MAX35103

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

General Description

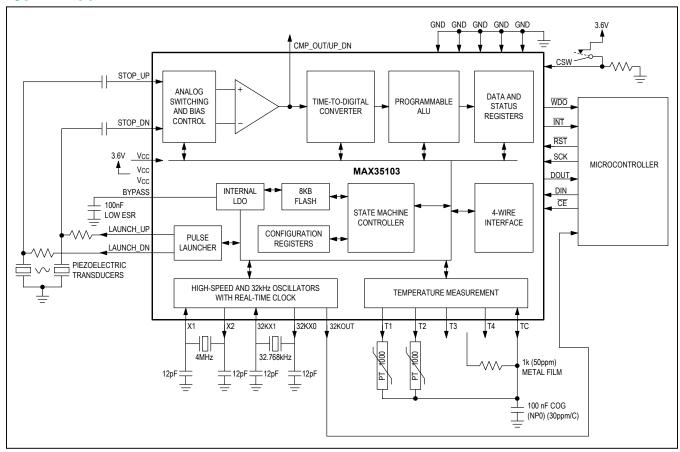
The MAX35103 is a time-to-digital converter with built-in amplifier and comparator targeted as a low-cost analog front-end solution for the ultrasonic heat meter and flow meter markets. It is similar to the MAX35101, but consumes about half the average power and increases the maximum ToF measurement frequency in event timing mode from 2Hz to 16Hz.

With a time measurement accuracy of 20ps and automatic differential time-of-flight (ToF) measurement, this device makes for simplified computation of liquid flow.

Average power consumption is the lowest available with ultra-low $5.5\mu A$ ToF measurement and < 125nA duty-cycled temperature measurement.

Applications

- Ultrasonic Heat Meters
- Ultrasonic Water Meters
- Ultrasonic Gas Meters


Benefits and Features

- High Accuracy Flow Measurement for Billing and Leak Detection
 - Time-to-Digital Accuracy Down to 20ps
 - Measurement Range Up to 8ms
 - · Two Channels: Single-Stop Channel
- High Accuracy Temperature Measurement for Precise Heat and Flow Calculations
 - · Up to Four 2-Wire Sensors
 - PT1000 and PT500 RTD Support
- Maximizes Battery Life with Low Device and Overall System Power
 - Ultra-Low 5µA ToF Measurement and < 125nA Duty-Cycled Temperature Measurement
 - Event Timing Mode Reduces Host Microcontroller Overhead to Minimize System Power Consumption
 - 2.3V to 3.6V Single-Supply Operation
- High-Integration Solution Minimizes Parts Count and Reduces BOM Cost
 - · 8KB of Nonvolatile Flash Memory for Data Logging
 - Built-in Real Time Clock
 - Small, 5mm x 5mm, 32-Pin TQFP Package
 - -40°C to +85°C Operation

Ordering Information appears at end of data sheet.

Typical Application Circuit

Absolute Maximum Ratings

(Voltages relative to ground.)	Operating Temperature Range40°C to +85°C
Voltage Range on V _{CC} Pins0.5V to +4.0V	Junction Temperature+150°C
Voltage Range on All Other Pins	Storage Temperature Range55°C to +125°C
(not to exceed 4.0V)0.5V to (V _{CC} + 0.5V)	Lead Temperature (soldering, 10s)+300°C
Continuous Power Dissipation (T _A = +70°C)	Soldering Temperature (reflow)+260°C
TQFP (derate 27.80mW/°C above +70°C)2222.20mW	ESD Protection (All Pins, Human Body Model)±2kV

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TOFP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Recommended Operating Conditions

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONDITIONS	MIN .	TYP MAX	UNITS
Supply Voltage	V _{CC}		2.3	3.0 3.6	V
Input Logic 1 (RST, CSW, SCK, DIN, CE)	V _{IH}		Vcc x 0.7	V _C C + 0.3	V
Input Logic 0 (RST, CSW, SCK, DIN, CE)	V _{IL}		-0.3	Vcc x 0.3	V
Input Logic 1 (32KX1)	V _{IH32KX1}		V _{CC} x 0.85	V _{CC} + 0.3	V
Input Logic 0 (32KX1)	VIL32KX1		-0.3	V _{CC} x 0.15	V

Electrical Characteristics

 $(V_{CC} = 2.3V \text{ to } 3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = 3.0V \text{ and } T_A = +25^{\circ}\text{C.}$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Input Leakage (CSW, RST, SCK, DIN, CE)	IL		-0.1	+0.1	μA
Output Leakage (INT, WDO, T1,T2,T3,T4)	OL		-0.1	+0.1	μA
Output Voltage Low (32KOUT)	V _{OL32} K	2mA		0.2 x V _C C	V
Output Voltage High (32KOUT)	Vон32K	-1mA	0.8 x Vcc		V
Output Voltage High (DOUT, CMP_OUT/UP_DN)	Voн	-4mA	0.8 x V _{CC}		V
Output Voltage High (TC)	Vонтс	V _{CC} = 3.3V, I _{OUT} = -4mA	2.9	3.1	V

Electrical Characteristics (continued)

 $(V_{CC}$ = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage High (Launch_UP, Launch_DN)	Vohlauch	VCC = 3.3V, I _{OUT} = -50mA	2.8	3.0		V
Output Voltage Low (WDO, INT, DOUT, CMP_OUT/UP_DN)	VoL	4mA		0	.2 x V _{CC}	V
Pulldown Resistance (TC)	R _{TC}		650	1000	1500	Ω
Input Voltage Low (TC)	VILTC			0.36 x V _C	С	V
Output Voltage Low (Launch_UP, Launch_DN)	Vollauch	V _{CC} = 3.3V, I _{OUT} = 50mA		0.2	0.4	V
Resistance (T1, T2, T3, T4)	Ron			1		Ω
Input Capacitance (CE, SCK, DIN, RST, CSW)	CIN	Not tested		7		pF
RST Low Time	trst				100	ns
CURRENT	<u>'</u>		-1			
Standby Current	IDDQ	No oscillators running, T _A = +25°C		0.1	1	μA
32kHz OSC Current	l32KHZ	32kHz oscillator only (Note 4)		0.5	0.9	μΑ
4MHz OSC Current	l _{4MHZ}	4MHz oscillator only (Note 4)		40	85	μA
LDO Bias Current	ICCLDO	ICCCPU = 0 (Note 4)		15	50	μA
Time Measurement Unit Current	Ісстми	(Note 4)		4.5	8	mA
Calculator Current	ICCCPU			0.75	1.7	mA
Device Current Drain	ICC3	TOF_DIFF = 2 per second (3 hits), temperature = 1 per 30s		5.5		
Device Current Drain	ICC6	TOF_DIFF = 2 per second (6 hits), temperature = 1 per 30s		7.0		μA
FLASH Erase Current	IFLASH			0.5	1	mA
ANALOG RECEIVER			•			
Analog Input Voltage (STOP_UP, STOP_DN)	Vana		10	700	2 x V _{CC} x (3/8)	mV _{P-P}
Input Offset Step Size	VSTEP			1		mV
STOP_UP/STOP_DN Bias Voltage	VBIAS		,	VCC x (3/8	3)	V
Receiver Sensitivity	VANA	Stop hit detect level (Note 5)	10			mV _{P-P}
TIME MEASUREMENT UNIT						
Measurement Range	tMEAS	Time of flight	8		8000	μs
Time Measurement Accuracy	tACC	Differential time measurement		20		ps
Time Measurement Resolution	tRES			3.8		ps

Electrical Characteristics (continued)

 $(V_{CC}$ = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FLASH						
Data Retention	DR	T _A = +25°C	100			Years
Flash Endurance	NFLASH	T _A = +25°C	20k			Cycles
Block Flash Erase Time	terase				50	ms
LDO Stabilization Time	t _{STABLE}			135		μs
Word Write Time	twrite			72	100	μs
Transfer Configuration to Flash Command Time	^t CONFIG			35		ms
EXECUTION TIMES	1		'			
Power-On-Reset Time	t _{RESET}	Reset to POR INT		275		μs
INIT Command Time	t _{INIT}	Command received when INIT bit set		2.5		ms
Case Switch Time	t _{CSW}	CSW pin logic-high until CSWI bit set		20		ns
CAL Command Time	t _{CAL}	Command received when CAL bit set		1.25		ms
SERIAL PERIPHERAL INTERFAC	E					
DIN to SCK Setup	tDC				20	ns
SCK to DIN Hold	tcdh			2	20	ns
SCK to DOUT Delay	tcdd			5	20	ns
SCK Low Time	to	V _C C ≥ 3.0V	25	4		20
SCK LOW TITTLE	tCL	Vcc = 2.3V	50	30		ns
SCK High Time	tсн		25	4		ns
CCV Fraguency	.	V _{CC} ≥ 3.0V			20	MHz
SCK Frequency	tCLK	Vcc = 2.3V			10	IVITIZ
CE to SCK Setup	tcc			5	40	ns
SCK to CE Hold	tссн				20	ns
CE Inactive Time	tcwH			2	40	ns
CE to DOUT High Impedance	tccz			5	20	ns

Recommended External Crystal Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
32kHz Nominal Frequency	f32K			32.768		kHz
32kHz Frequency Tolerance	Δf _{32K} /f _{32K}	T _A = +25°C	-20		+20	ppm
32kHz Load Capacitance	C _{L32K}			12.5		pF
32kHz Series Resistance	Rs32K				70	kΩ
4MHz Crystal Nominal Frequency	F _{4M}			4.000		MHz
4MHz Crystal Frequency Tolerance	Δf4M/f4M	T _A = +25°C	-30		+30	ppm
4MHz Crystal Load Capacitance	C _{L4M}			12.0		pF
4MHz Crystal Series Resistance	R _{S4M}				120	Ω
4MHz Ceramic Nominal Frequency				4.000		MHz
4MHz Ceramic Frequency Tolerance		T _A = +25°C	-0.5		+0.5	%
4MHz Ceramic Load Capacitance				30		pF
4MHz Ceramic Series Resistance					30	Ω

- **Note 2:** All voltages are referenced to ground. Current entering the device are specified as positive and currents exiting the device are negative.
- Note 3: Limits are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
- **Note 4:** Currents are specified as individual block currents. Total current for a point in time can be calculated by taking the standby current and adding any block currents that are active at that time.
- Note 5: Receiver sensitivity includes performance degradation contributed by STOP_UP and STOP_DN device pin input offset voltage and common mode drift.

Timing Diagrams

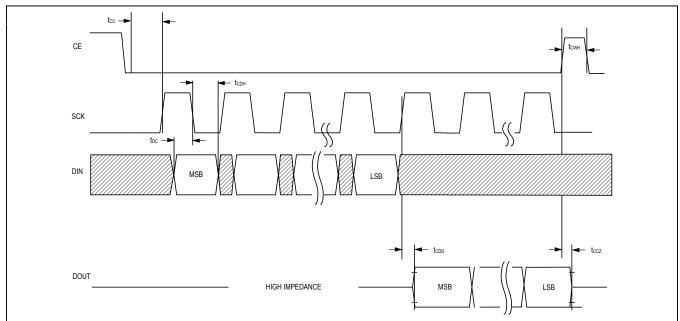
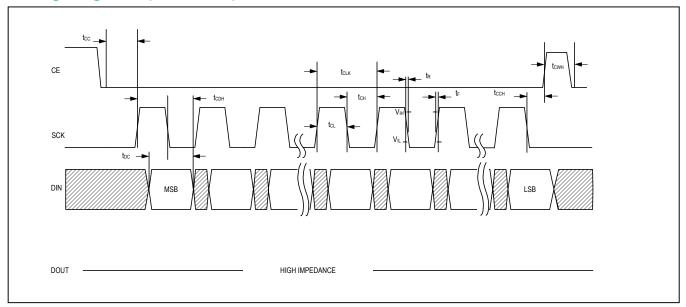
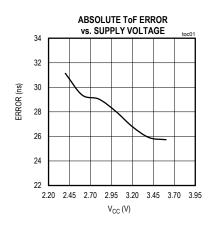
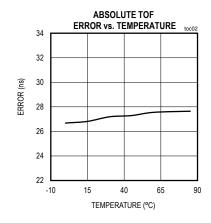
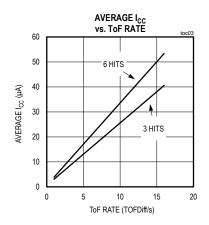


Figure 1. SPI Timing Diagram Read

Timing Diagrams (continued)

