

LM57

Resistor-Programmable Temperature Switch and Analog Temperature Sensor

Check for Samples: LM57

FEATURES

- **Trip Temperature Set by External Resistors**
- **External Resistor Tolerance Contributes Zero** Error
- Push-Pull and Open-Drain Temperature Switch Outputs
- Wide Operating Temperature and Trip-Temperature Range of -50°C to 150°C
- Very Linear Analog V_{TEMP} Temperature Sensor • Output
- Analog and Digital Outputs are Short-Circuit Protected
- **TRIP-TEST Pin Allows In-System Testing**
- Latching Function for the Digital Outputs
- Very Small 2.5 mm by 2.5 mm 8-Pin WSON Package

APPLICATIONS

- Cell Phones
- Wireless Transceivers
- **Digital Cameras**
- Personal Digital Assistants (PDAs)
- **Battery Management**
- Automotive
- **Disk Drives**
- Games
- Appliances

DESCRIPTION

The LM57 is a precision, dual-output, temperature switch with integrated analog temperature sensor. The trip temperature (T_{TRIP}) is programmable by using two external 1% resistors. Using extremely small packaged resistors (0.5 mm x 1 mm), the LM57 can be programmed to any of 256 trip temperatures while consuming very little board space. The V_{TEMP} output delivers an analog output voltage which is proportional with a negative temperature coefficient (NTC) to the measured temperature.

Built-in temperature hysteresis (T_{HYST}) keeps the output stable in an environment of thermal oscillation. The digital temperature switch outputs will go active when the die temperature exceeds T_{TRIP} and will release when the temperature falls below a temperature equal to T_{TRIP} minus T_{HYST}. One of the digital outputs, T_{OVER}, is active-high with a push-pull structure. The other digital output, TOVER, is active-low with an open-drain structure.

Driving the TRIP-TEST input high will make the digital outputs active. A processor can read the logic level of the temperature switch outputs, confirming that they changed to their active state. This allows for in-situ verification that the comparator and output circuitry are functional after system assembly. When the TRIP-TEST pin is high, the trip-level reference voltage appears at the Vtemp pin. The system could then use this voltage to calibrate the sensor for even tighter accuracy. Tying T_{OVER} to TRIP-TEST will latch the output after it trips. It can be cleared by forcing TRIP-TEST low or powering off the LM57.

As it draws only 28µA max from its supply, it has very low self-heating, about 0.02°C in still air.

Table 1. Key Specifications

	VALUE	UNIT
Supply voltage	2.4V to 5.5	V
Supply current	24	μA (typ)
Temperature switch accuracy	±1.5	°C
Analog (V _{TEMP}) Accuracy	±0.7	°C
Operating temperature	-50 to 150	°C
Hysteresis magnitude	5, 10	°C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

www.ti.com

Connection Diagram

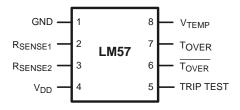


Figure 1. 8-Pin WSON Top View

Typical Application

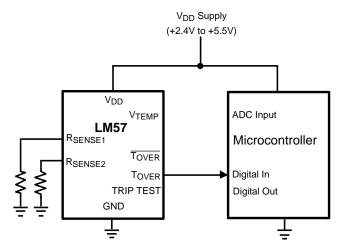
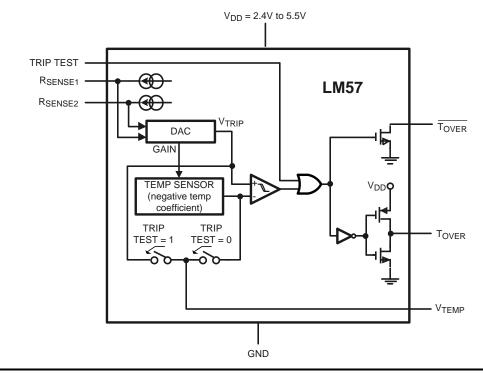
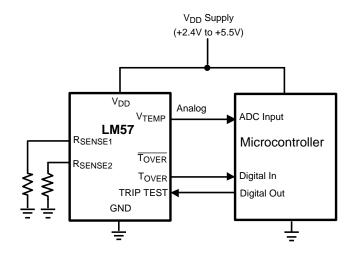
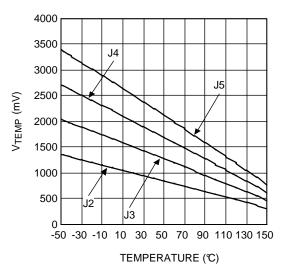



Figure 2. Over-Temperature Output to Microcontroller Digital Input


Block Diagram



Typical Application

www.ti.com

Typical Temperature Characteristics

PIN FUNCTIONS

PIN DESCRIPTIONS

Name	Pin No.	Туре	Equivalent Circuit	Description
GND	1	Ground		Power Supply Ground
R _{SENSE1}	2			Trip-Point Resistor Sense. One of two sense pins which selects the temperature at which T_{OVER} and \overline{T}_{OVER} will go active.
R _{SENSE2}	3			Trip-Point Resistor Sense. One of two sense pins which selects the temperature at which T_{OVER} and \overline{T}_{OVER} will go active.
V _{DD}	4	Power		Supply Voltage
TRIP TEST	5	Digital Input	VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD	TRIP TEST pin. Active High input. If TRIP TEST = 0 (Default), then the V _{TEMP} output has the analog temperature sensor output voltage. If TRIP TEST = 1, then T _{OVER} and $\overline{T_{OVER}}$ outputs are asserted and V _{TEMP} = V _{TRIP} , the Temperature Trip Voltage. Tie this pin to ground if not used.

