

SN74LVCH16245A

SCES495C -OCTOBER 2003-REVISED JUNE 2014

SN74LVCH16245A 16-bit Bus Transceiver With 3-state Outputs

Features

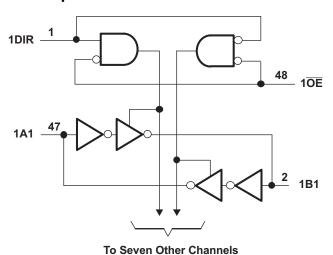
- Member of the Texas Instruments Widebus™ Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) $<0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Bus Hold on Data Inputs Eliminates the Need for External Pullup or Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

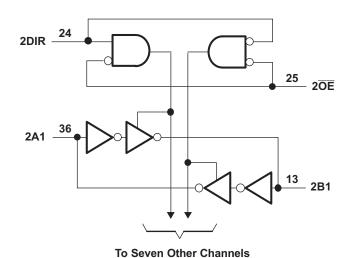
2 Applications

- Electronic Points of Sale
- Test and Measurement
- Wearable Health and Fitness Devices
- **Tablets**

3 Description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation. The SN74LVCH16245A device is designed asynchronous communication between data buses.


This device can be used as two 8-bit transceivers or one 16-bit transceiver. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state.


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	TSSOP (48)	12.50 mm × 6.10 mm
SN74LVCH16245A	TVSOP (48)	9.70 mm × 4.40 mm
	SSOP (48)	15.88 mm × 7.49 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

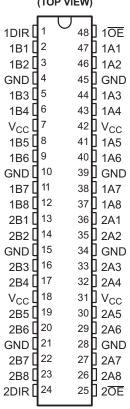
Table of Contents

1	Features 1		9.1 Overview	11
-				
2	Applications 1		9.2 Functional Block Diagram	
3	Description 1		9.3 Feature Description	
4	Simplified Schematic 1		9.4 Device Functional Modes	12
5	Revision History2	10	Application and Implementation	13
6	Pin Configuration and Functions		10.1 Application Information	13
_	_		10.2 Typical Application	13
7	Specifications	11	Power Supply Recommendations	
	7.1 Absolute Maximum Ratings 6		Layout	
	7.2 Handling Ratings6	12		
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	
	7.4 Thermal Information		12.2 Layout Example	
	7.5 Electrical Characteristics 8	13	Device and Documentation Support	15
	7.6 Switching Characteristics9		13.1 Trademarks	15
	7.7 Operating Characteristics		13.2 Electrostatic Discharge Caution	15
	7.8 Typical Characteristics		13.3 Glossary	15
8	Parameter Measurement Information 10	14	Mechanical, Packaging, and Orderable Information	15
9	Detailed Description 11			

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision B (August 2006) to Revision C	Page
•	Updated document to new TI data sheet format	
	Removed Ordering Information table.	
•	Updated I _{off} Feature bullet.	1
	Added Applications.	
	Added Device Information table.	
•	Added Handling Ratings table	6
	Changed MAX ambient temperature to 125°C.	
•	Added Thermal Information table.	7
•	Updated t _{sk(o)} values in Switching Characteristics table.	9
	Added Typical Characteristics.	


Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

6 Pin Configuration and Functions

DGG, DGV, OR DL PACKAGE (TOP VIEW)

Pin Functions

	PIN	1/0	DESCRIPTION
NO.	NAME	VO	DESCRIPTION
1	1DIR	1	Direction pin 1
2	1B1	I/O	1B1 input or output
3	1B2	I/O	1B2 input or output
4	GND	_	Ground pin
5	1B3	I/O	1B3 input or output
6	1B4	I/O	1B4 input or output
7	VCC	_	Power pin
8	1B5	I/O	1B5 input or output
9	1B6	I/O	1B6 input or output
10	GND	_	Ground pin
11	1B7	I/O	1B7 input or output
12	1B8	I/O	1B8 input or output
13	2B1	I/O	2B1 input or output
14	2B2	I/O	2B2 input or output
15	GND	_	Ground pin
16	2B3	I/O	2B3 input or output
17	2B4	I/O	2B4 input or output
18	VCC	_	Power pin
19	2B5	I/O	2B5 input or output
20	2B6	I/O	2B6 input or output