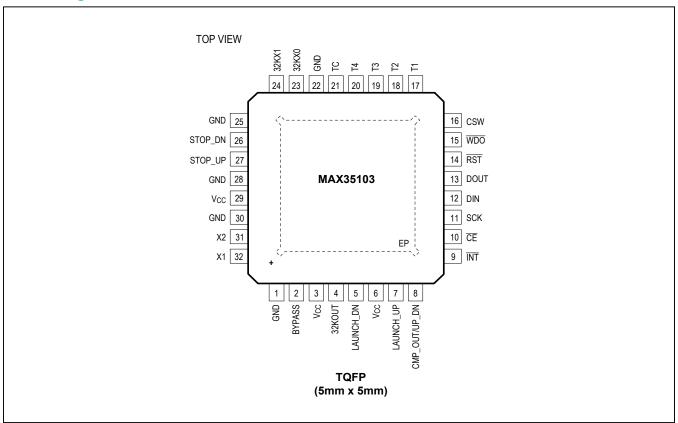

Figure 2. SPI Timing Diagram Write

Typical Operating Characteristics

(V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

Average I_{CC} vs. ToF Rate Configuration Settings

CONTROL BIT(S)	6-HIT	SETTINGS	3-HIT	SETTINGS
CONTROL BIT(S)	VALUE	BIT SETTINGS	VALUE	BIT SETTINGS
Calibration Usage	Disabled	CAL_USE = 0	Disabled	CAL_USE = 0
Clock Setting Time	488µs	CLK_2[2:0] = 000	488µs	CLK_2[2:0] = 000
Bias Charge Time	61µs	CT[1:0] = 00	61µs	CT[1:0] = 00
Pulse Launch Frequency	1MHz	DPL[3:0] = 0001	1MHz	DPL[3:0] = 0001
Pulse Launch Size	15	PL[7:0] = 00001111	15	PL[7:0] = 00001111
ToF Duty Cycle	19.97ms	TOF_CYC[2:0] = 111	19.97ms	TOF_CYC[2:0] = 111
Stop Hits	6	STOP[2:0] = 101	3	STOP[2:0] = 101
T2 Wave Selector	Wave 2	T2WV[5:0] = 000110	Wave 2	T2WV[5:0] = 000110
Hit1 Wave Select	7	HIT1WV[5:0] = 000111	7	HIT1WV[5:0] = 000111
Hit2 Wave Select	8	HIT2WV[5:0] = 001000	8	HIT2WV[5:0] = 001000
Hit3 Wave Select	9	HIT3WV[5:0] = 001001	9	HIT3WV[5:0] = 001001
Hit4 Wave Select	10	HIT4WV[5:0] = 001010	n/a	n/a
Hit5 Wave Select	11	HIT5WV[5:0] = 001011	n/a	n/a
Hit6 Wave Select	12	HIT6WV[5:0] = 001100	n/a	n/a
Temperature Port Number	4	TP[1:0] = 11	4	TP[1:0] = 11
Preamble Temperature Cycle Number	1	PRECYC[2:0] = 001	1	PRECYC[2:0] = 001
Port Cycle Time	256µs	PORTCYC[1:0] = 01	256µs	PORTCYC[1:0] = 01

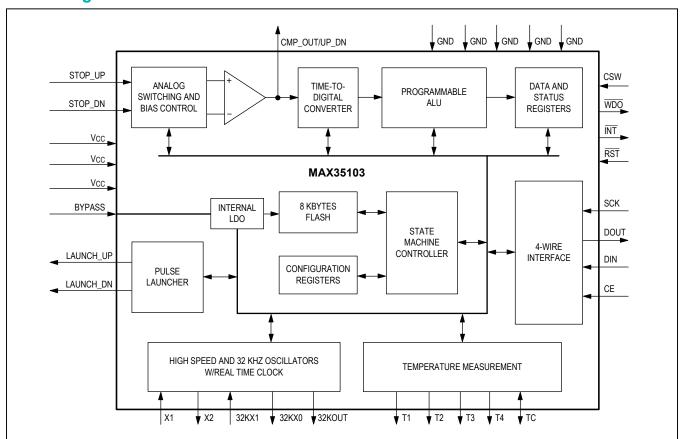

Notes:

This data is valid for the ceramic resonator.

Crystal oscillator startup add ~0.5µA per TOFDiff.

Since the ToF cycle time is long, the 4MHz oscillator power up twice.

Pin Configuration


Pin Description

PIN	NAME	FUNCTION
1, 22, 25, 28, 30	GND	Device Ground
2	BYPASS	Connect this pin to ground with a capacitor (100nF) to provide stability for the on-board low-dropout regulator that is used to supply the flash circuitry. The effective series resistance of this capacitor needs to be in the 1Ω to 2Ω range.
3, 6, 29	Vcc	Main Supply. Typically sourced from a single lithium cell.
4	32KOUT	CMOS Output. Repeats the 32kHz crystal oscillator frequency.
5	LAUNCH_DN	CMOS Pulse Output Transmission in Downstream Direction of Water Flow
7	LAUNCH _UP	CMOS Pulse Output Transmission in Upstream Direction of Water Flow
8	CMP_OUT/UP_DN	CMOS Output. Indicates the direction (upstream or downstream) of which the pulse launcher is currently launching pulses OR the comparator output.
9	ĪNT	Active-Low Open-Drain Interrupt Output. The pin is driven low when the device requires service from the host microprocessor.
10	CE	Active-Low CMOS Digital Input. Serial peripheral interface chip enable input.

Pin Description (continued)

	T .	
PIN	NAME	FUNCTION
11	SCK	CMOS Digital Input. Serial peripheral interface clock input.
12	DIN	CMOS Digital Input. Serial peripheral interface data input.
13	DOUT	CMOS Output. Serial peripheral interface data output.
14	RST	Active-Low CMOS Digital Reset Input
15	WDO	Active-Low Open-Drain Watchdog Output
16	CSW	CMOS Digital Input. Case Switch. Active-high tamper detect input.
17	T1	Open-Drain Probe 1 Temperature Measurement
18	T2	Open-Drain Probe 2 Temperature Measurement
19	T3	Open-Drain Probe 3 Temperature Measurement
20	T4	Open-Drain Probe 4 Temperature Measurement
21	TC	Input/Output Temperature Measurement Capacitor Connection
23	32KX0	Connections for 32.768kHz Quartz Crystal. An external CMOS 32.768kHz oscillator can also drive the MAX35103. In this configuration, the 32KX1 pin is connected to the external oscillator
24	32KX1	signal and the 32KX0 pin is left unconnected.
26	STOP_DN	Downstream STOP Analog Input. Used for the signal that is received from the downstream transmission of a time-of-flight measurement.
27	STOP_UP	Upstream STOP Analog Input. Used for the signal that is received from the upstream transmission of a time-of-flight measurement.
31	X2	Connections for ANUT Quarte Courted A coronic reconster con also be used
32	X1	Connections for 4MHz Quartz Crystal. A ceramic resonator can also be used.
_	EP	Exposed Pad. Connect to GND.

Block Diagram

Detailed Description

The MAX35103 is a time-to-digital converter with built-in amplifier and comparator targeted as a complete analog front-end solution for the ultrasonic heat meter and flow meter markets.

With automatic differential time-of-flight (TOF) measurement, this device makes for simplified computation of liquid flow. Early edge detection ensures measurements are made with consistent wave patterns to greatly improve accuracy and eliminate erroneous measurements. Built-in arithmetic logic unit provides TOF difference measurements. A programmable receiver hit accumulator can be utilized to minimize the host microprocessor access.

Multihit capability with stop-enable windowing allows the device to be fine-tuned for the application. Internal analog switches, an autozero amplifier/comparator, real-time clock (RTC), and programmable receiver sensitivity provide the analog interface and control for a minimal electrical bill of material solution. The RTC provides an

event timing mode that is configurable and runs cyclic algorithms to minimize microprocessor interactivity and increase battery life.

For temperature measurement, the MAX35103 supports up to four (4) 2-wire PT1000/500 platinum resistive temperature detectors (RTD).

The MAX35103 offers an event timing mode that is configurable and runs cyclic algorithms to minimize microprocessor interactivity and increase battery life.

The real-time clock (RTC) provides one programmable alarm and watchdog functionality.

A simple opcode based 4-Wire SPI interface allows any microcontroller to effectively configure the device for its intended measurement.

On-board user flash allows the MAX35103 to be nonvolatile configurable and provides nonvolatile energy use data to be logged.

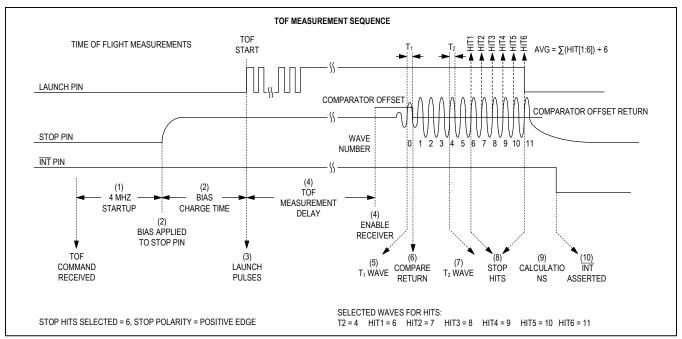


Figure 3. Time-of-Flight Sequence

Time-of-Flight (ToF) Measurement Operations

TOF is measured by launching pulses from one piezoelectric transducer and receiving the pulses at a second transducer. The time between when the pulses are launched and received is defined as the time of flight. The MAX35103 contains the functionality required to create a string of pulses, sense the receiving pulse string, and measure the time of flight. The MAX35103 can measure two separate TOFs, which are defined as TOF up and TOF down.

A TOF up measurement has pulses launched from the LAUNCH_UP pin, which is connected to the downstream transducer. The ultrasonic pulse is received at the upstream transducer, which is connected to the STOP_UP pin. A TOF down measurement has pulses launched from the LAUNCH_DN pin, which is connected to the upstream transducer. The ultrasonic pulse is received at the downstream transducer, which is connected to the STOP_DN pin.

TOF measurements can be initiated by sending either the TOF_UP, TOF_DN, or TOF_DIFF commands. TOF_DIFF measurements can also be automatically executed using event timing mode commands EVTMG1 or EVTMG2.

The steps involved in a single TOF measurement are described here and shown in Figure 3.

- The 4MHz oscillator and LDO is enabled with a programmable settling delay time set by the CLK_S[2:0] bits in Calibration and Control register.
- A common-mode bias is enabled on the STOP pin. This bias charge time is set by the CT[1:0] bits in the TOF1 register.
- 3) Once the bias charge time has expired, the pulse launcher drives the appropriate LAUNCH pin with a programmable sequence of pulses. The number of pulses launched is set by the PL[7:0] bits in the TOF1 register. The frequency of these 50% dutycycle pulses is set by the DPL[3:0] bits, also in the TOF1 register. The start of these launch pulses generates a start signal for the time-to-digital converter (TDC) and is considered to be time zero for the TOF measurement. This is denoted by the start signal in the start/stop TDC timing (Figure 3).
- 4) After a programmable delay time set in TOF Measurement Delay register, the comparator and hit detector at the appropriate STOP pin are enabled. This delay allows the receiver to start recording hits when the received wave is expected, eliminating possible false hits from noise in the system.
- Stop hits are detected according to the programmed preferred edge of the acoustic signal sequence received at the STOP pin according to the setting

of the STOP_POL bit in the TOF1 register. The first stop hit is detected when a wave received at the STOP pin exceeds the comparator offset voltage, which is set in the TOF6 and TOF7 registers. This first detected wave is wave number 0. The width of the wave's pulse that exceeds the comparator offset voltage is measured and stored as the t1 time.

- 6) The offset of the comparator then automatically and immediately switches to the comparator return offset, which is set in the TOF6 and TOF7 registers.
- 7) The t₂ wave is detected and the width of the t₂ pulse is measured and stored as the t₂ time. The wave number for the measurement of the t₂ wave width is set by the T2WV[5:0] bits in the TOF2 register.
- 8) The preferred number of stop hits are then detected. For each hit, the measured TOF is stored in the appropriate HITxUPINT and HITxUPFrac or HITxDNINT and HITxDNFRAC registers. The number of hits to detect is set by the STOP[2:0] bits in the TOF2 register. The wave number to measure for each stop hit is set by the HITx wave select bits in the TOF3, TOF4, and TOF5 registers.
- 9) After receiving all of the programmed hits, the MAX35103 calculates the average of the recorded hits and stores this to AVGUPINT and AVGUPFrac or AVGDNInt and AVGDNFrac. The ratio of t₁/t₂ and t₂/t_{ideal} are calculated and stored in the WVRUP or WVRDN register.
- Once all of the hit data, wave ratios, and averages become available in the Results registers, the TOF

bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ pin is asserted (if enabled) and remains asserted until the Interrupt Status register is accessed by the microprocessor with a read register command.

