STGIPN3H60T-H

Datasheet - production data

SLLIMM[™]-nano (small low-loss intelligent molded module) IPM, 3 A - 600 V 3-phase IGBT inverter bridge

NDIP-26L

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Optimized for low electromagnetic interference
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull down/pull up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- Op amp for advanced current sensing
- Optimized pin out for easy board layout
- NTC for temperature control (UL 1434 CA 2 and 4)

Applications

- 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

Description

This intelligent power module implements a compact, high performance AC motor drive in a simple, rugged design. It is composed of six IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is optimized for thermal performance and compactness in built-in motor applications, or other low power applications where assembly space is limited. This IPM includes an operational amplifier, completely uncommitted, and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM[™] is a trademark of STMicroelectronics.

Table 1. Device summary

Order code	Marking	Package	Packaging
STGIPN3H60T-H	GIPN3H60T-H	NDIP-26L	Tube

DocID025716 Rev 5

1/25

This is information on a product in full production.

Contents

1	Intern	al schematic diagram and pin configuration
2	Electr	ical ratings
	2.1	Absolute maximum ratings 6
	2.2	Thermal data
3	Electr	ical characteristics
	3.1	Control part 9
		3.1.1 NTC thermistor
	3.2	Waveform definitions
4	Smart	shutdown function 16
5	Applic	cation information
	5.1	Recommendations 19
6	Packa	ge mechanical data 21
7	Revisi	on history

1 Internal schematic diagram and pin configuration

Figure 1. Internal schematic diagram

Pin	Symbol	Description
1	GND	Ground
2	T/SD/OD	NTC thermistor terminal / shut down logic input (active low) / open drain (comparator output)
3	V _{CC} W	Low voltage power supply W phase
4	HIN W	High side logic input for W phase
5	LIN W	Low side logic input for W phase
6	OP+	Op amp non inverting input
7	OP _{OUT}	Op amp output
8	OP-	Op amp inverting input
9	V _{CC} V	Low voltage power supply V phase
10	HIN V	High side logic input for V phase
11	LIN V	Low side logic input for V phase
12	CIN	Comparator input
13	V _{CC} U	Low voltage power supply for U phase
14	HIN U	High side logic input for U phase
15	T/ <u>SD</u> /OD	NTC thermistor terminal / shut down logic input (active low) / open drain (comparator output)
16	LIN U	Low side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U, OUT _U	U phase output
20	NU	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V, OUT _V	V phase output
23	N _V	Negative DC input for V phase
24	V _{BOOT} W	Bootstrap voltage for W phase
25	W, OUT _W	W phase output
26	N _W	Negative DC input for W phase

Table 2. Pin description

Figure 2. Pin layout (top view)

(*) Dummy pin internally connected to P (positive DC input).

2 Electrical ratings

2.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Each IGBT collector emitter voltage ($V_{IN}^{(1)} = 0$)	600	V
$\pm I_{C}^{(2)}$	Each IGBT continuous collector current at $T_{C} = 25^{\circ}C$	3	A
$\pm I_{CP}^{(3)}$	Each IGBT pulsed collector current	18	А
P _{TOT}	Each IGBT total dissipation at $T_{C} = 25^{\circ}C$	8	W

Table 3. Inverter part

1. Applied between $\text{HIN}_{i},\,\text{LIN}_{i}\,\text{and GND}$ for i = U, V, W

2. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{I_{j(max)} - I_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

3. Pulse width limited by max junction temperature

Symbol	Parameter	Min.	Max.	Unit
V _{OUT}	Output voltage applied between OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
V _{CC}	Low voltage power supply	- 0.3	21	V
V _{CIN}	Comparator input voltage	- 0.3	V _{CC} +0.3	V
V _{op+}	OPAMP non-inverting input	- 0.3	V _{CC} +0.3	V
V _{op-}	OPAMP inverting input	- 0.3	V _{CC} +0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
V _{IN}	Logic input voltage applied between HIN, LIN and GND	- 0.3	15	V
V _{T/SD/OD}	Open drain voltage	- 0.3	15	V
$\Delta V_{OUT/dT}$	Allowed output slew rate		50	V/ns