Copyright © 2009–2013, Texas Instruments Incorporated

www.ti.com

PIN DESCRIPTIONS (continued)

Name	Pin No.	Туре	Equivalent Circuit	Description
T _{over}	6	Digital Output		Over Temperature Switch output Active Low, Open-drain (See LM57 V_{TEMP} Voltage-to-Temperature Equations regarding required pull-up resistor.) Asserted when the measured temperature exceeds the Trip Point Temperature or if TRIP TEST = 1 This pin may be left open if not used.
T _{OVER}	7	Digital Output		Over Temperature Switch output Active High, Push-Pull Asserted when the measured temperature exceeds the Trip Point Temperature or if TRIP TEST = 1 This pin may be left open if not used.
Vtemp	8	Analog Output	-I GND	V_{TEMP} Analog Voltage Output If TRIP TEST = 0, then V_{TEMP} = V_{TS} , Temperature Sensor Output Voltage If TRIP TEST = 1, then V_{TEMP} = V_{TRIP} , Temperature Trip Voltage This pin may be left open if not used.
	Therma	l Pad (WSON pack	age only)	Connect to GND

Absolute Maximum Ratings (1)

-0.3V to 6V
0.57 10 07
-0.3V to 6V
-0.3V to (V _{DD} + 0.3V)
5 mA
−65°C to 150°C
5500V
450V
1250V
www.ti.com/packaging ⁽³⁾

(1) Absolute Maximum Ratings indicate limits beyond which damage may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

(2) The Human Body Model (HBM) is a 100 pF capacitor charged to the specified voltage then discharged through a 1.5 kΩ resistor into each pin. The Machine Model (MM) is a 200 pF capacitor charged to the specified voltage then discharged directly into each pin. The Charged Device Model (CDM) is a specified circuit characterizing an ESD event that occurs when a device acquires charge through some triboelectric (frictional) or electrostatic induction processes and then abruptly touches a grounded object or surface.

(3) Reflow temperature profiles are different for lead-free and non-lead-free packages.

Operating Ratings ⁽¹⁾

Specified Temperature Range	−50°C to 150°C
Supply Voltage Range	+2.4 V to 5.5V

(1) Absolute Maximum Ratings indicate limits beyond which damage may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Accuracy Characteristics – Trip Point Accuracy

There are four gains corresponding to each of the four Temperature Trip Point Ranges.

J2 is the sensor gain used for Temperature Trip Point -41°C to 51.8°C.

J3 is for Trip Points 52°C to 97°C.

J4 for 97°C to 119°C.

J5 for 119°C to 150°C.

Parameter		Test Cond	ditions	LM57B	LM57C	Units (Max)
	J2	$T_A = -41^{\circ}C$ to 52°C	$V_{DD} = 2.4V$ to 5.5V	±1.5	±2.3	°C
Trip Point Accuracy	J3	$T_A = 52^{\circ}C \text{ to } 97^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±1.5	±2.3	°C
(Includes 1% set-resistor tolerance) ⁽¹⁾	J4	$T_A = 97^{\circ}C$ to $119^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±1.5	±2.3	°C
	J5	$T_{A} = 119^{\circ}C$ to $150^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±1.5	±2.3	°C

(1) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

Accuracy Characteristics – V_{TEMP} Analog Temperature Sensor Output Accuracy

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 4, LM57 V_{TEMP} Temperature-to-Voltage.

Parameter		Test Conc	LM57B	LM57C	Units (Max)	
	J2	$T_A = -50^{\circ}C$ to $150^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±0.95	±1.3	°C
	J3	$T_A = -50^{\circ}C$ to $150^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±0.8	±1.3	°C
	$T_A = 20^{\circ}C \text{ to } 50^{\circ}C$		$V_{DD} = 2.4V$ to 5.5V	±0.7	±1.3	
V _{TEMP} Accuracy (These stated accuracy limits are	J4 J5	$T_A = 0^{\circ}C$ to $150^{\circ}C$	$V_{DD} = 2.7V$ to 5.5V	±0.7	±1.3	°C
with reference to the values in		$T_A = -50^{\circ}C$ to $0^{\circ}C$	$V_{DD} = 3.1V$ to 5.5V	±0.8	±1.3	
Table 4, LM57 V _{TEMP} Temperature-to-Voltage.) ⁽¹⁾		$T_A = 60^{\circ}C \text{ to } 150^{\circ}C$	$V_{DD} = 2.4V$ to 5.5V	±0.7	±1.3	
remperature to voltage.)		$T_A = 20^{\circ}C \text{ to } 50^{\circ}C$	$V_{DD} = 2.9V$ to 5.5V	±0.7	±1.3	°C
		$T_A = 0^{\circ}C$ to $150^{\circ}C$	V _{DD} = 3.2V to 5.5V	±0.7	±1.3	
		$T_A = -50^{\circ}C$ to $0^{\circ}C$	$V_{DD} = 4.0V$ to 5.5V	±0.8	±1.3	

(1) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.

www.ti.com

Electrical Characteristics

Unless otherwise noted, these specifications apply for $V_{DD} = 2.4V$ to 5.5V. **Boldface** limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; All other limits apply to $T_A = T_J = +25^{\circ}C$, unless otherwise noted.