Copyright © 2003–2014, Texas Instruments Incorporated

Pin Functions (continued)

	PIN		DECODINE IN I	
NO.	NAME	I/O	DESCRIPTION	
21	GND	_	Ground pin	
22	2B7	I/O	2B7 input or output	
23	2B8	I/O	2B8 input or output	
24	2DIR	_	Direction pin 2	
25	2 OE	I	Output Enable 2	
26	2A8	I/O	2A8 input or output	
27	2A7	I/O	2A7 input or output	
28	GND	_	Ground pin	
29	2A6	I/O	2A6 input or output	
30	2A5	I/O	2A5 input or output	
31	VCC	_	Power pin	
32	2A4	I/O	2A4 input or output	
33	2A3	I/O	2A3 input or output	
34	GND	_	Ground pin	
35	2A2	I/O	2A2 input or output	
36	2A1	I/O	2A1 input or output	
37	1A8	I/O	1A8 input or output	
38	1A7	I/O	1A7 input or output	
39	GND	_	Ground pin	
40	1A6	I/O	1A6 input or output	
41	1A5	I/O	1A5 input or output	
42	VCC	_	Power pin	
43	1A4	I/O	1A4 input or output	
44	1A3	I/O	1A3 input or output	
45	GND	_	Ground pin	
46	1A2	I/O	1A2 input or output	
47	1A1	I/O	1A1 input or output	
48	1 OE	I	Output Enable 1	

GQL OR ZQL PACKAGE (TOP VIEW)

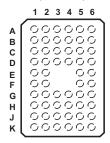


Table 1. Pin Assignments⁽¹⁾ (56-Ball GQL or ZQL Package)

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 OE
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CC}	V _{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
Н	2B5	2B6	V _{CC}	V _{CC}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2 OE

(1) NC - No internal connection

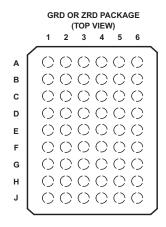


Table 2. Pin Assignments⁽¹⁾ (54-Ball GRD or ZRD Package)

	1	2	3	4	5	6
Α	1B1	NC	1DIR	1 OE	NC	1A1
В	1B3	1B2	NC	NC	1A2	1A3
С	1B5	1B4	V _{cc}	V _{CC}	1A4	1A5
D	1B7	1B6	GND	GND	1A6	1A7
E	2B1	1B8	GND	GND	1A8	2A1
F	2B3	2B2	GND	GND	2A2	2A3
G	2B5	2B4	V _{CC}	V _{CC}	2A4	2A5
Н	2B7	2B6	NC	NC	2A6	2A7
J	2B8	NC	2DIR	2 OE	NC	2A8

(1) NC - No internal connection

Product Folder Links: SN74LVCH16245A

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range (2)		-0.5	6.5	V
Vo	Voltage range applied to any output in the hig	h-impedance or power-off state (2)	-0.5	6.5	V
Vo	Voltage range applied to any output in the hig	h or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND	1		±100	mA

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	ne e	-65	150	°C
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	V
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	0	1000	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
V	Cumply yeltogo	Operating	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	C	.35 × V _{CC}		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
VI	Input voltage		0	5.5	V	
	Output voltage	High or low state	0	V_{CC}	V	
V _O		3-state	0	5.5		
		V _{CC} = 1.65 V		-4		
	I Park Javas Landard assessed	V _{CC} = 2.3 V		-8	A	
I _{OH}	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12	mA	
		$V_{CC} = 3 V$		-24		
		$V_{CC} = 1.65 \text{ V}$		4		
	Law level output ourrant	$V_{CC} = 2.3 \text{ V}$		8	mΛ	
l _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24	1	
Δt/Δν	Input transition rise and fall rate			5	ns/V	
T _A	Operating free-air temperature		-40	125	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DGG	DGV	DL	LINUT
		48 PINS	48 PINS	48 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	67.1	80.2	70.6	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	19.9	32.7	36.8	
$R_{\theta JB}$	Junction-to-board thermal resistance	34.2	43.5	43.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.8	4.7	13.9	- °C/VV
ΨЈВ	Junction-to-board characterization parameter	33.9	42.9	42.6	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: SN74LVCH16245A