The computation of the total time of flight is performed by counting the number of full and fractional 4MHz clock cycles that elapsed between the launch start and a hit stop as shown in Figure 4.

Table 1. Two's Complement TOF_DIFF Conversion Example

REGISTE	R VALUE	CONVERTER VALUE
TOF_DIFFInt (hex)	TOF_DIFFFrac (hex)	TOF DIFF VALUE (ns)
7FFF	FFFF	8,191,999.9962
001C	0403	7,003.9177
0001	00A1	250.6142
0000	0089	0.5226
0000	0001	0.0038
0000	0000	0.0000
FFFF	FFFF	-0.0038
FFFF	FFC0	-0.2441
FFFE	1432	-480.2780
FF1C	8001	-56,874.9962
8000	0000	-8,192,000.0000

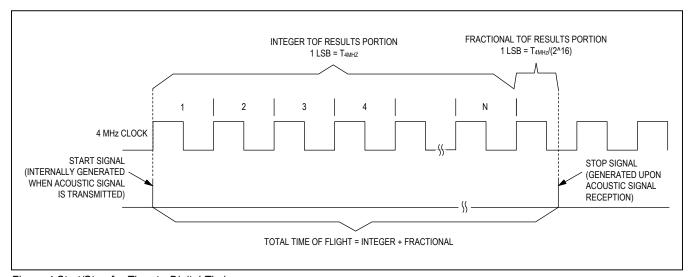


Figure 4.Start/Stop for Time-to-Digital Timing

Each TOF measurement result is comprised of an integer portion and a fractional portion. The integer portion is a binary representation of the number of $t_{\rm 4MHz}$ periods that contribute to the time results. The fractional portion is a binary representation of one $t_{\rm 4MHz}$ period quantized to a 16-bit resolution. The maximum size of the integer is 7FFFh or (2¹⁵-1) x $t_{\rm 4MHz}$ or \sim 8.19 ms. The maximum size of the fraction is:

FFFFh or
$$\frac{2^{16}-1}{2^{16}} \times t_{4MHz}$$
. or ~ 249.9961 ns.

Early Edge Detect

This early edge detect method of measuring the TOF of acoustic waves is used for all of the TOF commands including TOF_UP, TOF_DN, and TOF_DIFF. This method allows the MAX35103 to automatically control the input offset voltage of the receiver comparator so that it can provide advanced measurement accuracy. The input offset of the receiver comparator can be programmed with a range +127 LSBs if triggering on a positive edge and -127 LSBs if triggering on a negative edge, with 1 LSB = V_{CC}/3072. Separate input offset settings are available for the upstream received signal and the downstream received signal is programmed using the C_OFFSETUP[6:0] bits in the TOF6 register. The input offset for the downstream received signal is programmed using the C_

OFFSETDN[6:0] bits in the TOF7 register. Once the first hit is detected, the time t1 equal to the width of the earliest detectable edge is measured. The input offset voltage is then automatically and immediately returned to a preprogrammed comparator offset value. This return offset value has a range of +127 LSBs to -128 LSBs in 1 LSB steps and is programmed into the C_OFFSETUPR[7:0] bits in the TOF6 register for the upstream received signal and programmed into the C_OFFSETDNR[7:0] bits in the TOF7 register. This preprogrammed comparator offset return value is provided to allow for common-mode shifts that can be present in the received acoustic wave.

The MAX35103 is now ready to measure the successive hits. The next selected wave that is measured is the t_2 wave. In the example in <u>Figure 5</u>, this is the 7th wave after the early edge detect wave. The selection of the t_2 wave is made with the T2WV[5:0] bits in the TOF2 register.

With reference to Figure 5, the ratio t_1/t_2 is calculated and registered for the user. This ratio allows determination of abrupt changes in flow rate, received signal strength, partially filled tube detection, and empty tube. It also provides noise suppression to prevent erroneous edge detection. Also, the ratio t_2/t_{ideal} is calculated and registered for the user. For this calculation, t_{ideal} is 1/2 the period of launched pulse. This ratio adds confirmation that the t_2 wave is a strong signal, which provides insight into the common mode offset of the received acoustic wave.

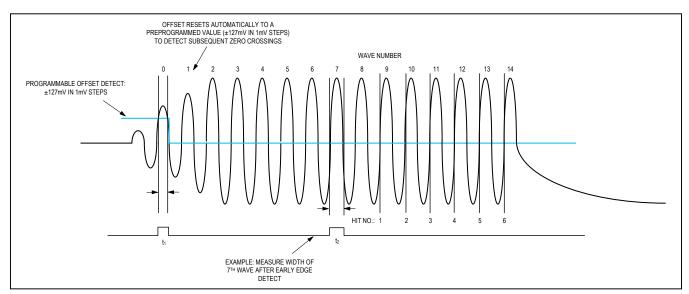


Figure 5. Early Edge Detect Received Wave Example

TOF Error Handling

Any of the TOF measurements can result in an error. If an error occurs during the measurement, all of the associated registers report FFFFh. If a TOF_DIFF is being performed, the TOF_DIFFInt and TOF_DIF_Frac registers report 7FFFh and FFFFh, respectively. The TOF_DIFF_AVG Results registers do not include the error measurement. If the measurement error is caused by the time measurement exceeding the timeout set by the TIMOUT[2:0] bits in the TOF2 register, then the TO bit in the Interrupt Status register is set and the INT pin asserts (if enabled).

Temperature Measurement Operations

A temperature measurement is a time measurement of the RC circuit connected to the temperature port device pins T1 through T4 and TC. The TC device pin has a driver to charge the timing capacitor. The ports that are measured and the order in which the measurement is performed is selected with the TP[1:0] bits in the Event Timing 2 register.

<u>Figure 6</u> depicts a 1000Ω platinum RTD with a 100nF NPO COG $30ppm/^{\circ}C$ capacitor. It shows two dummy cycles with 4 temperature port evaluation measurements and 4 real temperature port measurements. This occurs when setting the TP[1:0] bits in the Event Timing 2 register to 11b.

The dummy 1 and dummy 2 cycles represent preamble measurements that are intended to eliminate the dielectric absorption of the temperature measurement capacitor. These dummy cycles are executed using a RTD Emulation resistor of 1000Ω internal to the MAX35103. This dummy path allows the dielectric absorption effects of the capacitor to be eliminated without causing any of the RTDs to be unduly self-heated. The number of dummy measurements to be taken ranges from 0 to 7. This parameter is configured by setting the PRECYC[2:0] bits in the Event Timing 2 register.

Following the dummy cycles, an evaluation, TXevaluate, is performed. This measurement allows the MAX35103 to maximize power efficiency by evaluating the temperature of the RTDs with a coarse measurement prior to a real measurement. The coarse measurement provides an approximation to the TDC converter. During the real measurement, the TDC can then optimize its measurement parameters to use power efficiently. These evaluate cycles are automatically inserted according to the order of ports selected with the of the Temperature Port bits. The time from the start of one port's temperature measurement to the next port's temperature measurement to the next port's temperature measurement is set using with the PORTCYC[1:0] bits in the Event Timing 2 register.

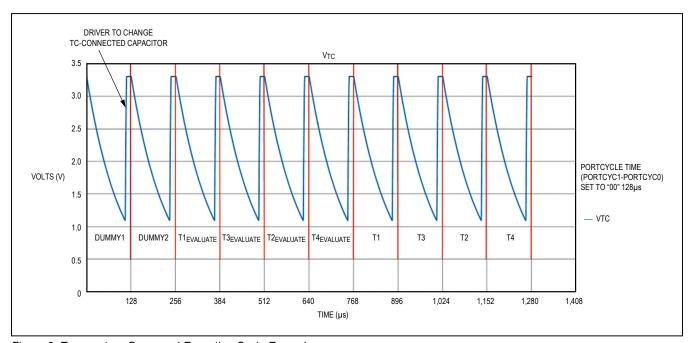


Figure 6. Temperature Command Execution Cycle Example

Once all the temperature measurements are completed, the times measured for each port are reported in the corresponding TxInt and TxFrac Results registers. The TE bit in the Interrupt Status register is also set and the INT pin asserts (if enabled).

Actual temperature is determined by a ratiometric calculation. If T1 and T2 are connected to platinum RTDs and T3 and T4 are connected to the same reference resistor (as shown in the System Diagram), then the ratio of T1/ T3 = R_{RTD1}/R_{REF} and $T2/T4 = R_{RTD2}/R_{REF}$. The ratios R_{RTD1}/R_{REF} and R_{RTD2}/R_{REF} can be determined by the host microprocessor and the temperature can be derived from a look-up table of Temperature vs. Resistance for each of the RTDs utilizing interpolation of table entries if required.

Temperature Error Handling

The temperature measurement unit can detect open and/ or short-circuit temperature probes. If the resultant temperature reading in less than 8µs, then the MAX35103 writes a value of 0000h to the corresponding Results registers to indicate a short-circuit temperature probe. If the measurement process does not discharge the TC pin below the threshold of the internal temperature comparator within 2µs of the time set by the PORTCYC[1:0] bits in the Event Timing 2 register, then an open circuit temperature probe error is declared. The MAX35103 writes a value of FFFFh to the corresponding results registers to indicate an open circuit temperature probe, the TO bit in the Interrupt Status register is set, and the INT pin asserts (if enabled). If the temperature measurement error is caused by any other problems, then the MAX35103 writes a value of FFFFh to each of the temperature port results registers indicating that all of the temperature port measurements are invalid.

Event Timing Operation

The event timing mode of operation is an advanced feature that allows the user to configure the MAX35103 to perform automatic measurement cycles. This allows the host microcontroller to enter low-power mode and only awaken upon assertion of the MAX35103 $\overline{\text{INT}}$ pin (if enabled) when new measurement data is available. By using the TOF_DIFF and temperature commands and configuring the appropriate TOFx registers and the Event Timing registers, the event timing modes directs the MAX35103 to provide complete data for a sequence of measurements captured on a cyclical basis. There are three versions of the EVTMG commands.

- EVTMG2: Performs automatic TOF_DIFF measurements. The parameters and operation of the TOF measurement are described in the <u>Time-of-Flight</u> (ToF) Measurement Operations section.
- **EVTMG3:** Performs automatic Temperature measurements. The parameters and operation of the Temperature measurements are described in the *Temperature Measurement Operations* section.
- **EVTMG1**: Performs automatic TOF_DIFF and Temperature measurements.

Continuous Event Timing Operation

The MAX35103 can be configured to continue running event timing sequences at the completion of any sequence. If the ET_CONT bit in the Calibration and Control register is set, the currently executing EVTMGx command continues to execute until a HALT command is received by the MAX35103. If the ET_CONT bit is clear, automatic execution of event timing stops after the completion of a full sequence of measurements.

Continuous Interrupt Timing Operation

When operating in event timing mode, the $\overline{\text{INT}}$ pin can be asserted (if enabled) either after each TOF or temperature measurement, or at the completion of the sequence of measurements. If the CONT_INT bit in the Calibration and Control register is set to a 1, then the $\overline{\text{INT}}$ pin asserts (if enabled) at the completion of each TOF or temperature command. This allows the host microcontroller to interrogate the current event for accuracy of measurement. If the CONT_INT bit is set to a 0, then the $\overline{\text{INT}}$ pin only asserts (if enabled) at the completion of a sequence of measurements. This allows the host microcontroller to remain in a low-power sleep mode and only wake-up upon the assertion of the $\overline{\text{INT}}$ pin.

Error Handling During Event Timing Operation

During execution of event timing modes, any error that occurs during a TOF_DIFF or temperature measurement are handled as described in the corresponding error handling sections. Calibration can be executed during event timing operation, if programmed to do so with the calibration configuration bits in the Calibration and Control register. If a calibration error occurs, this is handled as described in the *Error Handling During Calibration* section. If any of these errors occur, the event timing operation does not terminate, but continues operation.

When making TOF measurements in event timing mode, the MAX35103 provides additional data in the TOF_Cycle_Count/TOF_Range register that can be used to check the validity of all of the TOF measurements. The TOF_Cycle_Count is the number of valid error-free TOF measurements that were recorded during an Event Timing Sequence. If a TOF error occurs, the TOF_Cycle_Count register will not be incremented. The TOF_Range is the range of all valid TOF measurements that were captured during a sequence.