	Parameter	Test Conditions	Test Conditions Min ⁽¹⁾ Typ			Units
Temper	ature Sensor					
		J2 -41°C to 52°C		-5.166		
		J3 52°C to 97°C		-7.752		
	V _{TEMP} Sensor Gain	J4 97°C to 119°C		-10.339		mV/°C
		J5 119°C to 150°C		-12.924		
				0.18		mV
	Line Regulation DC: Supply-to- V _{TEMP} ⁽³⁾	$V_{DD} = 2.4V$ to 5.5V, Gain = J4, Temp = 90°C		58		μV/V
	V TEMP			-84		dB
		Source ≤ 240 µA, (V _{DD} - V _{TEMP}) ≥ 200 mV			-1	
	Load Regulation: V _{TEMP} Output ⁽⁴⁾	Sink ≤ 300 µA, V _{TEMP} ≥ 360 mV			1	mV
		Source or Sink = 100 µA		1		Ω
	Load Capacitance: V _{TEMP} Output ⁽⁵⁾	No output series resistor required (See V _{TEMP} Capacitive Loads.)			1100	pF
I _S	Supply Current: Quiescent ⁽⁶⁾			24	28	μA
TRIP-TE	ST Input		-	I.		r
VIH	Logic "1" Threshold Voltage		V _{DD} - 0.5			V
V _{IL}	Logic "0" Threshold Voltage				0.5	V
I _{IH}	Logic "1" Input Current			1.4	3	μA
I _{IL}	Logic "0" Input Leakage Current ⁽⁷⁾			0.001	1	μA
	Push-Pull, Active-High) Output		1	1		1
.,		Source ≤ 600 μA	V _{DD} - 0.2			
V _{OH}	Logic "1" Push-Pull Output Voltage	Source ≤ 1.2 mA	V _{DD} - 0.45			V
.,		Sink ≤ 600 µA			0.2	
V _{OL}	Logic "0" Output Voltage	Sink ≤ 1.2 mA			0.45	V
	Dpen-Drain, Active-Low) Output		1	1		1
.,		Sink ≤ 600 µA			0.2	
V _{OL}	Logic "0" Output Voltage	Sink ≤1.2 mA			0.45	V
I _{OH}	Logic "1" Output Leakage Current ⁽⁷⁾	Temperature = 30°C		0.001	1	μA
Hystere	sis		-	I.		r
-		5°C hysteresis option	4.7	5	5.4	°C
T _{HYST}	Hysteresis Temperature	10°C hysteresis option	9.6	10	10.6	°C
Timing	-	•	+	+		+
t _{EN}	Time from power on to Digital Output Enabled ⁽⁵⁾			1.0	2.9	ms
t _{VTEMP}	Time from Power on to Analog Temperature (V _{TEMP}) valid ⁽⁵⁾			1.0	2.9	ms

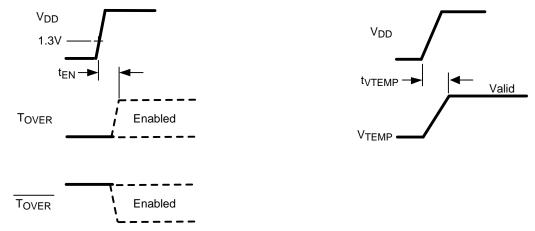
Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level). (1)

(2)

Typicals are at $T_J = T_A = 25^{\circ}$ C and represent most likely parametric norm. Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest (3) supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in V_{TEMP} Voltage Shift. Source currents are flowing out of the LM57. Sink currents are flowing into the LM57. Load Regulation is calculated by measuring (4)

Vtemp at 0 µA and subtracting the value with the conditions specified.

Guaranteed by design and characterization. (5)

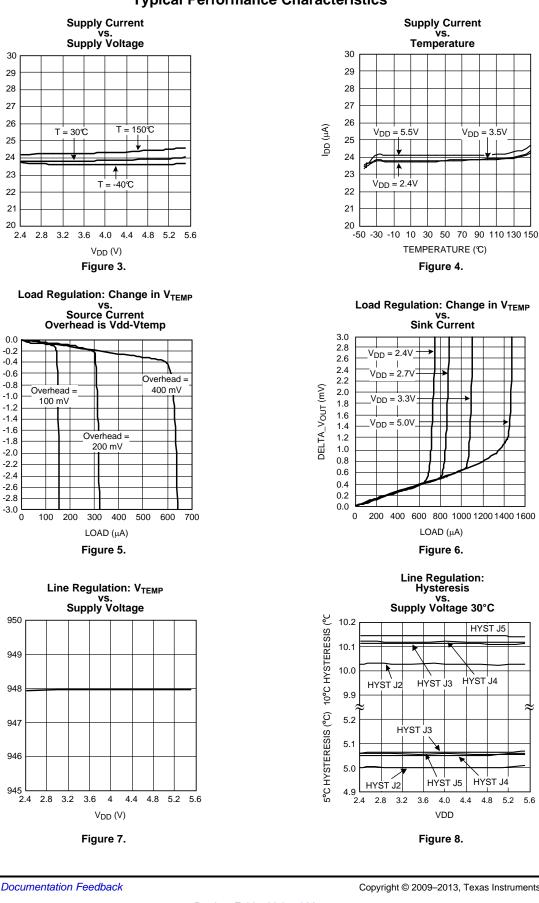

Supply Current refers to the quiescent current of the LM57 only and does not include any load current (6)

(7) This current is leakage current only and is therefore highest at high temperatures. Prototype test indicate that the leakage is well below 1 µA over the full temperature range. This 1 µA specification reflects the limitations of measuring leakage at room temperature. For this reason only, the leakage current is not guaranteed at a lower value.

www.ti.com

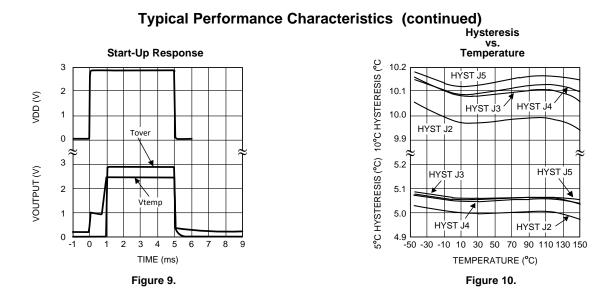
Definitions of t_{EN} and $t_{V^{TEMP}}$

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.