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

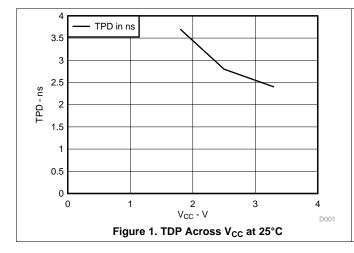
P	ARAMETER	TEST COND	ITIONS	V _{cc}	MIN TY	P ⁽¹⁾ MAX	UNIT
V _{OH}		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2		
		$I_{OH} = -8 \text{ mA}$		2.3 V	1.7		
		I 40 A		2.7 V	2.2		V
		$I_{OH} = -12 \text{ mA}$		3 V	2.4		
		I _{OH} = -24 mA		3 V	2.2		
		I _{OL} = 100 μA		1.65 V to 3.6 V		0.2	
		I _{OL} = 4 mA		1.65 V		0.45	
V_{OL}		I _{OL} = 8 mA		2.3 V		0.7	V
		I _{OL} = 12 mA		2.7 V		0.4	
		I _{OL} = 24 mA		3 V		0.55	
I _I	Control inputs	V _I = 0 to 5.5 V		3.6 V		±5	μA
		$V_1 = 0.58 \text{ V}$ $V_1 = 1.07 \text{ V}$ $V_1 = 0.7 \text{ V}$ $V_1 = 1.7 \text{ V}$ $V_1 = 0.8 \text{ V}$		4.05.1/	15		μA
				1.65 V	-15		
				2.3 V	45		
I _{I(hold)}	A or B port				-45		
				211	75		
		V _I = 2 V	3 V		-75		
		V _I = 0 to 3.6 V ⁽²⁾		3.6 V		±500	
I _{off}		V_I or $V_O = 5.5 \text{ V}$		0		±10	μA
I _{OZ} ⁽³⁾		$V_{O} = 0 \text{ V or } (V_{CC} \text{ to } 5.5 \text{ V})$		2.3 V to 3.6 V		±5	μA
I _{cc}		$V_I = V_{CC}$ or GND		0.01/		20	^
		$3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{(4)}$	I _O = 0	3.6 V		20	μA
ΔI _{CC}		One input at V _{CC} - 0.6 V, Oth	er inputs at V _{CC} or GND	2.7 V to 3.6 V		500	μΑ
C _i	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		5	pF
C _{io}	A or B port	$V_O = V_{CC}$ or GND		3.3 V		7.5	pF

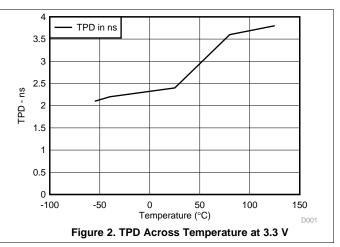
This applies in the disabled state only.

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. This is the bus-hold maximum dynamic current required to switch the input from one state to another. For the total leakage current in an I/O port, consult the $I_{I(hold)}$ specification for the input voltage condition $0 \text{ V} < V_I < V_{CC}$, and the I_{OZ} specification for the input voltage conditions $V_I = 0 \text{ V}$ or $V_I = V_{CC}$ to 5.5 V. The bus-hold current, at input voltage greater than V_{CC} , is

7.6 Switching Characteristics

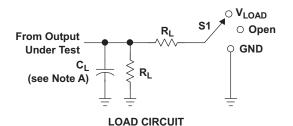
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

