	7.8	0.8	7.8	0.8	7.8	0.8	7.8	ns
t _{PZL}	JL JL	~	0.0	7.0	0.0	7.0	0.0	7.0	0.0	7.0	115
t _{PZH}	OE	В	1.6	27.7	1.4	12.4	1.1	8.5	0.9	8.4	ns
t _{PZL}	JL JL	D	1.0	21.1	1.4	12.4	1.1	0.5	0.9	0.4	115

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTBUT)	TO (OUTPUT) V _{CC} = 1.8 V ± 0.15 V			V_{CC} = 2.5 V ± 0.2 V		3.3 V 3 V	V _{CC} : ± 0.		UNIT
	(INFUT)	(001101)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A	В	16	21.4	1	8.8	0.7	6	0.4	4.2	ns
t _{PHL}	~	D	1.0	21.4	1	0.0	0.7	0	0.4	4.2	115
t _{PLH}	в	А	0.7	6.8	0.4	4.8	0.3	4.5	0.3	4.3	ns
t _{PHL}	D	~	0.7	0.0	0.4	4.0	0.5	4.5	0.5	4.5	115
t _{PHZ}	OE	A	0.3	5.4	0.3	5.4	0.3	5.4	0.3	6.4	ns
t _{PLZ}	OL	~	0.5	5.4	0.5	5.4	0.5	5.4	0.5	0.4	115
t _{PHZ}	OE	В	2	28.7	1.6	9.7	1.4	8	0.7	5.7	ns
t _{PLZ}	OL	В	2	20.7	1.0	9.7	1.4	0	0.7	5.7	115
t _{PZH}		А	0.7	5.5	0.7	5.5	0.7	5.5	0.7	5.5	ns
t _{PZL}	ŌĒ	~	0.7	5.5	0.7	5.5	0.7	5.5	0.7	5.5	115
t _{PZH}	OE	В	16	27.6	1.3	11.4	1	8.1	0.9	6	ns
t _{PZL}	UE	D	1.0	27.0	1.5	11.4	I	0.1	0.9	0	115


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.8 V TYP	V _{CCA} = V _{CCB} = 2.5 V TYP	V _{CCA} = V _{CCB} = 3.3 V TYP	V _{CCA} = V _{CCB} = 5 V TYP	UNIT
C (1)	A-port input, B-port output		2	2	2	3	
C _{pdA} ⁽¹⁾	B-port input, A-port output	$C_L = 0,$	18	19	19	22	~ -
c (1)	A-port input, B-port output	f = 10 MHz, t _r = t _f = 1 ns	18	19	20	22	pF
C _{pdB} ⁽¹⁾	B-port input, A-port output		2	2	2	2	

(1) Power dissipation capacitance per transceiver

SCES636A-AUGUST 2005-REVISED AUGUST 2005

Texas

STRUMENTS www.ti.com

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10$ MHz, $Z_O = 50 \Omega$, $dv/dt \ge 1$ V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PIZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

20-May-2013

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74LVC16T245DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
74LVC16T245DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
74LVC16T245DGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LDT245	Samples
74LVC16T245DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
SN74LVC16T245DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
SN74LVC16T245DGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LDT245	Samples
SN74LVC16T245DGVRG	ACTIVE	TVSOP	DGV	48		TBD	Call TI	Call TI	-40 to 85		Samples
SN74LVC16T245DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
SN74LVC16T245DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
SN74LVC16T245DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC16T245	Samples
SN74LVC16T245GQLR	ACTIVE	BGA MICROSTAR JUNIOR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM	-40 to 85	LDT245	Samples
SN74LVC16T245ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	NK245	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

20-May-2013

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

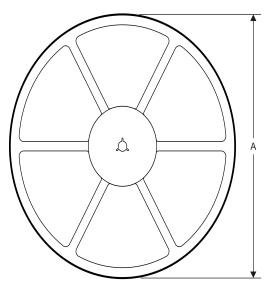
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

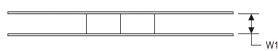
OTHER QUALIFIED VERSIONS OF SN74LVC16T245 :

Enhanced Product: SN74LVC16T245-EP

NOTE: Qualified Version Definitions:

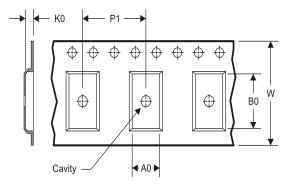
• Enhanced Product - Supports Defense, Aerospace and Medical Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

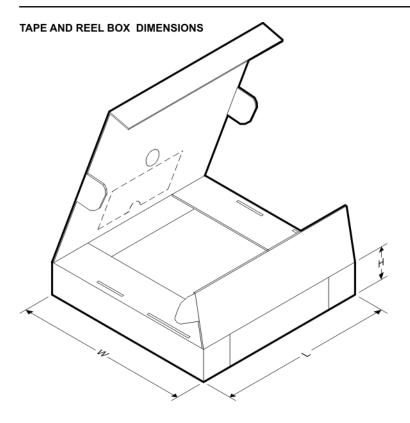
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