SNIS152D-MAY 2009-REVISED FEBRUARY 2013

loo (µA)

DELTA VOUT (mV)


VTEMP (mV)

8

Typical Performance Characteristics

APPLICATION INFORMATION

Resistor Programming

						I	R _{SENSE2}							
			J	2			J3		J	4	J5			
		976k	825k	698k	590k	499k	412k	340k	280k	226k	178k	140k	105k	75k
	976k	-40.7	-16.3	7.3	30.4	52.7	67.8	82.7	97.5	108.6	119.6	128.5	137.3	146.1
	825k	-39.1	-14.8	8.8	31.8	53.7	68.7	83.7	98.2	109.3	120.2	129.0	137.8	146.6
	698k	-37.6	-13.3	10.2	33.2	54.6	69.6	84.6	98.9	110.0	120.7	129.6	138.4	147.2
	590k	-36.0	-11.8	11.7	34.7	55.6	70.6	85.5	99.6	110.7	121.3	130.1	138.9	147.7
	499k	-34.5	-10.3	13.1	36.1	56.5	71.5	86.5	100.3	111.4	121.8	130.7	139.5	148.3
	412k	-32.9	-8.8	14.6	37.5	57.4	72.5	87.4	100.9	112.1	122.4	131.2	140.0	148.8
	340k	-31.4	-7.3	16.1	39.0	58.4	73.4	88.3	101.6	112.8	122.9	131.8	140.6	149.3
-	280k	-29.9	-5.8	17.5	40.4	59.3	74.3	89.3	102.3	113.5	123.5	132.3	141.1	149.9
R _{SENSE1}	226k	-28.3	-4.3	18.9	41.8	60.3	75.3	90.2	103.0	114.2	124.0	132.9	141.7	
	178k	-26.8	-2.9	20.4	43.2	61.2	76.2	91.1	103.7	114.9	124.6	133.4	142.2	
	140k	-25.3	-1.4	21.8	44.7	62.1	77.1	92.1	104.4	115.6	125.2	134.0	142.8	
	105k	-23.8	0.0	23.2	46.1	63.1	78.1	93.0	105.1	116.3	125.7	134.5	143.3	
	75k	-22.3	1.5	24.7	47.5	64.0	79.0	93.9	105.8	117.0	126.3	135.1	143.9	
	46.4k	-20.8	3.0	26.1	48.9	65.0	79.9	94.8	106.5	117.6	126.8	135.6	144.4	
	22.6k	-19.3	4.4	27.5	50.3	65.9	80.9	95.8	107.2	118.3	127.4	136.2	145.0	
	0.01k	-17.8	5.9	28.9	51.8	66.8	81.8	96.7	107.9	119.0	127.9	136.7	145.5	

Table 2. Trip Point (°C) vs. Set-Resistor Values (Ω)

Table 3. V_{TEMP} (mV) at the Trip Point vs. Set-Resistor Value (Ω)

R _{SENSE2}														
			J	12			J3 J4			4	J5			
		976k	825k	698k	590k	499k	412k	340k	280k	226k	178k	140k	105k	75k
	976k	1306.2	1183.8	1064.0	945.6	1243.7	1125.3	1006.8	1185.3	1066.0	1184.0	1064.6	944.8	825.0
	825k	1298.5	1176.2	1056.6	938.2	1236.3	1117.9	999.3	1177.8	1058.5	1176.6	1057.1	937.3	817.5
	698k	1290.7	1168.7	1049.1	930.8	1228.9	1110.5	991.9	1170.4	1051.0	1169.1	1049.6	929.8	810.1
	590k	1283.0	1161.2	1041.7	923.4	1221.5	1103.1	984.5	1163.0	1043.6	1161.6	1042.1	922.3	802.7
	499k	1275.3	1153.6	1034.3	916.0	1214.1	1095.7	977.1	1155.5	1036.1	1154.2	1034.6	914.8	795.2
	412k	1267.6	1146.1	1026.8	908.6	1206.7	1088.3	969.7	1148.1	1028.6	1146.7	1027.2	907.3	787.8
	340k	1259.9	1138.6	1019.4	901.2	1199.3	1080.9	962.2	1140.7	1021.1	1139.2	1019.7	899.8	780.3
	280k	1252.2	1131.0	1012.0	893.8	1191.9	1073.5	954.8	1133.2	1013.6	1131.7	1012.2	892.3	772.9
R _{SENSE1}	226k	1244.6	1123.5	1004.6	886.4	1184.5	1066.0	947.3	1125.8	1006.1	1124.3	1004.7	884.8	
	178k	1237.0	1116.0	997.3	879.0	1177.1	1058.6	939.9	1118.3	998.7	1116.8	997.2	877.3	
	140k	1229.4	1108.6	989.9	871.6	1169.7	1051.2	932.5	1110.9	991.2	1109.3	989.7	869.8	
	105k	1221.8	1101.2	982.5	864.2	1162.3	1043.8	925.0	1103.5	983.7	1101.8	982.2	862.3	
	75k	1214.1	1093.7	975.2	856.8	1154.9	1036.4	917.6	1096.0	976.2	1094.4	974.8	854.8	
	46.4k	1206.5	1086.3	967.8	849.4	1147.5	1029.0	910.2	1088.6	968.7	1086.9	967.3	847.3	
	22.6k	1198.9	1078.9	960.4	842.0	1140.1	1021.6	902.7	1081.2	961.2	1079.4	959.8	839.8	
	0.01k	1191.3	1071.4	953.1	834.6	1132.7	1014.2	895.3	1073.7	953.8	1072.0	952.3	832.3	

Selection of R_{SET} Resistors

To set the trip point:

- 1. Locate the desired trip temperature in Table 2.
- 2. Identify the corresponding R_{SENSE2} value by following the column up to the resistor value.
- 3. Identify the corresponding R_{SENSE1} value by following the row leftwards to the resistor value.
- 4. Use only the EIA E96 standard resistor values from the list.
- 5. Use only the resistor with 1% tolerance and a temperature coefficient of 100ppm (or better). These restrictions are necessary to stay at the selected setting, and not to slip into an adjacent setting.
- This is consistent with using resistors from the Thick Film Chip Resistors CRCW0402 family. These are available with very small dimensions of L = 1.0mm, W = 0.5mm, H = 0.35mm.
- 7. Note that the resistor tolerance does not diminish the accuracy of the trip point. See patent #6,924,758.