Table 4. Control part

Table 5. Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 sec.)	1000	V
Тј	Power chips operating junction temperature	-40 to 150	°C
Т _С	Module case operation temperature	-40 to 125	°C

2.2 Thermal data

Table 6. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

3 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector-cut off current (V _{IN} ⁽¹⁾ = 0 "logic state")	V _{CE} = 550 V, V _{CC} = 15 V; V _{BS} = 15 V	-		250	μΑ
M	Collector-emitter	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 - 5 \text{ V},$ $I_{C} = 1 \text{ A}$	-	2.15	2.6	v
V _{CE(sat)}	saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 - 5 \text{ V},$ $I_{C} = 1 \text{ A}, T_{J} = 125 \text{ °C}$	-	1.65		
V _F	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1 \text{ A}$	-		1.7	V
Inductive	load switching time and	energy ⁽²⁾				
t _{on}	Turn-on time		-	275		
t _{c(on)}	Crossover time (on)	V _{DD} = 300 V,	-	90		1
t _{off}	Turn-off time	$V_{DD} = 300 \text{ v},$ $V_{CC} = V_{boot} = 15 \text{ V},$	-	890		ns
t _{c(off)}	Crossover time (off)	$V_{IN}^{(1)} = 0 - 5 V,$	-	125		
t _{rr}	Reverse recovery time	$I_{\rm C} = 1 \text{A}$	-	50		1
Eon	Turn-on switching losses	(see <i>Figure 4</i>)	-	18		
E _{off}	Turn-off switching losses		-	13		μJ

Table 7. Inverter part

1. Applied between HIN_i , LIN_i and GND for i = U, V, W.

2. t_{on} and t_{off} include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition.

Figure 3. Switching time test circuit

Figure 4. Switching time definition

3.1 Control part

Table 8. Low voltage power supply (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn ON threshold		11.5	12	12.5	V
$V_{CC_{thOFF}}$	V _{CC} UV turn OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current	$V_{CC} = 10 V$ T/SD/OD = 5 V; LIN = 0; H _{IN} = 0, C _{IN} = 0			150	μA
I _{qcc}	Quiescent current	$V_{cc} = 15 V$ T/SD/OD = 5 V; LIN = 0; H _{IN} = 0, C _{IN} = 0			1	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

		$age (V_{CC} = 15 V anics of the second sec$		opeenie	*)	
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V _{BS_thON}	V _{BS} UV turn ON threshold		11.1	11.5	12.1	V
V _{BS_thOFF}	V _{BS} UV turn OFF threshold		9.8	10	10.6	V
I _{QBSU}	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 V$ T/SD/OD = 5 V; LIN = 0; and HIN = 5 V; C _{IN} = 0		70	110	μA
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 V$ T/SD/OD = 5 V; LIN = 0; and HIN = 5 V; C _{IN} = 0		200	300	μΑ
R _{DS(on)}	Bootstrap driver on resistance	LVG ON		120		Ω

Table 9. Bootstrapped voltage (V _{CC} = 15 V unless otherwise specified)

Table 10. Logic inputs	(V _{CC} = 15 V unless otherwise specified)
Tuble IV. Logio inputo	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{il}	Low logic level voltage		0.8		1.1	V
V _{ih}	High logic level voltage		1.9		2.25	V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μA
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA
I _{LINI}	LIN logic "0" input bias current	LIN = 0 V			1	μA
I _{SDh}	SD logic "0" input bias current	<u>SD</u> = 15 V	220	295	370	μA
I _{SDI}	SD logic "1" input bias current	$\overline{SD} = 0 V$			3	μA
Dt	Dead time	see Figure 9		180		ns