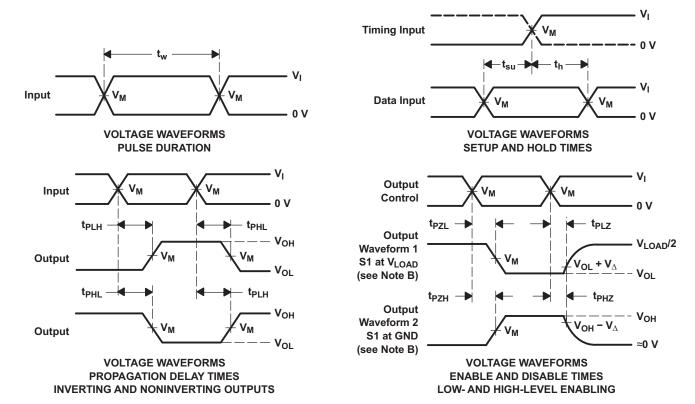

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = 1 ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INPOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	B or A	1.5	7.1	1	4.5	1	4.7	1	4	ns
t _{en}	ŌĒ	A or B	1.5	8.9	1	5.6	1.5	6.7	1.5	5.5	ns
t _{dis}	ŌĒ	A or B	1.5	11.9	1	6.8	1.5	7.1	1.5	6.6	ns
t _{sk(o)}				1		1		1		1	ns


7.7 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
_	Power dissipation capacitance	Outputs enabled	f = 10 MHz	36	36	40	ي د	
Cpd	per transceiver	Outputs disabled	1 = 10 WHZ	3	3	4	pF	


7.8 Typical Characteristics



8 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INF	PUTS	.,	.,		-	.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_{\Delta}$
1.8 V ± 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V ± 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

9 Detailed Description

9.1 Overview

The SN74LVCH16245A device is designed for asynchronous communication between data buses. The logic levels of the direction-control (DIR) input and the output-enable (\overline{OE}) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic high or low level applied to prevent excess I_{CC} and I_{CCZ} .

Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. The bus-hold circuitry is part of the input circuit and is not disabled by $\overline{\text{OE}}$ or DIR.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V and 5-V system environment.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, thus preventing damaging current backflow through the device when it is powered down.

9.2 Functional Block Diagram

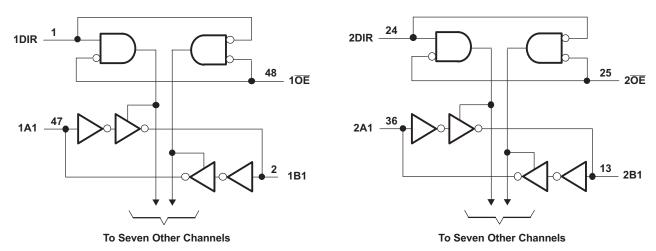


Figure 4. Logic Diagram (Positive Logic)

Copyright © 2003–2014, Texas Instruments Incorporated

9.3 Feature Description

- · Wide operating voltage range
 - Operates from 1.65 V to 3.6 V
- Allows down voltage translation
 - Inputs accept voltages to 5.5 V
- I_{off} feature
 - $-\,\,$ Allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

Table 3. Function Table⁽¹⁾ (Each 8-bit Section)

CONTROL	. INPUTS	OPERATION				
ŌĒ	DIR	OPERATION				
L	L	B data to A bus				
L	Н	A data to B bus				
Н	X	Isolation				

(1) Input circuits of the data I/Os always are active.

10 Application and Implementation

10.1 Application Information

The SN74LVC16245A device is a 16-bit bidirectional transceiver. This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. The device has 5.5 V tolerant inputs at any valid V_{CC} . This allows it to be used in multi-power systems, and it can be used for down translation.

10.2 Typical Application

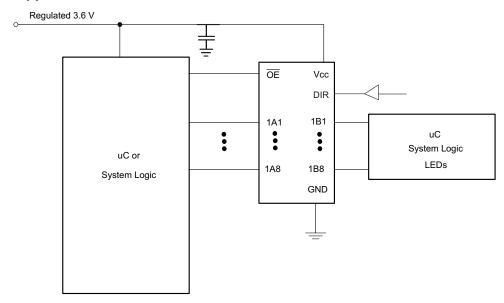
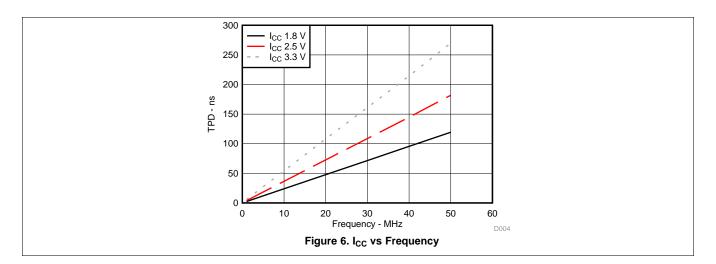


Figure 5. Typical Application Diagram

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


- 1. Recommended Input Conditions
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.