LM57 V_{TEMP} Temperature-to-Voltage Table

		V _{TEM}	_P (mV)	
Temperature (°C)	J2	J3	J4	J5
-50	1353	2029	2705	3381
-49	1348	2021	2695	3369
-48	1343	2014	2685	3357
-47	1338	2006	2675	3344
-46	1333	1999	2665	3332
-45	1328	1992	2655	3319
-44	1323	1984	2646	3307
-43	1318	1977	2636	3294
-42	1313	1969	2626	3282
-41	1308	1962	2616	3269
-40	1303	1954	2606	3257
-39	1298	1947	2596	3244
-38	1293	1939	2586	3232
-37	1288	1932	2576	3219
-36	1283	1924	2566	3207
-35	1278	1917	2556	3194
-34	1273	1909	2546	3182
-33	1268	1902	2536	3169
-32	1263	1894	2526	3157
-31	1258	1887	2516	3144
-30	1253	1879	2506	3132
-29	1248	1872	2495	3119
-28	1243	1864	2485	3107
-27	1238	1857	2475	3094
-26	1233	1849	2465	3082
-25	1228	1841	2455	3069
-24	1223	1834	2445	3056
-23	1218	1826	2435	3044
-22	1213	1819	2425	3031
-21	1208	1811	2415	3019

Table 4. LM57 V_{TEMP} Temperature-to-Voltage⁽¹⁾

(1) The Rset resistors select a trip point and a corresponding Vtemp gain (J2, J3, J4, or J5). The trip point range associated with a given gain is shown in bold on this table. The Vtemp gain is selected by the Rset resistors. Vtemp is valid over the entire temperature range.

LM57

Table 4. LM57	V _{TEMP}	Temperature-to-Voltage ⁽¹⁾	(continued)
---------------	-------------------	---------------------------------------	-------------

Temperature (°C)	J2	J3	J4	J5					
-19	1198	1796	2395	2993					
-18	1193	1789	2385	2981					
-17	1188	1781	2375	2968					
-16	1182	1773	2365	2956					
-15	1177	1766	2354	2943					
-14	1172	1758	2344	2930					
-13	1167	1751	2334	2918					
-12	1162	1743	2324	2905					
-11	1157	1735	2314	2892					
-10	1152	1728	2304	2880					
-9	1147	1720	2294	2867					
-8	1142	1713	2284	2854					
-7	1137	1705	2273	2842					
-6	1132	1697	2263	2829					
-5	1127	1690	2253	2816					
-4	1122	1682	2243	2803					
-3	1117	1675	2233	2791					
-2	1112	1667	2223	2778					
-1	1106	1659	2212	2765					
0	1101	1652	2202	2753					
1	1096	1644	2192	2740					
2	1091	1636	2182	2727					
3	1086	1629	2172	2714					
4	1081	1621	2161	2702					
5	1076	1613	2151	2689					
6	1071	1606	2141	2676					
7	1066	1598	2131	2663					
8	1061	1590	2121	2650					
9	1055	1583	2110	2638					
10	1050	1575	2100	2625					
11	1045	1567	2090	2612					
12	1040	1560	2080	2599					
13	1035	1552	2069	2586					
14	1030	1544	2059	2574					
15	1025	1537	2049	2561					
16	1020	1529	2039	2548					
17	1015	1521	2028	2535					
18	1009	1514	2018	2522					
19	1004	1506	2008	2509					
20	999	1498	1997	2497					
21	994	1490	1987	2484					
22	989	1483	1977	2471					
23	984	1475	1967	2458					
24	979	1467	1956	2445					
25	973	1460	1946	2432					
26	968	1452	1936	2419					

Table 4. LM57 V_{TEMP} Temperature-to-Voltage⁽¹⁾ (continued)

	V _{TEMP} (mV)						
Temperature (°C)	J2	J3	J4	J5			
27	963	1444	1925	2406			
28	958	1436	1915	2394			
29	953	1429	1905	2381			
30	948	1421	1894	2368			
31	942	1413	1884	2355			
32	937	1405	1874	2342			
33	932	1398	1863	2329			
34	927	1390	1853	2316			
35	922	1382	1843	2303.0			
36	917	1374	1832	2290			
37	911	1367	1822	2277			
38	906	1359	1811	2264			
39	901	1351	1801	2251			
40	896	1343	1791	2238			
41	891	1335	1780	2225			
42	885	1328	1770	2212			
43	880	1320	1759	2199			
44	875	1312	1749	2186			
45	870	1304	1739	2173			
46	865	1296	1728	2160			
47	859	1289	1718	2147			
48	854	1281	1707	2134			
49	849	1273	1697	2121			
50	844	1265	1687	2108			
51	839	1257	1676	2095			
52	833	1249	1666	2082			
53	828	1242	1655	2069			
54	823	1234	1645	2056			
55	818	1226	1634	2043			
56	812	1218	1624	2030			
57	807	1210	1613	2016			
58	802	1202	1603	2003			
59	797	1194	1592	1990			
60	791	1187	1582	1977			
61	786	1179	1571	1964			
62	781	1171	1561	1951			
63	776	1163	1550	1938			
64	770	1155	1540	1925			
65	765	1147	1529	1911			
66	760	1139	1519	1898			
67	755	1131	1508	1885			
68	749	1124	1498	1872			
69	744	1116	1487	1859			
70	739	1108	1477	1846			
70	734	1100	1466	1833			
72	728	1092	1456	1835			

Table 4. LM57	7 V _{TEMP} Temperatu	re-to-Voltage ⁽¹⁾ (continued)
---------------	-------------------------------	--