When making temperature measurements in event timing mode, the MAX35103 provides additional data in the Temp_Cycle_Count register. This count increments after every valid error-free temperature measurement and can be used to check the validity of all of the temperature measurements. Also, the Temperature Average Results registers, TxAVG, are not updated with the error measurement if a temperature error occurs during event timing operation.

Event Timing Mode 2

The EVTMG2 command execution causes the TOF_DIFF command to be executed automatically with programmable repetition rates and programmable total counts as shown in Figure 7.

During execution of the EVTMG2 command, each TOF_DIFF command execution cycle causes the MAX35103 to compute a TOF_DIFF measurement (AVGUP register minus AVGDN register) as well as the running average of TOF_DIFF measurements (TOFF_DIFF_AVG register). The setting of the 8XS and TDF[3:0] bits in the Event Timing 1 register selects the rate at which TOF_DIFF commands are executed. The setting of the TDM[4:0]

bits in the Event Timing 1 register determines the number of TOF_DIFF measurements to be taken during the sequence.

Once all of the TOF_DIFF measurements in the sequence are captured, the TOF_DIFF_AVG register contains the average of the differences of the resultant AVGDN and AVGUP Results register content of each TOF_DIFF measurement. After the TOF_DIFF_AVG registers are updated, the TOF_EVTMG bit is set in the Interrupt Status register and the INT pin asserts (if enabled).

Event Timing Mode 3

The EVTMG3 command execution causes the temperature command to be executed automatically with programmable repetition rates and programmable total counts (Figure 9).

During execution of the EVTMG3 command, each Temperature command execution cycle computes the running average of the measurement of each temperature port. The results are provided in the Tx_AVGInt and TxAVGFrac Results registers.

The setting of the 8XS and TMF[5:0] bits in the Event Timing 1 register selects the rate at which temperature commands are executed. The setting of the TMM[4:0] bits in the Event Timing 2 register determines the number of temperature measurements to be taken during the sequence.

Once all of the temperature measurements in the sequence are captured Tx_AVGInt and TxAVGFrac Results registers contains the average of all the temperature measurements in the sequence. After these registers are updated, the Temp_EVTMG bit is set in the Interrupt Status register and the $\overline{\text{INT}}$ pin asserts (if enabled).

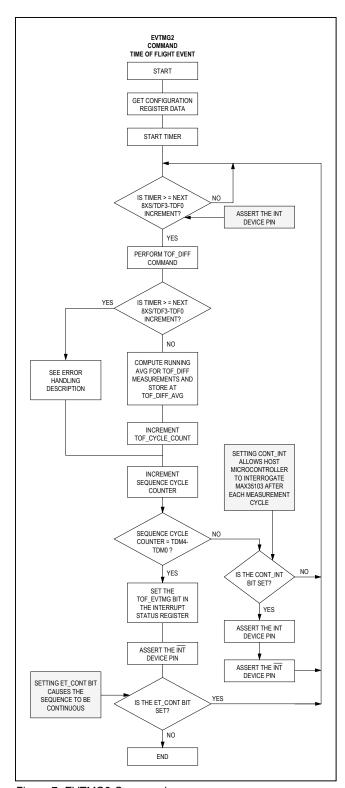


Figure 7. EVTMG2 Command

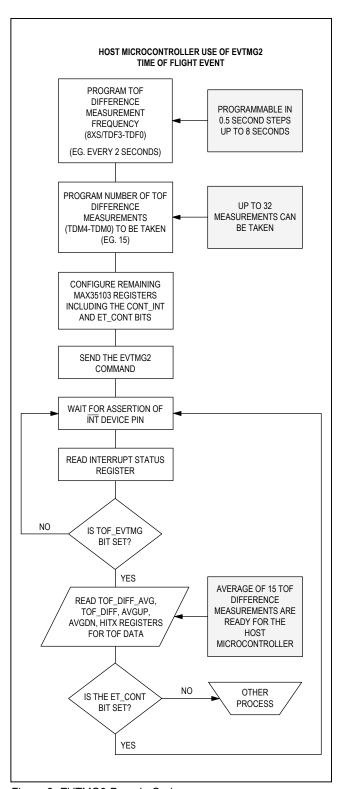


Figure 8. EVTMG2 Pseudo Code

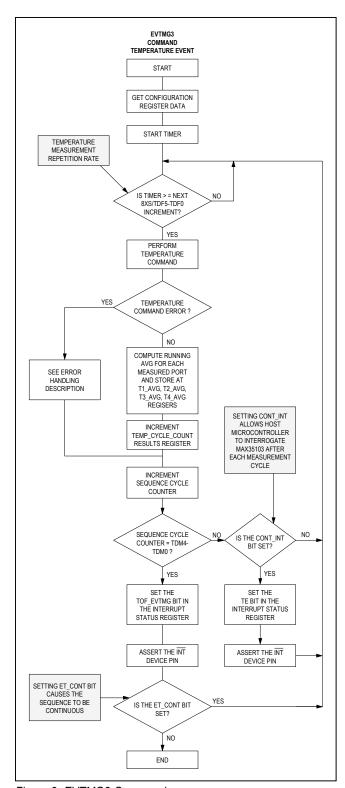


Figure 9. EVTMG3 Command

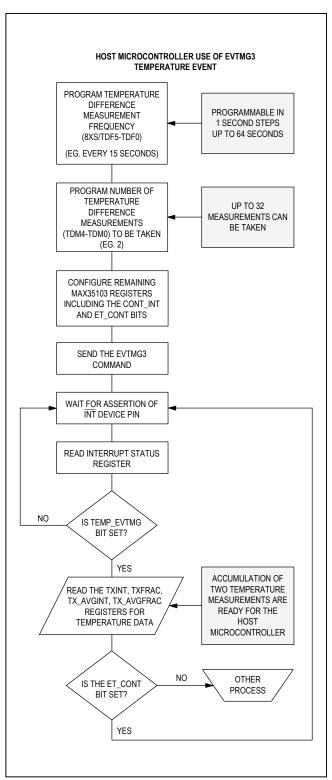


Figure 10. EVTMG3 Pseudo Code

Event Timing Mode 1

The EVTMG1 command execution causes the TOF_DIFF command and the temperature command to be executed automatically with programmable repetition rates and programmable total counts. In essence, both the EVTMG2 and EVTMG3 commands are simultaneously executed in a synchronous manner.

Setting up the TOF measurements for automatic execution in event timing mode 1 is identical to setting these up for execution with event timing mode 2. Likewise, setting up the temperature measurements is identical to setting these up for execution using event timing mode 3.

If the TOF_DIF command repetition rate and the temperature command repetition rate cause both measurements to be required at the same time, the TOFF_DIF command takes precedent. Upon completion of the TOFF_DIFF command, the pending temperature command is executed (Figure 12).

Once all of the TOF_DIFF measurements in the sequence are complete, the TOF_EVTMG bit in the Interrupt Status register is set and the INT pin asserts (if enabled). Likewise, when all of the temperature measurements in the sequence are completed, the Temp_EVTMG bit in the Interrupt Status register is set and the INT pin asserts (if enabled). It should be noted that depending upon the selected rates and number of cycles, the TOF_DIFF and temperature measurements can complete their sequences at different times. This causes the INT pin to assert (if enabled) before both sequences are complete.

Calibration Operation

For more accurate results, calibration of the TDC can be performed. Calibration allows the MAX35103 to perform a calibration measurement that is based upon the 32.768kHz crystal, which is the most accurate clock in the system. This calibration is used when a ceramic oscillator is used in place of an AT-cut crystal for the 4MHz reference. The MAX35103 automatically generates START and STOP signals based upon edges of the 32.768kHz clock. The number of 32.768kHz clock periods that are used and then averaged are selected with the CAL_PERIOD[3:0] bits in the Calibration and Control register.

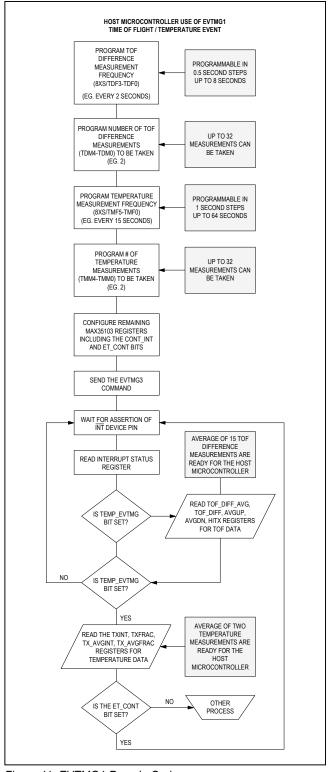


Figure 11. EVTMG1 Pseudo Code

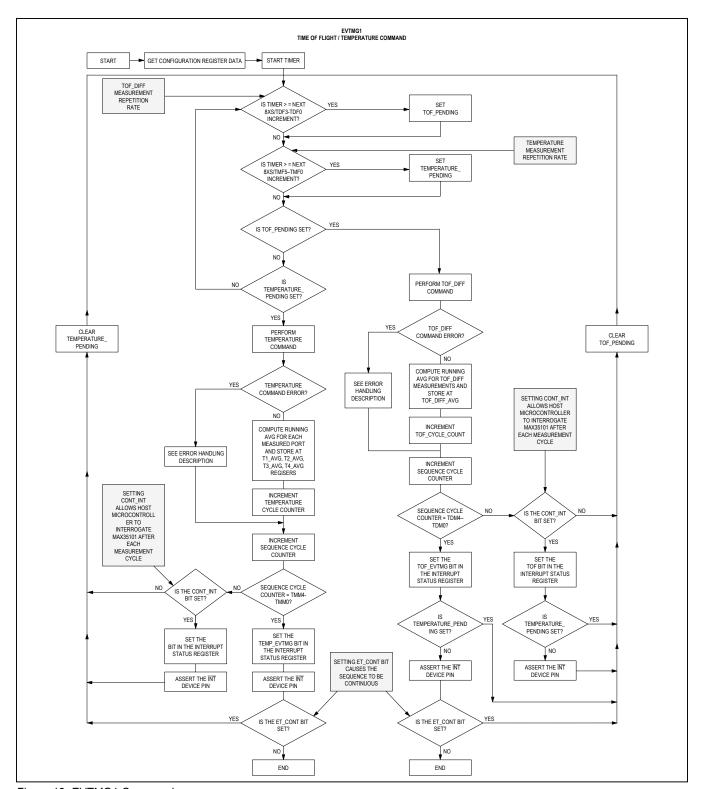


Figure 12. EVTMG1 Command

The TDC measures the number of 4MHz clock pulses that occur during the 32.768kHz pulses. The measured time of a 32.768kHz clock pulse is reported in the CalibrationInt and CalibrationFrac Results registers. These results can then be used as a gain factor for calculating actual time-to-digital converter measurement if the CAL_USE bit in the Event Timing 2 Register is set.

Following is a description of an example calibration. Each TDC measurement is a 15-bit fixed-point integer value concatenated with a 16-bit fractional value binary representation of the number of t_{4MHz} periods that contribute to the time result, the actual period of t_{4MHz} needs to be known. If the CAL PERIOD[3:0] bits in the Calibration and Control register are set to 6, then 6 measurements of 32.768kHz periods are measured by the TDC and then averaged. The expected measured value would be $30.5176\mu s/250ns = 122.0703125 t_{4MHz}$ periods. Assume that the 4MHz ceramic resonator is actually running at 4.02MHz. The TDC measurement unit would then measure $30.5176\mu s/248.7562ns = 122.6806641 t_{4MHz}$ periods and this result would be returned in the Calibration Results register. For all TDC measurements, a gain value of 122.0703125/122.6806641 = 0.995024876 would then be applied.

Calibration is performed at the following events:

- When the Calibration command is sent to the MAX35103. At the completion of this calibration, the CAL bit in the Interrupt Status register and the INT pin asserts (if enabled).
- During event timing operation, automatic calibrations can be performed before executing TOF or temperature measurements. This is selectable with the CAL_ CFG[2:0] bits in the Event Timing 2 register. Upon completion of an automatic calibration during event timing, the result is updated in the Calibration Results register, but the CAL bit in the Interrupt Status register is not set and the INT pin does not assert.

Error Handling During Calibration

Since calibration can be set to be automatic by configuring the CAL_CFG[2:0] bits in the Event Timing 2 register, any errors that occur during the Calibrate command stop the CalibrationInt and the CalibrationFrac Results registers from being updated with new calibration coefficients. The results for the previous Calibration data remain in these two registers and are used for scaling measured results. If the calibration error is caused by the internal calibration time measurement exceeding the time set by the TIMOUT[2:0] bits in the TOF2 register, then the TO

bit in the Interrupt Status register is set and the $\overline{\mathsf{INT}}$ pin asserts (if enabled).