Product Folder Links: SN74LVCH16245A

- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

Typical Application (continued) 10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ f is recommended; if there are multiple V_{CC} pins, then 0.01 μ f or 0.022 μ f is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ f and a 1 μ f are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 7 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

12.2 Layout Example

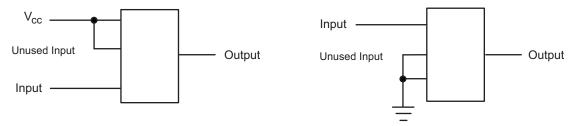


Figure 7. Layout Diagram

Submit Documentation Feedback
Product Folder Links: SN74LVCH16245A

13 Device and Documentation Support

13.1 Trademarks

Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LVCH16245A

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74LVCH16245ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
74LVCH16245ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
SN74LVCH16245ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
SN74LVCH16245ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LDH245A	Samples
SN74LVCH16245ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
SN74LVCH16245ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
SN74LVCH16245ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCH16245A	Samples
SN74LVCH16245AGQLR	OBSOLETE	BGA MICROSTAR JUNIOR	GQL	56		TBD	Call TI	Call TI	-40 to 85	LDH245A	
SN74LVCH16245AGRDR	OBSOLETE	BGA MICROSTAR JUNIOR	GRD	54		TBD	Call TI	Call TI	-40 to 85		
SN74LVCH16245AZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LDH245A	Samples
SN74LVCH16245AZRDR	ACTIVE	BGA MICROSTAR JUNIOR	ZRD	54	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	LDH245A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

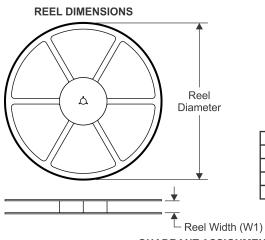
10-Jun-2014

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

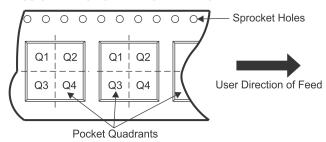
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

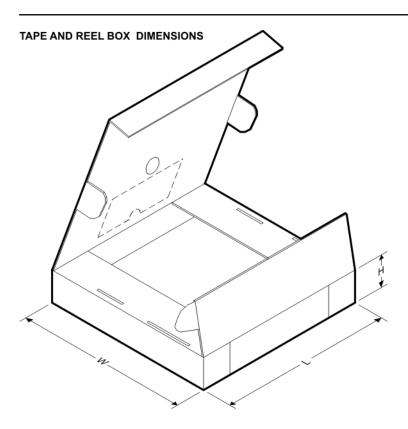
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Nov-2013


TAPE AND REEL INFORMATION

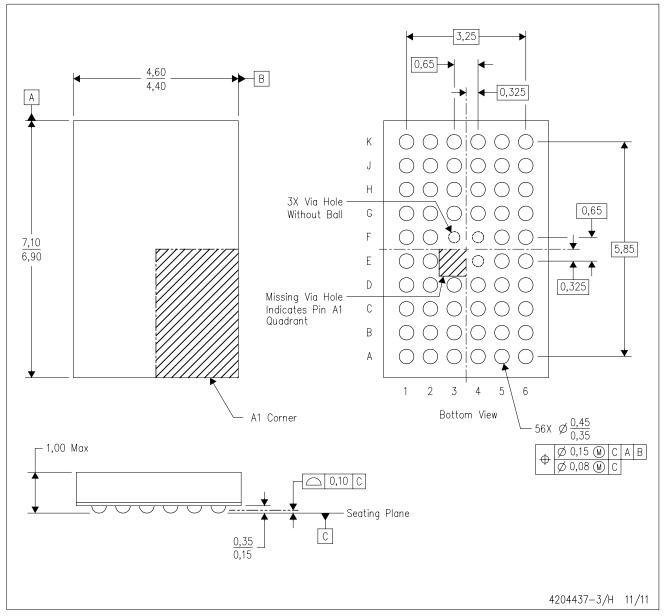
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCH16245ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVCH16245ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVCH16245AZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
SN74LVCH16245AZRDR	BGA MI CROSTA R JUNI OR	ZRD	54	1000	330.0	16.4	5.8	8.3	1.55	8.0	16.0	Q1