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage	$V_{ic} = 0 V, V_o = 7.5 V$			6	mV
l _{io}	Input offset current	V _{ic} = 0 V, V _o = 7.5 V		4	40	nA
l _{ib}	Input bias current (1)	$v_{ic} = 0 v, v_0 = 7.5 v$		100	200	nA
V _{icm}	Input common mode voltage range		0			V
V _{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega \text{ to } V_{CC}$		75	150	mV
V _{OH}	High level output voltage	$R_L = 10 \text{ k}\Omega \text{ to GND}$	14	14.7		V
	Output short-circuit current	Source, $V_{id} = +1; V_o = 0 V$	16	30		mA
I _o			50	80		mA
SR	Slew rate	$V_i = 1 - 4 V; C_L = 100 pF;$ unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB
SVR	Supply voltage rejection ratio	vs. V _{CC}	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Table 11. OP AMP characteristics (V_{CC} = 15 V unless otherwise specified)

1. The direction of input current is out of the IC.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
l _{ib}	Input bias current	V _{CIN} = 1 V			3	μA
V _{od}	Open drain low level output voltage	I _{od} = 3 mA			0.5	V
R _{ON_OD}	Open drain low level output resistance	I _{od} = 3 mA		166		Ω
R _{PD_SD}	SD pull down resistor ⁽¹⁾			125		kΩ
t _{d_comp}	Comparator delay	T/ $\overline{\text{SD}}$ /OD pulled to 5 V through 100 k Ω resistor		90	130	ns
SR	Slew rate	$C_L = 180 \text{ pF}; \text{ R}_{pu} = 5 \text{ k}\Omega$		60		V/µsec

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{sd}	Shutdown to high / low side driver propagation delay		50	125	200	
t _{isd}	Comparator triggering to high / low side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	50	200	250	ns

Table 12. Sense comparator characteristics (V_{CC} = 15 V unless otherwise specified) (continued)

1. equivalent value derived from the resistances of three drivers in parallel

Condition	Logic input (V _I)			Output		
Condition	T/SD/OD	LIN	HIN	LVG	HVG	
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L	
Interlocking half-bridge tri-state	Н	н	н	L	L	
0 "logic state" half-bridge tri-state	Н	L	L	L	L	
1 "logic state" low side direct driving	Н	н	L	н	L	
1 "logic state" high side direct driving	Н	L	Н	L	Н	

Table 13. Truth table

1. X = don't care

3.1.1 NTC thermistor

a. RPD_SD: equivalent value as result of resistances of three drivers in parallel.

Figure 8. Voltage of T1/SD/OD pin according to NTC temperature

3.2 Waveform definitions

Figure 9. Dead time and interlocking waveform definitions

4 Smart shutdown function

The device integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input on pin (CIN) can be connected to an external shunt resistor for simple overcurrent protection.

When the comparator triggers, the device is set to the Shutdown state and both its outputs are switched to the low-level setting, causing the half bridge to enter a tri-state.

In common overcurrent protection architectures, the comparator output is usually connected to the Shutdown input through an RC network that provides a mono-stable circuit which implements a protection time following a fault condition.

Our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent along a preferential path for the fault signal which directly switches off the outputs. The time delay between the fault and output shutdown no longer depends on the RC values of the external network connected to the shutdown pin. At the same time, the DMOS connected to the open-drain output (pin T1/SD/OD) is turned on by the internal logic, which holds it on until the shutdown voltage is lower than the logic input lower threshold (ViI).

Also, the smart shutdown function allows increasing the real disable time without increasing the constant time of the external RC network.

An NTC thermistor for temperature monitoring is internally connected in parallel to the SD pin. To avoid undesired shutdown, keep the voltage $V_{T1/\overline{SD}/OD}$ higher than the high-level logic threshold by setting the pull-up resistor $R_{\overline{SD}}$ to 1 k Ω or 2.2 k Ω for the 3.3 V or 5 V MCU power supplies, respectively.

Figure 10. Smart shutdown timing waveforms

Please refer to Table 12 for internal propagation delay time details.