RTC, Alarm, Watchdog, and Tamper Operation RTC Operation

The MAX35103 contains a real-time clock that is driven by a 32kHz oscillator. The time and calendar information is obtained by reading the appropriate register words. The time and calendar are set or initialized by writing the appropriate register words. The contents of the time and calendar registers are in the Binary-Coded Decimal (BCD) format. The clock/calendar provides hundredths of seconds, tenths of seconds, seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year valid up to 2100. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The MAX35103 real-time clock can be programmed for either 12-hour or 24-hour formats. If using the 24-hour format, Bit6 (12 HR MODE) of the Mins Hrs register should be cleared to 0 and then Bit5 represents the 20-hour indicator. If using the 12-hour format, Bit6 should be set to 1 and Bit5 represents AM (if 0) or PM (if 1). The day-of-week register increments at midnight. Values that correspond to the day of week are user defined but must be sequential (i.e., if 0 equals Sunday, then 1 equals Monday, and so on). Illogical time and date entries result in undefined operation.

Alarm Operation

The MAX35103 real-time clock provides one programmable alarm. The alarm is activated when either the AM1 or AM2 bits in the Real-Time Clock register are set. Based upon these bits, an alarm can occur when either the minutes and/or hours programmed in the Alarm register match the current value in the Mins_Hrs register. When an alarm occurs, the AF bit in the Interrupt Status register is set and the INT device pin asserts (if enabled).

For proper alarm function, programming of the ALARM register HOURS bits must match the format (12- or 24-hour modes) used in the Mins_Hrs register.

Watchdog Operation

The MAX35103 also contains a watchdog alarm. The Watchdog Alarm Counter register is a 16-bit BCD counter that is programmable in 10ms intervals from 0.01s to 99.99s. A seed value may be written to this register representing the start value for the countdown. The watchdog counter begins decrementing when the WD_EN bit in the RTC register is set.

An immediate read of Watchdog Alarm Counter register returns the value just written. A read after a wait duration causes a value seed minus wait to be returned. For example if the seed value was 28.01s, an immediate read returns 28.01. A read after a 4s returns 24.01s. The value read out for any read operation is a snapshot obtained at the instant of a serial read operation.

A write operation to the Watchdog Alarm Counter register causes a reload with the newly written seed.

When the watchdog is enabled and a nonzero value is written into the Watchdog Alarm Counter register, the Watchdog Alarm Counter register decrements every 1/100s, until it reaches zero. At this point, the WF bit in the Real-Time Clock register is set and the $\overline{\text{WDO}}$ pin asserts low for typically 250ms. At the end of the pulse, the $\overline{\text{WDO}}$ pin becomes high impedance.

The WF flag remains set until cleared by writing WF to a logic 0 in the Real-Time Clock register. If the WF bit is cleared while the \overline{WDO} device pin is being held low, the \overline{WDO} device pin is immediately released to its high-impedance state. Writing a seed value of 0 does not cause the WF bit to assert.

Tamper Detect Operation

The MAX35103 provides a single input that can be connected to a device case switch and used for tamper detection. Upon detection of a case switch event the CSWA in the Control register and the CSWI bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ device pin is asserted (if enabled).

Device Interrupt Operations

The MAX35103 is designed to optimize the power efficiency of a flow metering application by allowing the host microprocessor to remain in a low-power sleep mode, instead of requiring the microprocessor to keep track of complex real-time events being performed by the MAX35103. Upon completion of any command, the MAX35103 alerts the host microprocessor using the $\overline{\text{INT}}$ pin. The assertion of the $\overline{\text{INT}}$ pin can be used to awaken

the host microprocessor from its low power mode. Upon receiving an interrupt on the $\overline{\text{INT}}$ pin, the host microprocessor should read the Interrupt Status Register to determine which tasks were completed.

Interrupt Status Register

The interrupt status register contains flags for all for all commands and events that occur within the MAX35103. These flags are set when the event occurs or at the completion of the executing command. When the Interrupt Status Register is read, all asserted bits are cleared. If another interrupt source has generated an interrupt during the read, these new flags assert following the read.

INT Pin

The INT pin asserts when any of the bits in the Interrupt Status register are set. The INT pin remains asserted until the Interrupt Status register is read by the user and all bits in this register are clear. In order for the INT pin to operate, it must first be enabled by setting the INT_EN bit in the Calibration and Control register.

Serial Peripheral Interface Operation

Four pins are used for SPI-compatible communications: DOUT (serial-data out), DIN (serial-data in), $\overline{\text{CE}}$ (chip enable), and SCK (serial clock). DIN and DOUT are the serial data input and output pins for the devices, respectively. The $\overline{\text{CE}}$ input initiates and terminates a data transfer. SCK synchronizes data movement between the master (microcontroller) and the slave (MAX35103). The SCK, which is generated by the microcontroller, is active only when $\overline{\text{CE}}$ is low and during opcode and data transfer to any device on the SPI bus. The inactive clock polarity is logic-low. DIN is latched on the falling edge of SCK. There is one clock for each bit transferred. Opcode bits are transferred in groups of eight, MSB first. Data bits are transferred in groups of sixteen, MSB first.

The serial peripheral interface is used to access the features and memory of the MAX35103 using an opcode/command structure.

Opcode Commands

<u>Table 2</u> shows the opcode/commands that are supported by the device.

Table 2. Opcode Commands

GROUP	COMMAND	OPCODE FIELD (HEX)	ADDRESS FIELD
	TOF_Up	00h	N/A
	TOF_Down	01h	N/A
	TOF_Diff	02h	N/A
	Temperature	03h	N/A
	Reset	04h	N/A
	Initialize	05h	N/A
Execution Opcode	Transfer Configuration to FLASH	06h	N/A
Commands	EVTMG1	07h	N/A
	EVTMG2	08h	N/A
	EVTMG3	09h	N/A
	HALT	0Ah	N/A
	LDO_Timed	0Bh	N/A
	LDO_ON	0Ch	N/A
	LDO_OFF	0Dh	N/A
	Calibrate	0Eh	N/A
Register	Read Register	B0h thru FFh. Each hex value represents the location of a single 16-bit register	N/A
Opcode Commands	Write Register	30h thru 43h. Each hex value represents the location of a single 16-bit register	N/A
	Read FLASH	90h	0000h - 1FFFh 8 Kbytes Even Only
FLASH Opcode Commands	Write FLASH	10h	0000h - 1FFFh 8 Kbytes Even Only
	Block Erase FLASH	13h	0000h - 1FFFh

Execution Opcode Commands

The device supports several single byte opcode commands that cause the MAX35103 to execute various routines. All commands have the same SPI protocol sequence as shown in <u>Figure 13</u>. Once all 8 bits of the opcode are received by the MAX35103 and the $\overline{\text{CE}}$ device pin is deasserted, the MAX35103 begins execution of the specified command as described in that Command's description.

TOF_UP Command (00h)

The TOF_UP command generates a single TOF measurement in the upstream direction. Pulses launch from the LAUNCH_UP pin and are received by the STOP_UP pin. The measured hit results are reported in the HITxUPInt and HITxUPFrac registers, with the calculated average of all the measured hits being reported in the AVGUPInt and AVGUPFrac register. The t_1/t_2 and t_2/t ideal wave ratios are reported in the WVRUP register. Once all these results are stored, then the TOF bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ pin asserts (if enabled).

Note: The TOF_UP command yields a result that is only of use when used in conjunction with the TOF_DN command. Absolute TOF measurements include circuit delays and cannot be considered accurate.

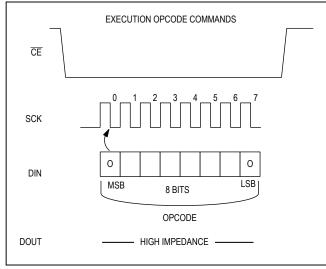


Figure 13. Execution Opcode Command Protocol

TOF_Down Command (01h)

The TOF_DOWN command generates a single TOF measurement in the downstream direction. Pulses launch from the LAUNCH_DN pin and are received by the STOP_DN pin. The measured hit results are reported in the HITxDnInt and HITxDnFrac registers, with the calculated average of all the measured hits being reported in the AVGDNInt and AVGDNFrac register. The t_1/t_2 and t_2/t_{ideal} wave ratios are reported in the WVRDN register. Once all these results are stored, then the TOF bit in the Interrupt Status register is set and the $\overline{\text{INT}}$ pin asserts (if enabled).

Note: The TOF_Down command yields a result that is only of use when used in conjunction with the TOF_UP command. Absolute TOF measurements include circuit delays and cannot be considered accurate.

TOF DIFF Command (02h)

The TOF_DIFF command performs back-to-back TOF_UP and TOF_DN measurements as required for a metering application. The TOF_UP sequence is followed by the TOF_DN sequence. The time between the start of the TOF_UP measurement and the start of the TOF_DN measurement is set by the TOF_CYC[2:0] bits in the TOF2 register. Upon completion of the TOF_DN measurement, the results of AVGUP minus AVGDN is computed and stored at the TOF_DIFFInt and TOF_DIFFFrac Results register locations. Once these results are stored, then the TOF bit in the Interrupt Status register is set and the INT pin asserts (if enabled).

Temperature Command (03h)

The temperature command initiates a temperature measurement sequence as described in the <u>Temperature Measurement Operations</u> section. The characteristics the temperature measurement sequence depends upon the settings in the Event Timing 1 register, and Event Timing 2 register. Once all the measurements are completed, the times measured for each port are reported in the corresponding TxInt and TxFrac Results registers. The <u>TE</u> bit in the Interrupt Status register also is set and the <u>INT</u> pin asserts (if enabled).

Reset Command (04h)

The reset command essentially performs the same function as a power-on reset (POR), and causes all of the Configuration registers to be set to their prior programmed values stored in flash and all of the Results registers and the Interrupt Status register to be cleared and set to zero.

Initialize Command (05h)

The initialize command must be executed after all configuration of the device is complete and the transfer configuration to flash command has been executed. The initialize command starts the time-to-digital converter so that TOF and temperature commands can be executed and also recalls all of the Configuration register settings from flash. The MAX35103 sets the INIT bit in the Interrupt Status register and asserts the INT device pin (if enabled) to tell the host microprocessor that the initialize command has completed and the next desired command can be sent to the MAX35103.

Transfer Configuration to Flash Command (06h)

This command causes the Configuration register map to be transferred to flash for nonvolatile (NV) storage. The MAX35103 automatically turns on the LDO for the duration of this transfer. Upon device reset, the content of this flash restores the Configuration registers. This flash is not part of the 8KB array, and is reserved solely for the transfer configuration to the flash command. The MAX35103 sets the flash bit in the Interrupt Status register and asserts the $\overline{\rm INT}$ device pin (if enabled) to tell the host microprocessor that the transfer configuration to the flash command has completed and the next command can be sent to the device.

EVTMG1 Command (07h)

The EVTMG1 command initiates the event timing mode 1 advanced automatic measurement feature. This timing mode performs automatic TOF_DIFF and Temperature measurements as described in the <u>Event Timing Operation</u> section. The duration of the automatic measurements depends upon the settings in the Event Timing 1 register, Event Timing 2 register, CONT_INT and ET_CONT bits in the Calibration and Control register.

EVTMG2 Command (08h)

The EVTMG2 command initiates the event timing mode 2 advanced automatic measurement feature. This timing mode performs automatic TOF_DIFF measurements as described in the *Event Timing Operation* section. The duration of the automatic measurements depends upon the settings in the Event Timing 1 register, CONT_INT and ET_CONT bits in the Calibration and Control register.

EVTMG3 Command (09h)

The EVTMG3 command initiates the event timing mode 3 advanced automatic measurement feature. This timing mode performs automatic temperature measurements as described in the *Event Timing Operation* section. The duration of the automatic measurements depends upon the settings in the Event Timing 1 register, Event timing 2 register, CONT_INT and ET_CONT bits in the Calibration and Control register.

HALT Command (0Ah)

The HALT command is sent to the MAX35103 to stop any of the three EVTMG1/2/3 commands. All register data content is frozen and the SPI is then made available for access by the host microcontroller for commands, memory access, and register access. The HALT command takes time to execute. Since the EVTMGx commands are comprised of multiple TOF_DIFF and Temperature commands, the HALT command causes the MAX35103 to evaluate its own state and complete the currently executing TOF_DIFF or temperature command. Once the HALT command has completed, all registers update and the MAX35103 sets the halt bit in the Interrupt Status register and then asserts the INT device pin (if enabled). The host microprocessor reads the Interrupt Status register to determine the interrupt source.