	 		_P (mV)	T
Temperature (°C)	J2	J3	J4	J5
73	723	1084	1445	1806
74	718	1076	1435	1793
75	713	1068	1424	1780
76	707	1060	1413	1767
77	702	1052	1403	1753
78	697	1044	1392	1740
79	691	1036	1382	1727
80	686	1028	1371	1714
81	681	1021	1360	1700
82	675	1013	1350	1687
83	670	1005	1339	1674
84	665	997	1329	1661
85	660	989	1318	1647
86	654	981	1307	1634
87	649	973	1297	1621
88	644	965	1286	1607
89	638	957	1276	1594
90	633	949	1265	1581
91	628	941	1254	1568
92	622	933	1244	1554
93	617	925	1233	1541
94	612	917	1222	1528
95	606	909	1212	1514
96	601	901	1201	1501
97	596	893	1190	1488
98	590	885	1180	1474
99	585	877	1169	1461
100	580	869	1158	1448
101	574	861	1148	1434
102	569	853	1137	1421
103	564	845	1126	1407
104	558	837	1115	1394
105	553	829	1105	1381
106	548	821	1094	1367
107	542	813	1083	1354
108	537	805	1073	1340
109	531	797	1062	1327
110	526	788	1051	1314
111	521	780	1040	1300
112	515	772	1030	1287
113	510	764	1019	1201
114	505	756	1013	1210
115	499	748	997	1200
116	494	740	986	1240
117	488	732	976	1233
118	483	724	965	1215

SNIS152D-MAY 2009-REVISED FEBRUARY 2013

	V _{TEMP} (mV)							
Temperature (°C)	J2	J3	J4	J5				
119	478	716	954	1192				
120	472	708	943	1179				
121	467	700	933	1165				
122	461	692	922	1152				
123	456	683	911	1138				
124	451	675	900	1125				
125	445	667	889	1111				
126	440	659	878	1098				
127	434	651	868	1084				
128	429	643	857	1071				
129	424	635	846	1057				
130	418	627	835	1044				
131	413	618	824	1030				
132	407	610	813	1017				
133	402	602	803	1003				
134	396	594	792	989				
135	391	586	781	976				
136	386	578	770	962				
137	380	570	759	949				
138	375	561	748	935				
139	369	553	737	921				
140	364	545	726	908				
141	358	537	716	894				
142	353	529	705	881				
143	347	520	694	867				
144	342	512	683	853				
145	336	504	672	840				
146	331	496	661	826				
147	326	488	650	812				
148	320	480	639	799				
149	315	471	628	785				
150	309	463	617	771				

Table 4. LM57 V_{TEMP} Temperature-to-Voltage⁽¹⁾ (continued)

LM57 V_{TEMP} Voltage-to-Temperature Equations

Table 5. LM57 V_{TEMP} Voltage-to-Temperature Equations

Trip-Point Region	LM57 Trip Point Range	V _{TEMP} (mV) Equations T(°C)
J2	−41°C to 52°C	$V_{\text{TEMP}} = 947.6 - 5.166(T-30) - 0.00129(T-30)^2$
J3	52°C to 97°C	V _{TEMP} = 1420.9 - 7.752(T-30) - 0.00191(T-30) ²
J4	97°C to 119°C	V _{TEMP} = 1894.3 - 10.339(T-30) - 0.00253(T-30) ²
J5	119°C to 150°C	$V_{\text{TEMP}} = 2367.7 - 12.924(T-30) - 0.00316(T-30)^2$

$T_{\text{over}} \text{ AND } \overline{T}_{\overline{\text{over}}} \text{ DIGITAL OUTPUTS}$

The T_{OVER} Active High, Push-Pull Output and the \overline{T}_{OVER} Active Low, Open-Drain Output both assert at the same time whenever the Die Temperature reaches the Trip Point. They also assert simultaneously whenever the TRIP TEST pin is set high. Both outputs de-assert when the die temperature goes below the (Temperature Trip Point) - (Hysteresis). These two types of digital outputs enable the user the flexibility to choose the type of output that is most suitable for his design.

Either the T_{OVER} or the $\overline{T}_{\overline{OVER}}$ Digital Output pins can be left open if not used.

The \overline{T}_{OVER} Active Low, Open-Drain Digital Output, if used, requires a pull-up resistor between this pin and V_{DD}.

T_{OVER} and $\overline{T}_{\overline{OVER}}$ Noise Immunity

The LM57 has some noise immunity to a premature trigger due to noise on the power supply. With the die temperature at 1°C below the trip point, there are no premature triggers for a square wave injected into the power supply with a magnitude of 100 mV_{PP} over a frequency range of 100 Hz to 2 MHz. Above the frequency a premature trigger may occur.

With the die temperature at 2°C below the trip point, and a magnitude of 200 mV_{PP}, there are no premature triggers from 100 Hz to 300 kHz. Above that frequency a premature trigger may occur.

Therefore if the supply line is noisy, it is recommended that a local supply decoupling cap be used to reduce that noise.

TRIP TEST DIGITAL INPUT

The TRIP TEST pin provides a means to test the digital outputs by causing them to assert, regardless of temperature.

In addition, when the TRIP TEST pin is pulled high the V_{TEMP} pin will be at the V_{TRIP} voltage.

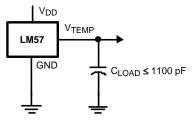
V_{TEMP} ANALOG TEMPERATURE SENSOR OUTPUT

The V_{TEMP} push-pull output provides the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Applications Circuits section for more discussion of this topic. The LM57 is ideal for this and other applications which require strong source or sink current.

V_{TEMP} Noise Considerations

A load capacitor on V_{TEMP} can help to filter noise.

For noisy environments, a 100nF supply decoupling cap placed closed across V_{DD} and GND pins of LM57 is recommended.



LM57

www.ti.com

V_{TEMP} Capacitive Loads

The V_{TEMP} Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the V_{TEMP} can drive a capacitive load less than or equal to 1100 pF as shown in Figure 11. For capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 12, to maintain stable conditions.