5 **Application information**

Figure 11. Typical application circuit

5.1 Recommendations

- HIN and LIN are active-high logic input signals, each having an integrated 500 kΩ (typ.) pull-down resistor. Wire each input as short as possible and use RC filters (R1, C1) on each to prevent input signal oscillation. The filters should have a time constant of approximately 100 ns and must be placed as close as possible to the IPM input pins.
- Use a bypass capacitor Cvcc (aluminum or tantalum) to reduce the transient circuit demand on the power supply and a decoupling capacitor C2 (from 100 to 220 nF, ceramic with low ESR), placed as close as possible to each Vcc pin and in parallel to the bypass capacitor, to reduce high frequency switching noise distributed on the power supply lines.
- To prevent circuit malfunction, place an RC filter (RSF, CSF) with a time constant (RSF x CSF) of 1µs as close as possible to the CIN pin.
- The \overline{SD} is an input/output pin (open drain type if used as output). An integrated NTC thermistor is connected internally between the \overline{SD} pin and GND. The pull-up resistor RSD causes the voltage VSD-GND to decrease as the temperature increases. To always maintain the voltage above the high-level logic threshold, use a 1 k Ω or 2.2 k Ω pull-up resistor for a 3.3 V or 5 V MCU power supply, respectively. Size the filter on \overline{SD} appropriately to obtain the desired re-start time after a fault event, and locate it as close as possible to the \overline{SD} pin.
- Filter high-frequency disturbances by placing the decoupling capacitor C3 (from 100 to 220 nF, ceramic with low ESR) in parallel with each Cboot.
- Prevent overvoltage with Zener diodes DZ1 between the V_{CC} pins and GND and in parallel with each Cboot.
- Locate the decoupling capacitor C4 (from 100 to 220 nF, ceramic with low ESR) in parallel with the electrolytic capacitor Cvdc to prevent surge destruction. Place capacitors C4 (especially) and Cvdc as close as possible to the IPM.
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-coupler is possible.
- Use low inductance shunt resistors for phase leg current sensing.
- The wiring between N pins, the shunt resistor and PWR_GND should be as short as possible.
- Connect SGN_GND to PWR_GND at only one point (near the shunt resistor terminal), to avoid any malfunction due to power ground fluctuation.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	500	V
V _{CC}	Control supply voltage	Applied between V _{CC} - GND	13.5	15	18	V
V _{BS}	High side bias voltage	Applied between V _{BOOTi} - OUT _i for i = U, V, W	13		18	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1.5			μs

Table 14. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f _{PWM}	PWM input signal	-40°C < T _c < 100°C -40°C < T _j < 125°C			25	kHz
T _C	Case operation temperature				100	°C

Table 14. Recommended operating conditions (continued)

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 15.NDI	P-26L mechanic	al data

Dim.		mm.	
Dini.	Min.	Тур.	Max.
A			4.40
A1	0.80	1.00	1.20
A2	3.00	3.10	3.20
A3	1.70	1.80	1.90
A4	5.70	5.90	6.10
b	0.53		0.72
b1	0.52	0.60	0.68
b2	0.83		1.02
b3	0.82	0.90	0.98
с	0.46		0.59
c1	0.45	0.50	0.55
D	29.05	29.15	29.25
D1	0.50	0.77	1.00
D2	0.35	0.53	0.70
D3			29.55
E	12.35	12.45	12.55
е	1.70	1.80	1.90
e1	2.40	2.50	2.60
eB1	16.10	16.40	16.70
eB2	21.18	21.48	21.78
L	1.24	1.39	1.54

Base quantity 17 pcs, bulk quantity 476 pcs.

7 Revision history

Date	Revision	Changes
19-Dec-2013	1	Initial release.
23-Apr-2014	2	Updated Figure 1: Internal schematic diagram and Section 3: Electrical characteristics. Minor text changes.
05-May-2014	3	Updated features in cover page.
04-Nov-2014	4	 Updated: Figure 1: Internal schematic diagram Table 10: Logic inputs (VCC = 15 V unless otherwise specified) Table 12: Sense comparator characteristics (VCC = 15 V unless otherwise specified) Section 3.1.1: NTC thermistor Section 4: Smart shutdown function description Figure 10: Smart shutdown timing waveforms Figure 11: Typical application circuit Section 5.1: Recommendations minor text changes
07-Nov-2014	5	Minor text and formatting edits throughout document.

Table 16.	Document	revision	historv
	Doounion	101101011	motory

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com