LDO_Timed Command (0Bh)

To access the flash memory, the internal low-dropout voltage regulator that powers the flash circuitry must be enabled. By sending the LDO Timed command to the MAX35103 prior to the desired flash access command (read, write, block erase), the internal regulator is enabled and powers the flash circuitry. The LDO bit is set in the Interrupt Status register and the INT device pin asserts (if enabled) when the internal regulator has been turned on and is stable which takes approximately t_{STABLE}. The host microprocessor, upon detection of the asserted INT device pin, should read the Interrupt Status register LDO bit to determine that the internal regulator is stable and the flash is now ready to be accessed. The internal regulator remains enabled for a continuous period until the CE device pin is deasserted after any flash command (read, write, block erase). The LDO_Timed command is used in place of the LDO ON command when a data access to the flash is required in a short burst. This minimizes SPI access since the LDO OFF command is not required to be sent to the MAX35103 to turn off the internal regulator.

LDO_ON Command (0Ch)

To access the flash memory, the internal low-dropout voltage regulator that powers the flash circuitry must be enabled. By sending the LDO ON command to the MAX35103 prior to the desired flash access command (read, write, block erase), the internal regulator is enabled and powers the flash circuitry. The LDO bit is set in the Interrupt Status register and the INT device pin asserts (if enabled) when the internal regulator has been turned on and is stable which takes approximately tSTABLE. The host microprocessor, upon detection of the asserted INT device pin, should read the Interrupt Status register LDO bit to determine that the internal regulator is stable and the flash is now ready to be accessed. The internal regulator remains enabled for a continuous period until the LDO OFF command is received by the MAX35103. The LDO ON command is generally used when the host microprocessor needs to perform multiple-word writes to the MAX35103 since multiple-word writes require that the CE device pin be toggled after every word of data written. The LDO ON command prevents the LDO from automatically disabling itself after each transition of the CE device pin.

LDO_OFF Command (0Dh)

To access the flash memory, the internal low-dropout voltage regulator that powers the flash circuitry must be enabled. By sending the LDO_OFF command to the MAX35103, the internal regulator is disabled and the Interrupt Status register LDO bit is cleared. The INT device pin is not asserted. The LDO_OFF command is used in conjunction with the LDO_ON command.

Calibrate Command (0Eh)

The calibrate command performs the calibration routine as described in the calibration operation section. When the calibrate command has completed the measurement, the Calibration Results register contains the measured 32kHz period measuremnt value, the MAX35103 sets the calibration bit in the Interrupt Status register and then asserts the $\overline{\text{INT}}$ device pin (if enabled). The host microprocessor reads the Interrupt Status register to determine the interrupt source and then read the Calibration Results register to be able to calculate the 4MHz ceramic oscillator gain factor.

Register Opcode Commands

To manipulate the register memory, there are two commands supported by the device: Read Register and Write register. Each register accessed with these commands is 16 bits in length. These commands are used to access all sections of the memory map including the RTC and Watchdog registers, Configuration registers, Conversion Results registers, and Status registers. The Conversion Results registers and the Interrupt Status register of the Status registers are all read only.

Read Register Command

The opcode must be clocked into the DIN device pin before the DOUT device pin produces the register data. The SPI protocol sequence is shown in Figure 14.

The read register command can also be used to read consecutive addresses. In this case, the data bits are continuously delivered in sequence starting with the MSB

of the data register that is addressed in the opcode, and continues with each SCK rising edge until the $\overline{\text{CE}}$ device pin is deasserted as shown in Figure 15. The address counter automatically increments.

Write Register Command

This command applies to all writable registers. See the <u>Register Memory Map</u> for more detail. The SPI protocol sequence is shown in Figure 16.

The write register command can also be used to write consecutive addresses. In this case, the data bits are continuously received on the DIN device pin and bound for the initial starting address register that is addressed in the opcode. The address counter automatically increments after each 16 bits of data if the SCK device pin is continually clocked and the $\overline{\text{CE}}$ device pin remain asserted as shown in Figure 17.

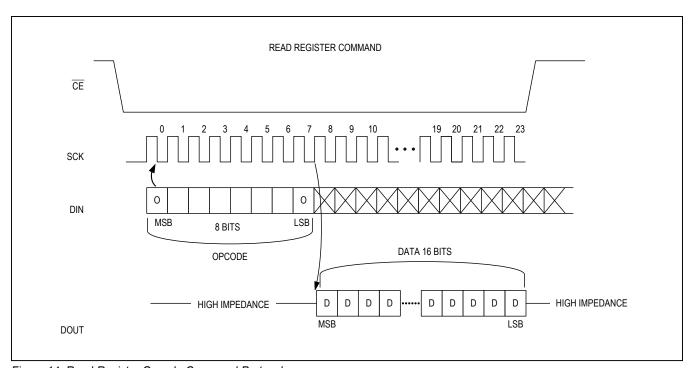


Figure 14. Read Register Opcode Command Protocol

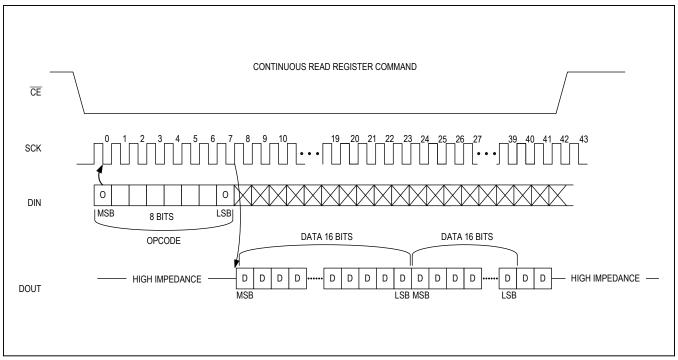


Figure 15. Continuous Read Register Opcode Command Protocol

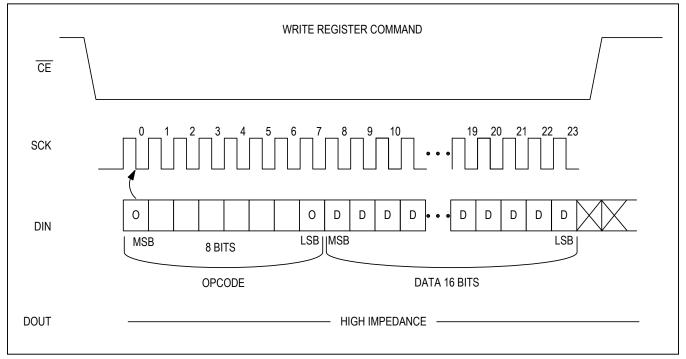


Figure 16. Write Register Opcode Command Protocol

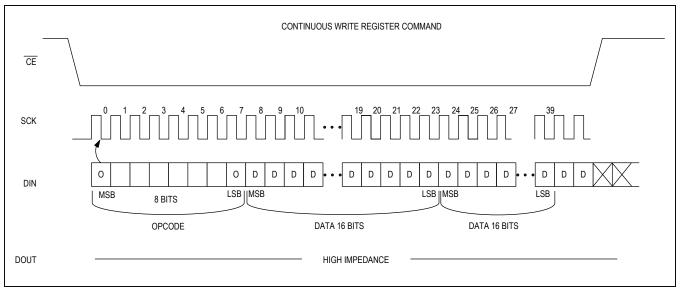


Figure 17. Continuous Write Register Opcode Command Protocol

Register Memory Map

These registers are accessed by the read register command and the Write Register command: "X" represents a reserved bit. Following a reset, all configuration variables are recalled from flash. The factory-stored flash default value for all configuration registers except TOF1 is 0000h.

The factory-stored flash configuration for TOF1 is 0010h. After a transfer to configuration to flash command, the new user configuration data is recalled from flash after a reset.

The RTC register, Results registers, Interrupt Status, and Control registers are all 0000h following a reset.

Table 3. Register Memory Map

																	İ	
READ OPCODE	WRITE	NAME				BITS[15:8]	15:8]							BITS[7:0]	[0: 2]			
RTC AND	RTC AND WATCHDOG REGISTERS	REGISTERS																
B0h	30h	Seconds	Tenth	Tenths of Seconds	spu		Hunc	Hundredth Seconds	spuoo			10 Seconds	spuo			Seconds	qs	
B1h	31h	Mins_Hrs	10	10-Minutes				Minutes			0	12hr	20hr/AM/PM		10hr	_	Hours	
B2h	32h	Day_Date				Day	<u>\</u>					10-Date	ate			Date		
B3h	33h	Month_ Year	-	10-Month				Month				10-Year	ear .			Year		
B4h	34h	Watchdog Alarm Counter	Tenth	Tenths of Seconds	spu		Hundre	Hundredths of Seconds	Seconds			10 Seconds	spuo			Seconds	ş	
B5h	35h	Alarm	10	10-Minutes				Minutes			0	12hr	20hr/AM/PM		10hr	Alar	Alarm Hours	
CONFIGUI These regit	CONFIGURATION REGISTERS These registers are restored from	CONFIGURATION REGISTERS These registers are restored from flash memory upor	ש hemory ug	on device	e reset. T	hese regi	sters are	written to	flash mer	nory upon	the issua	nce of the	n device reset. These registers are written to flash memory upon the issuance of the transfer configuration to flash command	onfigurati	on to flash	ı comman	j	
B6h	36h									Reserved	rved							
B7h	37h									Reserved	rved							
B8h	38h	TOF1	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	DPL3	DPL2	DPL1	DPL0	STOP_POL_	×	CT1	СТО
B9h	39h	TOF2	STOP 2	STOP 1	STOP 0	T2WV 5	4 4	3 3	T2WV 2	T2WV	T2WV0	TOF_ CYC2	TOF_ CYC1	TOF_ CYC0	P DN	TIM OUT2	TIM OUT1	MIT
BAh	3Ah	TOF3	×	×	Hit1 WV5	Hit1 WW4	Hit1 WV3	Hit1 WV2	Hit 1	Hit1 WV0	×	×	Hit2 WV5	Hit2 WV4	Hit2 WV3	Hit2 WV2	Hit2 WV1	Hit2 WV0
BBh	3Bh	TOF4	×	×	Hit3 WV5	Hit3 WV4	Hit3 WV3	Hit3 WV2	Hit3 WV1	Hit3 WV0	×	×	Hit4 WV5	Hit4 WV4	Hit4 WV3	Hit4 WV2	Hit4 WV1	Hit4 WV0
BCh	3Ch	TOF5	×	×	Hit5 WV5	Hit5 WV4	Hit5 WV3	Hit5 WV2	Hit5 WV1	Hit5 WV0	×	×	Hit6 WV5	Hit6 WV4	Hit6 WV3	Hit6 WV2	Hit6 WV1	Hit6 WV0
BDh	3Dh	TOF6	C_OF FSET RUP7	C_OF FSET RUP6	C_OF FSET RUP5	C_OF FSET RUP4	C_OF FSET RUP3	C_OF FSET RUP2	C_OF FSET RUP1	C_OF FSET RUP0	C_OF FSET UP7	C_OF FSET UP6	C_OF FSET UP5	C_OF FSET UP4	C_OF FSET UP3	C_OF FSET UP2	C_OF FSET UP1	C_OF FSET UP0
BEh	3Eh	T0F7	C_OF FSET RDN7	C_OF FSET RDN6	C_OF FSET RDN5	C_OF FSET RDN4	C_OF FSET RDN3	C_OF FSET RDN2	C_OF FSET RDN1	C_OF FSET RDN0	C_OF FSET DN7	C_OF FSET DN6	C_OF FSET DN5	C_OF FSET DN4	C_OF FSET DN3	C_OF FSET DN2	C_OF FSET DN1	C_OF FSET DN0
BFh	3Fh	Event Timing 1	TDF3	TDF2	TDF1	TDF0	TDM4	трмз	TDM2	TDM1	ТБМО	TMF5	TMF4	TMF3	TMF2	TMF1	ТМБО	8XS

Table 3. Register Memory Map (continued)