Figure 11. LM57 No Isolation Resistor Required

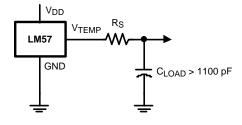


Figure 12. LM57 with Series Resistor for Capacitive Loading Greater than 1100 pF

C _{LOAD}	Minimum R _S
1.1 nF to 99 nF	3 κΩ
100 nF to 999 nF	1.5 kΩ
1 µF	750 Ω

Table 6. C_{LOAD} and R_S Values of Figure 12

V_{TEMP} Voltage Shift

The LM57 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and V_{TEMP} . The shift typically occurs when $V_{DD} - V_{TEMP} = 1.0V$.

This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in V_{DD} or V_{TEMP} . Since the shift takes place over a wide temperature change of 5°C to 20°C, V_{TEMP} is always monotonic. The accuracy specifications in the Electrical Characteristics table already includes this possible shift.

MOUNTING AND TEMPERATURE CONDUCTIVITY

The LM57 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.

To ensure good temperature conductivity, the backside of the LM57 die is directly attached to the exposed pad. The temperatures of the lands and traces to the other leads of the LM57 will also affect the temperature reading.

www.ti.com

Alternatively, the LM57 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM57 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the V_{TEMP} output to ground or V_{DD}, the V_{TEMP} output from the LM57 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.

The LM57's junction temperature is the actual temperature being measured. The thermal resistance junction-toambient (θ_{JA}) is the parameter (from Table 7) used to calculate the rise of a device junction temperature due to its power dissipation. Equation 1 is used to calculate the rise in the LM57's die temperature.

$$T_{J} = T_{A} + \theta_{JA} \left[(V_{DD}I_{Q}) + (V_{DD} - V_{TEMP}) I_{L} \right]$$

where

- T_A is the ambient temperature,
- I_Q is the quiescent current,
- I_L is the load current on Vtemp

(1)

For example, in an application where $T_A = 30$ °C, $V_{DD} = 5.5$ V, $I_{DD} = 28 \mu A$, J5 gain, $V_{TEMP} = 2368$ mV, and $I_L = 0 \mu A$, the total temperature rise would be [152°C/W*5.5V*28 μA] = 0.023°C. To minimize self-heating, the load current on Vtemp should be minimized.

Table 7. LM57 Thermal Resistance

Device Number	Thermal Resistance (θ _{JA})	NS Package Number
LM57	152° C/W	NGR0008B

Rset TABLE

The LM57 uses the voltage at the two Rsense pins to set the trip point for the temperature switch. It is possible to drive the two Rsense pins with a voltage equal to the value generated by the resistor and the internal currentsource and have the same switch point. Thus one can use an external DAC to drive each Rsense pin, allowing for the temperature trip point to be set dynamically by the system processor. Table 8 shows the Rset value and its corresponding generated Rsense pin voltage (the "Center Value").

Dest (O)	Rsense Voltage (mV)
Rset (Ω)	Center Value
976k	1875
825k	1585
698k	1341
590k	1134
499k	959
412k	792
340k	653
280k	538
226k	434
178k	342
140k	269
105k	202
75k	146
46.4k	87
22.6k	43
0.01k	0
105k 75k 46.4k 22.6k	202 146 87 43

SNIS152D-MAY 2009-REVISED FEBRUARY 2013 APPLICATIONS CIRCUITS

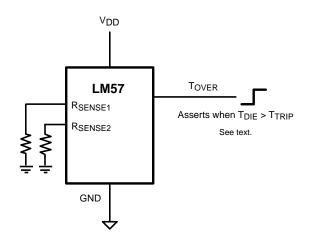


Figure 13. Temperature Switch Using Push-Pull Output

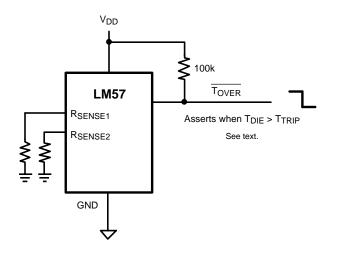
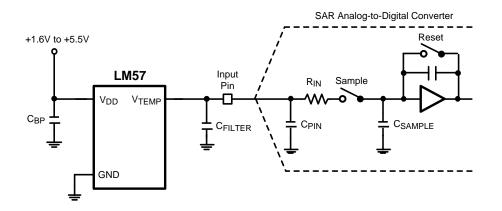
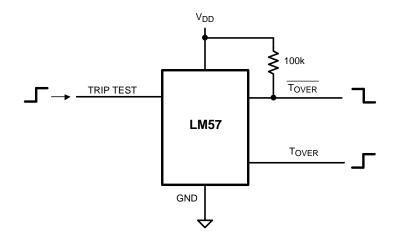
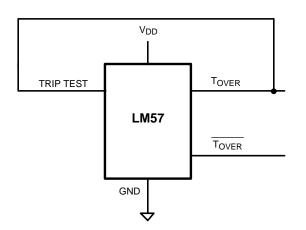
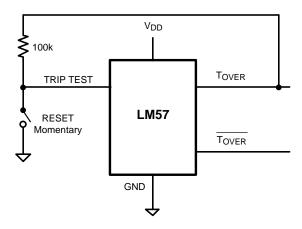



Figure 14. Temperature Switch Using Open-Drain Output

www.ti.com

Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LM57 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (C_{FILTER}). The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.


Figure 16. TRIP TEST Digital Output Test Circuit

When Tover goes active high, it drives Trip Test high. Trip Test high causes Tover to stay high. It is therefore latched. To release the latch: Power down then power up. The LM57 always comes up in a released condition.

Figure 17. Simple Latch Circuit

The TRIP TEST pin, normally used to check the operation of the T_{OVER} and \overline{T}_{OVER} pins, may be used to latch the outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As shown in the figure, when T_{OVER} goes high the TRIP TEST input is also pulled high and causes T_{OVER} output to latch high and the \overline{T}_{OVER} output to latch low. Momentarily switching the TRIP TEST input low will reset the LM57 to normal operation. The resistor limits the current out of the T_{OVER} output pin.