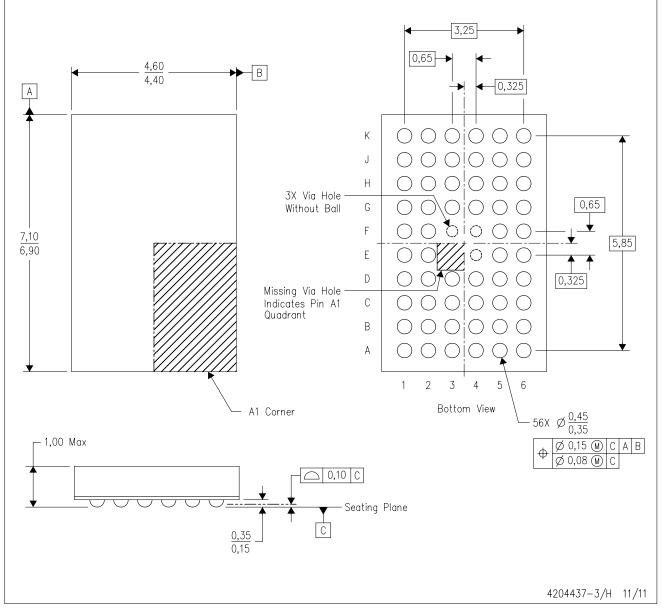

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC16T245DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74LVC16T245DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVC16T245DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVC16T245GQLR	BGA MI CROSTA R JUNI OR	GQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74LVC16T245ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



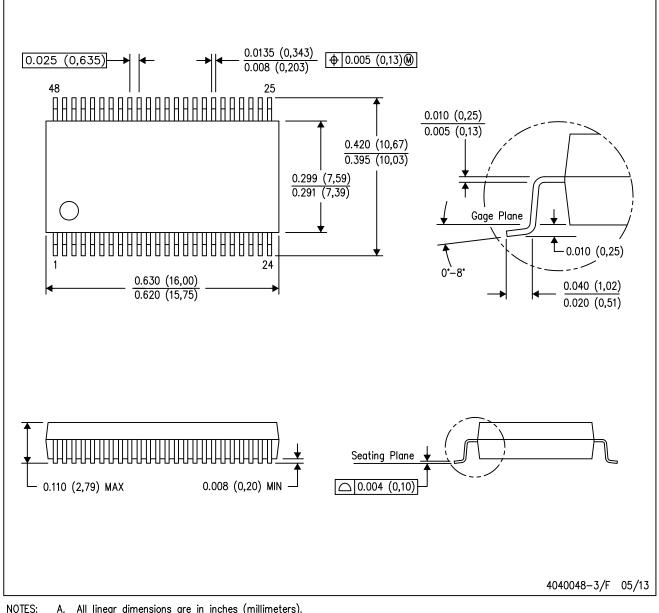
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC16T245DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVC16T245DGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74LVC16T245DLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74LVC16T245GQLR	BGA MICROSTAR JUNIOR	GQL	56	1000	333.2	345.9	28.6
SN74LVC16T245ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	333.2	345.9	28.6

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

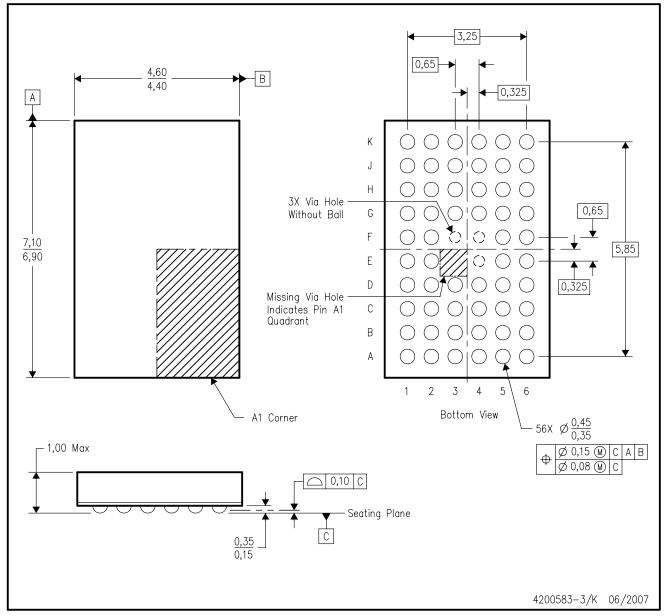
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MicroStar Junior is a trademark of Texas Instruments

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

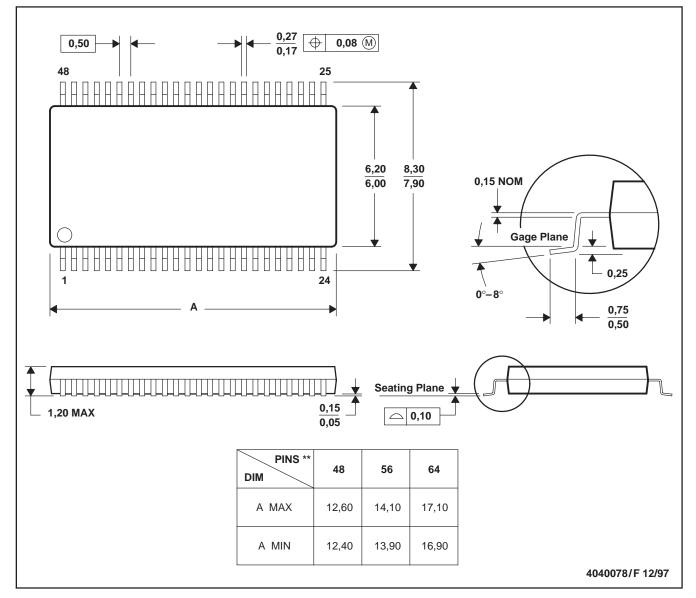
PowerPAD is a trademark of Texas Instruments.

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com