ľ																		
READ OPCODE	WRITE	NAME				BITS[15:8]	15:8]							BITS[7:0]	[0:2			
	40h	Event Timing 2	TMM4	TMM3	TMM2	TMM1	TMM0	Cal_ Use	Cal_ AUTO	Cal_ CFG1	Cal_ CFG0	TP1	TP0	PREC YC2	PREC YC1	PREC YC0	PORT CYC1	PORT CYC0
	41h	TOF Measure- ment Delay	DLY15	DLY14	LY13	DLY12	DLY11	DLY10	DLY9	DLY8	DLY7	DLY6	DLY5	DLY4	DLY3	DLY2	DLY1	DLY0
	42h	Calibration and Control	×	×	×	×	CMP EN	CMP_ SEL	Ā N	ET_	CONT	CLK_ S2	CLK_ S1	CLK_ S0	Cal_P eriod3	Cal_P eriod2	Cal_P eriod1	Cal_P eriod0
	43h	Real-Time Clock	×	×	×	×	×	×	×	×	×	32K BP	32K_	EOSC	AM2	AM1	WF	WD_ EN_
RS	ON RESULT	CONVERSION RESULTS REGISTERS	ွ					1										
	Read		WVRUP															
	Read		Hit1UpInt	#														
	Read		Hit1UpFrac	rac														
	Read		Hit2UpInt	¥														
İ	Read		Hit2UpFrac	rac														
	Read Only		Hit3UpInt	¥														
	Read Only		Hit3UpFrac	rac														
	Read		Hit4UpInt	<u> </u>														
	Read Only		Hit4UpFrac	rac														
	Read		Hit5UpInt	¥														
	Read Only		Hit5UpFrac	rac														
	Read Only		Hit6UpInt	± .														
1																		

Table 3. Register Memory Map (continued)

Only Read Only Only Read Only Only Only Conly Only Conly Only Only Only Only Only Only Only O

Table 3. Register Memory Map (continued)

BITS[7:0]																	
BITS[15:8]	AVGDNFrac	TOF_DIFFInt	TOF_DIFFFrac	TOF_Cycle_Count	TOF_DIFF_AVGInt	TOF_DIFF_AVGFrac	T1Int	T1Frac	T2Int	T2Frac	T3Int	T3Frac	T4Int	T4Frac	Temp_Cycle_Count	T1_AVGInt	T1_AVGFrac
NAME																	
WRITE	Read	Read Only	Read Only	Read	Read Only	Read	Read	Read Only	Read	Read	Read Only	Read Only	Read	Read Only	Read	Read	Read
READ OPCODE	E1h	E2h	E3h	E4h	E5h	E6h	E7h	E8h	E9h	EAh	EBh	ECh	EDh	EEh	EFh	F0h	F1h

Table 3. Register Memory Map (continued)

READ OPCODE	WRITE	NAME			BIT	BITS[15:8]							BITS[7:0]	.io]			
F2h	Read Only		T2_AVGInt	ıŧ													
F3h	Read Only		T2_AVGFrac	rac													
F4h	Read Only		T3_AVGInt	ıţ													
F5h	Read Only		T3_AVGFrac	rac													
F6h	Read Only		T4_AVGInt	+													
F7h	Read Only		T4_AVGFrac	rac													
F8h	Read Only		CalibrationInt	ılnt													
F9h	Read Only		CalibrationFrac	ıFrac													
FAh	Read		Reserved														
FBh	Read Only		Reserved														
FCh	Read Only		Reserved														
FDh	Read		Reserved														
STATUS R	STATUS REGISTERS																
FEh	Read Only	Interrupt Status	ОТ	AF X	TOF	Щ	ГРО	TOF_ EVTIMG	TEMP_ EVTMG	FLASH	CAL	HALT	CSWI	LINI	POR	×	×
FFh	Read Only	Control	×	×	×	×	×	AFA	CSWA	×	×	×	×	×	×	×	×

RTC and Watchdog Register Descriptions

Table 4. RTC Seconds Register

WR	RITE OPCODE 30h	R	EAD OPCODE B0h	FLA	SH STORED No		DEFAULT VAL 0000h	.UE		
			1 10		1 1	1				
Bit	15	14	13	12	11	10	9	8		
Name		Tenths of	of Seconds			Hundredths	of Seconds			
Bit	7	6	5	4	3	2	1	0		
Name	0		10 Seconds			Seco	onds			
BIT	NAM	ИЕ			DESCR	IPTION				
15:12	Tenths of	Seconds	Range 0 to 9							
11:8	Hundredths	of Seconds	Range 0 to 9							
7	0		This bit always	returns 0						
6:4	10 Se	cond	Range 0 to 5							
3:0	Seco	nds	Range 0 to 9							

Table 5. RTC Mins_Hrs Register

WR	ITE OPCODE 31h		READ OPCODE B1h	FLA	SH STORED No		DEFAULT VA 0000h	LUE
Bit	15	14	13	12	11	10	9	8
Name	0	•••	10 Minutes				nutes	
Bit	7	6	5	4	3	2	1	0
Name	0	12/24	20HR/AM/PM	10HR		Ho	ours	
BIT	NAME				DESCRIPT	ION		
15	0		This bit always return	ns 0				
14:12	10 Minut	es	Range 0 to 5					
11:8	Minute	s	Range 0 to 9					
7	0		This bit always return	ns 0				

Table 5. RTC Mins_Hrs Register (continued)

BIT	NAME	DESCRIPTION
6	12/24	1 = 12-hour mode 0 = 24-hour mode
5	20HR/AM/PM	In 12-hour mode 1 = PM 0 = AM In 24-hour mode: 20-hour digit
4	10HR	Range 0 to 1
3:0	Hours	Range 0 to 9

Table 6. RTC Day_Date Register

WR	ITE OPCODE 32h		READ OPCODE B2h	FLA	No No		DEFAULT VA 0000h	LUE		
								,		
Bit	15	14	13	12	11	10	9	8		
Name	0	0	0	0	0		Day			
Bit	7	6	5	4	3	2	1	0		
Name	0	0	10 D	ate			ate			
BIT	NAME		DESCRIPTION							
15:11	0	-	These bits always ret	urn 0			Date			
10:8	Day	F	Range 0 to 7							
7:6	0	-	These bits always ret	urn 0						
5:4	10 Date	F	Range 0 to 3							
3:0	Date	F	Range 0 to 9					Day		

Table 7. RTC Month_Year Register

WR	ITE OPCODE 33h		READ OPCODE B3h	FLA	FLASH STORED No		DEFAULT VALUE 0000h	
Bit	15	14	13	12	11 10		9	8
Name	0	0	0				Month	
Bit	7	6	5	4	3	2	1	0
Name			10 Year			Ye	ear	
BIT	NAME				DESCRIP	TION		
15:13	0		These bits always i	return 0				
12	10 Mon	th	Range 0 to 1					
11:8	Month		Range 0 to 9					
7:4	10 Yea	r	Range 0 to 9					
3:0	Year		Range 0 to 9					

Table 8. Watchdog Alarm Counter Register

WR	RITE OPCODE 34h	F	READ OPCODE FLASH STORED B4h No			DEFAULT VALUE 0000h		
Bit	15	14	13	12	11	10	9	8
Name		Tenths	of Seconds			Hundredths	of Seconds	
Bit	7 6 5 4				3	2	1	0
Name		10 \$	Seconds			Sec	onds	
BIT	NA	ME			DESCRI	PTION		
15:12	Tenths of	Seconds	Range 0 to 9					
11:8	Hundredths of Seconds Range 0 to 9							
7:4	10 Se	econd	Range 0 to 9	-				
3:0	Seco	onds	Range 0 to 9					

Table 9. Alarm Register

WR	RITE OPCODE 35h		READ OPCODE B5h		FLA	FLASH STORED No		DEFAULT VALUE 0000h		
Bit	15	14	 1	13 12 11 10					8	
Name	X 10			10 Minutes			Min	utes		
Bit	7 6			5	4	3	2	1	0	
Name	Х	12/2	24	20HR/AM/PM	10HR		Н	ours		
BIT	NAME					DESCRIPTI	ON			
15	Х		Re	served						
14:12	10 Minute	es	Ra	Range 0 to 5						
11:8	Minutes	3	Ra	nge 0 to 9						
7	Х		Re	served						
6	12/24			12-hour mode 24-hour mode						
5	20HR/AM/	/PM	1 = 0 =	12-hour mode PM AM 24-hour mode: 20-h	nour digit					
4	10HR		Ra	Range 0 to 1						
3:0	Hours									

Configuration Register Descriptions

Table 10. TOF1 Register

WRITE OPCODE 38h		RI	READ OPCODE B8h		FLASH STORED Yes		FACTORY-STORED FLASH VALUE 0010h		
Bit	15	14	13	12	11	10	9	8	
Name	PL7	PL6	PL5	PL4	PL4 PL3		PL1	PL0	
Bit	7	6	5	4	3	2	1	0	
Name	DPL3	DPL2	DPL1	DPL0	STOP_POL	Х	CT1	CT0	

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Table 10. TOF1 Register (continued)

BIT	NAME	DESCRIPTION							
15:8	PL[7:0]	Pulse Launcher Size : This is a hex value that defines the number of pulses that will be launched from the pulse launcher during transmission. The range of this hex value is 00h to FFh. When PL[7:0] is set to 00h, the Pulse Launcher is disabled. Up to 127 pulses can be launched. When PL7 is set, the pulse count is clamped at 127.							
		used to drive the Puls for the internal clock clock. The range of the 2MHz clock. A value	Pulse Launch Divider: This is a hex value that defines the divider ratio of the internal clock signal used to drive the Pulse Launch signal. The 4MHz external reference oscillator is used as the source for the internal clock reference. The internal reference clock is first divided by 2 to produce a 2MHz clock. The range of this hex value is 1h to Fh, resulting in a range of division from ÷2 to ÷16 of the 2MHz clock. A value of 0h is not supported and should not be programmed Pulse Launch Frequency = 2MHz/(1+DPL[3:0])						
7:4	DPL[3:0]		DPL[3:0]		PULSE LA	UNCH FREQUENCY			
	2[0.0]		0000b			RESERVED			
			0001b			1MHz			
			0002b			666kHz			
			1110b 1111b			133.33kHz 125kHz			
3	STOP_POL	signal received on the internal TDC time cou	e STOP_UP and Sount on the rising slouted to the standard	TOP_DN devi pe of this sigr ns will genera	ice pins will genera nal if this bit is set t te a stop condition	STOP_DN channel. The te a stop condition for the o 0. The signal received on for the internal TDC time			
2	X	Reserved							
		_		_	-	s network on the STOP pins is based upon the 32.768			
		DESCRIPTION							
1:0	CT[1:0]	CT1	CT2	OCK CYCLES ecimal)	TYPICAL TIME (µs)				
		0 0 2				61			
		0 1 1 1 0			4	122			
					8	244			
		1	1		16	488			

Table 11. TOF2 Register

WR	ITE OPCODE 39h		RE	AD OPCODE B9h	_	I STORED Yes	FACTORY	/-STORED FLA	ASH VALUE	
Bit	15	14	4	13	12	11	10	9	8	
Name	STOP2	STC		STOP0	T2WV5	T2WV4	T2WV3	T2WV2	T2WV1	
	I	1						T		
Bit	7 6		j	5	4	3	2	1	0	
Name	T2WV0 TOF_C		CYC2	TOF_CYC1	TOF_CYC0	X	TIMOUT2	TIMOUT1	TIMOUT0	
ВІТ	NAME					DESCRIPT	TION .			
DII	IVANIL		Ston	Hits: These hits	s set the number		o be expected an	nd measured		
			Otop	STOP2	STOP		STOP0		RIPTION	
			0		0		0	0 1 Hi		
				0	0 0 1		1	2	Hits	
15:13	CTODIA-	01	0		1		0	3	Hits	
15.13	310P[2.	STOP[2:0]		0	1		1	4	Hits	
				1	0		0	5	Hits	
				1	0		1	6 Hits		
			1		1		0	6	6 Hits	
				1	1		1	6	Hits	
			ensu	e measurement		rst wave mea	rave number for v surable after the			
				T2WV[5:	0] (decimal)		DESCRIPTION			
12:7	T2WV[5:	0]		0 thr	ough 2			Wave 2		
					3			Wave 3		
					4			Wave 4		
				5 thro	ough 63		Wave	5 through 63		

Table 11. TOF2 Register (continued)