Figure 18. Latch Circuit using T_{OVER} Output

REVISION HISTORY

Ch	nanges from Revision C (February 2013) to Revision D	Page
•	Changed layout of National Data Sheet to TI format	21

n

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish		Op Temp (°C)	Top-Side Markings	Samples
LM57BISD-10/NOPB	ACTIVE	WSON	NGR	8	1000	Green (RoHS & no Sb/Br)	CU SN	(3) Level-3-260C-168 HR	-50 to 150	(4) 57B9	Samples
LM57BISD-5/NOPB	ACTIVE	WSON	NGR	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57B5	Samples
LM57BISDX-10/NOPB	ACTIVE	WSON	NGR	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57B9	Samples
LM57BISDX-5/NOPB	ACTIVE	WSON	NGR	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57B5	Samples
LM57CISD-10/NOPB	ACTIVE	WSON	NGR	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57C9	Samples
LM57CISD-5/NOPB	ACTIVE	WSON	NGR	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57C5	Samples
LM57CISDX-10/NOPB	ACTIVE	WSON	NGR	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57C9	Samples
LM57CISDX-5/NOPB	ACTIVE	WSON	NGR	8	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-50 to 150	57C5	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

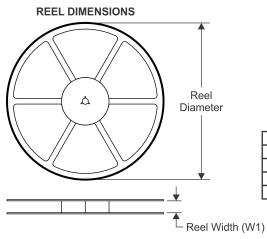
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

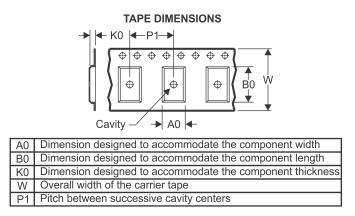
PACKAGE OPTION ADDENDUM

11-Apr-2013

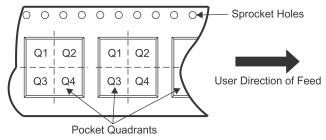
⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

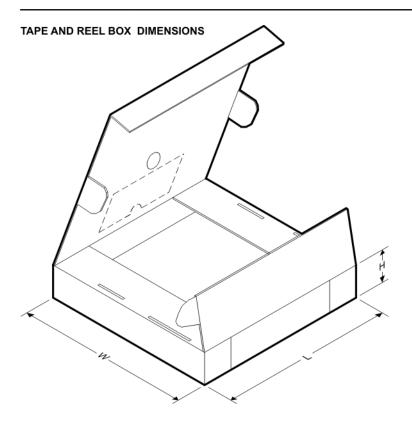

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

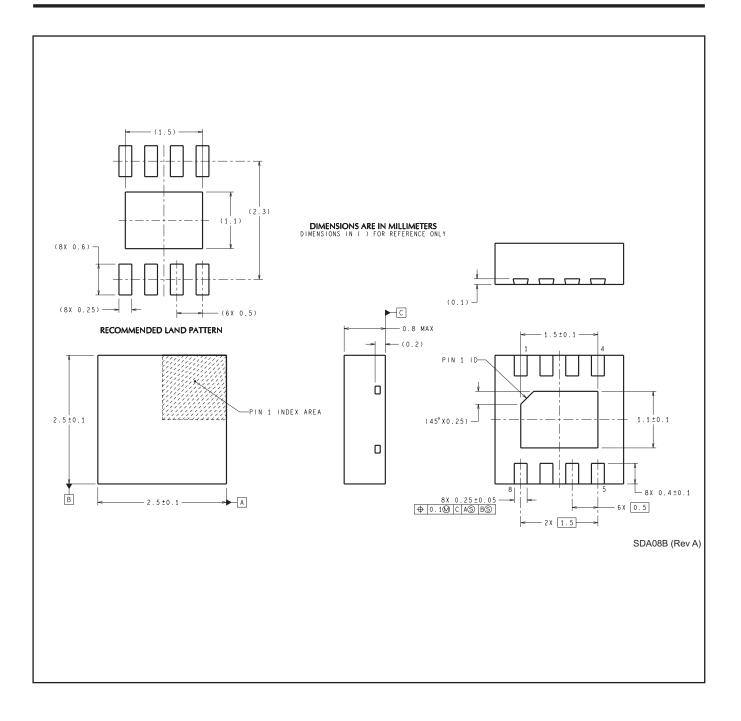
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM57BISD-10/NOPB	WSON	NGR	8	1000	178.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57BISD-5/NOPB	WSON	NGR	8	1000	178.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57BISDX-10/NOPB	WSON	NGR	8	4500	330.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57BISDX-5/NOPB	WSON	NGR	8	4500	330.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57CISD-10/NOPB	WSON	NGR	8	1000	178.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57CISD-5/NOPB	WSON	NGR	8	1000	178.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57CISDX-10/NOPB	WSON	NGR	8	4500	330.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1
LM57CISDX-5/NOPB	WSON	NGR	8	4500	330.0	12.4	2.8	2.8	1.0	8.0	12.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION


26-Mar-2013

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM57BISD-10/NOPB	WSON	NGR	8	1000	213.0	191.0	55.0
LM57BISD-5/NOPB	WSON	NGR	8	1000	213.0	191.0	55.0
LM57BISDX-10/NOPB	WSON	NGR	8	4500	367.0	367.0	35.0
LM57BISDX-5/NOPB	WSON	NGR	8	4500	367.0	367.0	35.0
LM57CISD-10/NOPB	WSON	NGR	8	1000	213.0	191.0	55.0
LM57CISD-5/NOPB	WSON	NGR	8	1000	213.0	191.0	55.0
LM57CISDX-10/NOPB	WSON	NGR	8	4500	367.0	367.0	35.0
LM57CISDX-5/NOPB	WSON	NGR	8	4500	367.0	367.0	35.0

MECHANICAL DATA

NGR0008B

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com