www.ti.com 7-Nov-2013



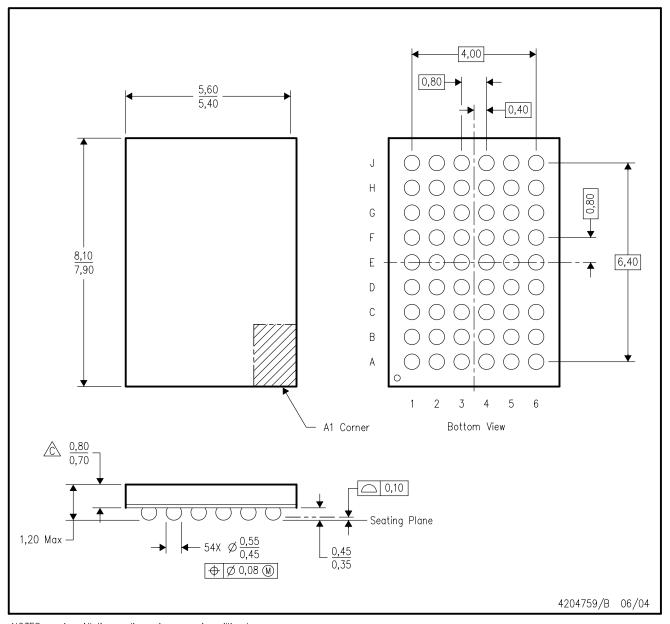
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCH16245ADGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74LVCH16245ADLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74LVCH16245AZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	336.6	336.6	28.6
SN74LVCH16245AZRDR	BGA MICROSTAR JUNIOR	ZRD	54	1000	336.6	336.6	28.6

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is Pb-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

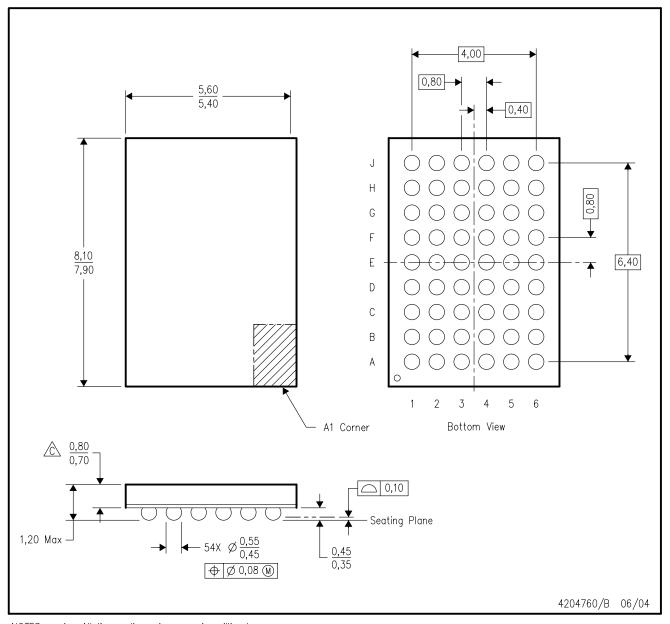
MicroStar Junior is a trademark of Texas Instruments

GRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

 $\hbox{NOTES:} \quad \hbox{A. All linear dimensions are in millimeters.}$

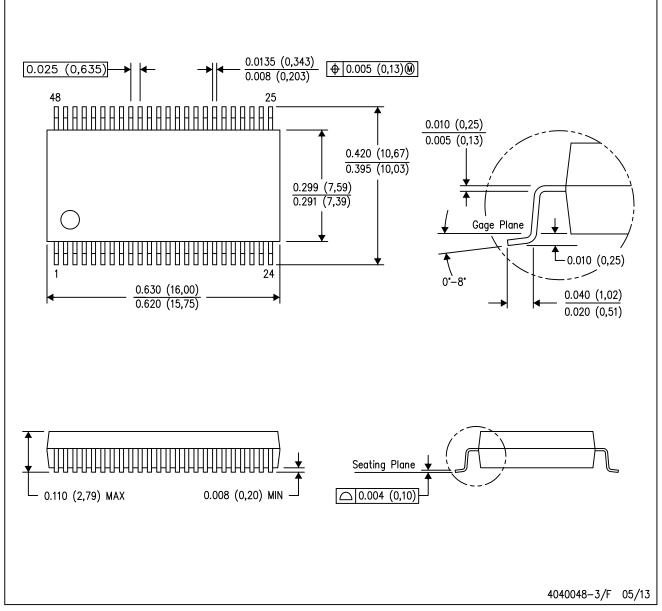
B. This drawing is subject to change without notice.


Falls within JEDEC MO-205 variation DD.

D. This package is tin-lead (SnPb). Refer to the 54 ZRD package (drawing 4204760) for lead-free.

ZRD (R-PBGA-N54)

PLASTIC BALL GRID ARRAY

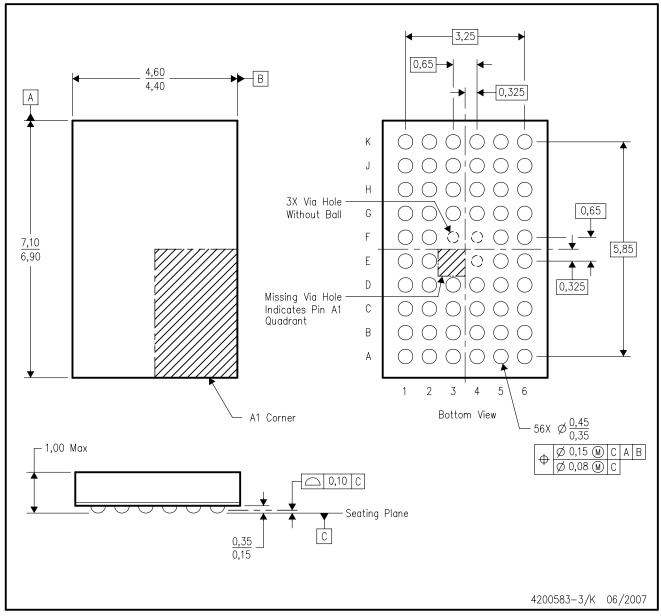

 $\hbox{NOTES:} \quad \hbox{A. All linear dimensions are in millimeters.}$

- B. This drawing is subject to change without notice.
- Falls within JEDEC MO-205 variation DD.
- D. This package is lead-free. Refer to the 54 GRD package (drawing 4204759) for tin-lead (SnPb).

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

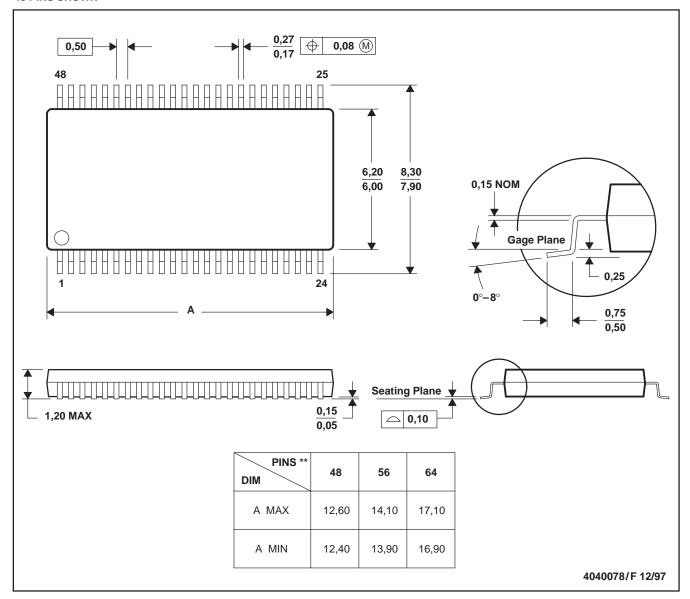

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com