		TOF measurements. It TOF_DN and is applicately crystal. If the actual TO	TOF Duty Cycle: These bits determine the time delay between successive executions of TOF measurements. It is the start-to-start time of automatic execution of the TOF_UP and the TOF_DN and is applicable only for the TOF_DIFF command. It is based upon the 32.768kHz crystal. If the actual TOF of the acoustic path exceeds the programmed start-to-start time in this setting, then the TOF duty cycle performs as if the bit setting is 000b.							
			DESCRIPTION							
0.4	TOE OVOID N	TOF_CYC[2:0]	32kHz CLOCK CYCLES (decimal)	TYPICAL TIME	4MHz ON BETWEEN TOF_ UP and TOF_DOWN					
6:4	TOF_CYC[2:0]	000b	0	0µs	Yes					
		001b	4	122µs	Yes					
		010b	8	244µs	Yes					
		011b	16	488µs	Yes					
		100b	24	732µs	Yes					
		101b	32	976µs	Yes					
		110b	546	16.65ms	No					
		111b	655	19.97ms	No					
3	X	Reserved								
		Timeout: These bits for	orce a timeout in the ti t ₂ or Hit1 through Hi							
		time, the TO bit in the Additionally, any of the invalid.	nterrupt Status registe Conversion Results r	er is set and the INT registers read FFFF	pin is asserted (if enabled). In if the data for that register is					
		time, the TO bit in the Additionally, any of the invalid.	nterrupt Status registe Conversion Results r	er is set and the INT egisters read FFFF TIMOUT0	pin is asserted (if enabled). In if the data for that register is DESCRIPTION (μs)					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2	nterrupt Status registr Conversion Results r TIMOUT1	er is set and the INT egisters read FFFH TIMOUT0	pin is asserted (if enabled). if the data for that register is DESCRIPTION (µs) 128					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2 0 0	nterrupt Status registr Conversion Results r TIMOUT1 0	er is set and the INT egisters read FFFH TIMOUTO 0 1	pin is asserted (if enabled). If the data for that register is DESCRIPTION (µs) 128 256					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2 0 0 0	TIMOUT1 0 0 1	er is set and the INT registers read FFFH TIMOUTO 0 1 0	pin is asserted (if enabled). DESCRIPTION (μs) 128 256 512					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2 0 0 0 0	TIMOUT1 0 0 1	er is set and the INT registers read FFFH TIMOUTO 0 1 0 1	DESCRIPTION (µs) 128 256 512 1024					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2 0 0 0 1	TIMOUT1 0 0 1 1 0	er is set and the INT registers read FFFH TIMOUTO 0 1 0 1 0	DESCRIPTION (µs) 128 256 512 1024 2048					
2:0	TIMOUT[2:0]	time, the TO bit in the Additionally, any of the invalid. TIMOUT2 0 0 0 0	TIMOUT1 0 0 1	er is set and the INT registers read FFFH TIMOUTO 0 1 0 1	DESCRIPTION (µs) 128 256 512 1024					

Table 12. TOF3 Register

WR	ITE OPCODE 3Ah		READ OPCODE BAh	FLAS	SH STORED Yes	FACTOR	Y-STORED FL 0000h	ASH VALUE	
Bit	15	14	13	12	11	10	9	8	
Name	Х	Х	HIT1WV5	HIT1WV4	HIT1WV3	HIT1WV2	HIT1WV1	HIT1WV0	
Bit	7	6	5	4	3	2	1	0	
Name	Х	Х	HIT2WV5	HIT2WV4	HIT2WV3	HIT2WV2	HIT2WV1	HIT2WV0	
BIT	NAME				DESCRIPT	ION			
15:14	Х		Reserved						
13:8	HIT1WV[5:		least 1 greater than the example, if the wave set to delect wave nuwave 3.						
	_			i:0] (decimal)		DE	SCRIPTION		
		-	0 through 3				Wave 3		
		-	4			Wave 4 Wave 5			
		-	-						
7:6	X		Reserved	ough 65		Wave 6 through 63			
-	Hit2 Wave Select: These bits select the wave number for which the Hit2 stop time is measured. Wave numbers are depicted in Figure 5. The Hit2 wave select value must least 1 greater than the Hit1 wave select value. For example, if Hit1 wave select value measure wave number 9, then the Hit2 wave select must be set to detect wave numb greater. The earliest wave for which Hit2 can be measured is Wave 4.						nust be at value is set to		
5:0	HIT2WV[5:	:0]	HIT2WV[5:0] (decimal) DESCRIPTION						
			0 through 4 Wave 4						
				5			Wave 5		
			6 Way			Wave 6	Vave 6		
			7 thr	ough 63		Wav	e 7 through 63	}	

Table 13. TOF4 Register

WR	RITE OPCODE 3Bh	F	EAD OPCODE BBh	FLAS	H STORED Yes	FACTOR	Y-STORED FL 0000h	ASH VALUE	
Bit	15	14	13	12	11	10	9	8	
Name	Х	Х	HIT3WV5	HIT3WV4	HIT3WV3	HIT3WV2	HIT3WV1	HIT3WV0	
Bit	7	6	5	4	3	2	1	0	
Name	Х	Х	HIT4WV5	HIT4WV4	HIT4WV3	HIT4WV2	HIT4WV1	HIT4WV0	
BIT 15:14	NAME X Reserved				DESCRIPT	ION			
13:8	HIT3WV[5	me lea set		nbers are depic ne Hit2 wave se number 10, the	ted in Figure 5. elect value. For en the Hit3 wave	The Hit3 wave example, if the e select must b be measured is	e select value n e Hit2 wave sel e set to detect	nust be at ect value is	
			0 011	6			Wave 6		
				7		Wave 7			
			8 through 63 Wave 8 through				e 8 through 63	 jh 63	
7:6	Х	Re	served		,				
	Hit4 Wave Select: These bits select the wave number measured. Wave numbers are depicted in Figure 5. The least 1 greater than the Hit3 wave select value. For exact to measure wave number 11, then the Hit4 wave set 12 or greater. The earliest wave for which Hit4 can be				The Hit4 wave example, if the eselect must b	e select value n e Hit3 wave sele e set to detect	nust be at ect value is		
5:0	HIT4WV[5:0] HIT4WV[5:0] (decimal) DESCRIPTION								
			0 thr	ough 6			Wave 6		
	7				Wave 7				
				8			Wave 8		
			9 thro	ough 63		Wav	e 9 through 63		

Table 14. TOF5 Register

WR	RITE OPCODE 3Ch		REA	AD OPCODE BCh	FLAS	H STORE Yes	D	FACTOR	Y-STORED FL 0000h	ASH VALUE
Bit	15	14	1	13	12	11		10	9	8
Name	Х	Х		HIT5WV5	HIT5WV4	HIT5W\	/3	HIT5WV2	HIT5WV1	HIT5WV0
Bit	7	6		5	4	3		2	1	0
Name	X X			HIT6WV5	HIT6WV4	HIT6W\	/3	HIT6WV2	HIT6WV1	HIT6WV0
BIT	NAME					DESCR	RIPTI	ON		
15:14	X		Rese	rved		-				
			meas least set to	Nave Select: Thured. Wave num 1 greater than the measure wave greater. The ear	nbers are depic ne Hit4 wave se number 12, the	ted in Figu elect value. en the Hit5	re 5. For wave	The Hit5 wave example, if the select must b	select value n Hit4 wave sele e set to detect	nust be at ect value is
13:8	HIT5WV[5	5:0]	HIT5WV[5:0] (decimal)				DE	SCRIPTION		
			0 through 7						Wave 7	
			8					Wave 8		
				40.0	9		Wave 9			
7:6	X		D					e 10 through 63		
			meas 1 grea meas	Nave Select: Thured. Wave numater than the Hiture wave number. The earliest v	nbers are depic 5 wave select v er 13, then the	ted in Figu alue. For e Hit6 wave	re 5. exam selec	Hit6 wave sele ple, if Hit5 wav at must be set t	ect value must re select value o detect wave	at least is set to
5:0	HIT6WV[5:0] HIT6WV[5:0] (decimal) DESCRIPTION									
	0 thr				ough 8				Wave 8	
					9				Wave 9	
					10				Wave 10	
				11 thr	ough 63			Wave	e 11 through 63	3

Table 15. TOF6 Register

WF	RITE OPCODE 3Dh		REA	AD OPCODE BDh	FLAS	H STORED Yes	FACTOR	FACTORY-STORED FLASH VALUE 0000h		
Bit	15	1	4	13	12	11	10	9	8	
Name	C_OFFSET UPR7	C_OF	-	C_OFFSET UPR5	C_OFFSET UPR4	C_OFFSET UPR3	C_OFFSET UPR2	C_OFFSET UPR1	C_OFFSET UPR0	
Bit	7		 3	5	4	3	2	1	0	
Name	X C_OFF			C_OFFSET UP5	C_OFFSET UP4	C_OFFSET UP3	C_OFFSET UP2	C_OFFSET UP1	C_OFFSET UP0	
BIT	NAME			DESCRIPTION						
15:8	C_OFFSET [7:0]	UPR	prografter to scale: return	7Fh thr	comparator offs 1, is detected. The present at the setting, where Compared to the compared t	et is returned to The actual offse VCC pins. The OFFSETUPR	o a common-mont return voltage of following form is a two's-complet 152+C_OFFS 3072	ode voltage aut is dependent i ula defines the olement numbe	tomatically upon and comparator	
7	Х		Rese		-				,	

Table 15. TOF6 Register (continued)

BIT	NAME	DESCF	RIPTION	
6:0	C_OFFSETUP [6:0]	the zero crossing of the received acoustic wave When the STOP_POL bit in the TOF1 register i the zero crossing of the received acoustic wave The following formulas define the comparator of	t-end. This comparator offset is used to detect ode voltage is dependent upon and scales with a set to zero indicating a rising edge detection of a, then the comparator offset is a positive value. Set to one indicating a falling edge detection of a, then the comparator offset is a negative value. If set voltage setting $Voltage = V_{CC} \times \frac{(1152 + C_{OFFSETUP})}{3072}$	
		C_OFFSETUP[6:0]	OFFSET (LSBs)	
	00h through 7Fh 0 through 127			

Table 16. TOF7 Register

WRITE OPCODE READ OPCODE 3Eh BEh			FLAS	SH STORED Yes	FACTOR	FACTORY-STORED FLASH VALUE 0000h		
Bit	15	14	13	12	11	10	9	8
Name	C_OFFSET DNR7	C_OFFSET DNR6	C_OFFSET DNR5	C_OFFSET DNR4	C_OFFSET DNR3	C_OFFSET DNR2	C_OFFSET DNR1	C_OFFSET DNR0
Bit	7	6	5	4	3	2	1	0
Name	х	C_OFFSET DN6	C_OFFSET DN5	C_OFFSET DN4	C_OFFSET DN3	C_OFFSET DN2	C_OFFSET DN1	C_OFFSET DN0
								1

Table 16. TOF7 Register (continued)

BIT	NAME	DESCF	RIPTION				
15:8	C_OFFSETDNR [7:0]	Comparator Return Offset Downstream: When the MAX35103 is measuring the t_2 wave, the programmed receive comparator offset is returned to a common-mode voltage automatically after the early edge, t_1 , is detected. The actual offset return voltage is dependent upon and scales with the voltage present at the V _{CC} pins. The following formula defines the comparator return offset voltage setting, where C_OFFSETDNR is a two's-complement number: Comparator Return Offset Voltage = $V_{CC} \times \frac{(1152+C_OFFSETDNR)}{3072}$ where 1 LSB = $\frac{V_{CC}}{3072}$					
		C_OFFSETDNR[7:0]	OFFSET (LSBs)				
		7Fh through 01h	127 through 1				
		00h	0				
		80h through FFh	-128 through -1				
7	X	Reserved					
6:0	C_OFFSETDN [6:0]	with the voltage present at the V_{CC} pins. When the STOP_POL bit in the TOF1 register is the zero crossing of the received acoustic wave	or front-end. This comparator offset is used to mon-mode voltage is dependent upon and scales as set to zero indicating a rising edge detection of then the comparator offset is a positive value. So set to one indicating a falling edge detection of then the comparator offset is a negative value. If set voltage setting:				
		STOP_POL = 1 Comparator Offset where 1 LSB = $\frac{V_{CC}}{3072}$ C_OFFSETDN[6:0]					

Table 17. Event Timing 1 Register

WR	RITE OPCODE 3Fh	REA	AD OPCODE BFh	FLAS	FLASH STORED Yes		FACTORY-STORED FLASH VAL		
Bit	15	14	13	12	11	10	9	8	
Name	TDF3	TDF2	TDF1	TDF0	TDM4	TDM3	TDM2	TDM1	
	T		T						
Bit	7	6	5	4	3	2	1	0	
lame	TDM0	TMF5	TMF4	TMF3	TMF2	TMF1	TMF0	8XS	
BIT	NAME				DESCRIPTION				
		TOF_DIFF i	ence Measurements a + (TDF[3:0] x 0.9	re executed w					
			TDF[3:0] (d	decimal)	F	RATE (8XS = 0)	RATE	(8XS = 1)	
15:12	TDF[3:0]		0			0.5s	0.	0625s	
			1			1.0s	0.	1250s	
					7		9476s		
			14			7.5s	0.	0 17 00	
			15 ence Measureme	ents: These bi		8.0s	1.	0000s	
			15 ence Measurement of when the EVTM	ents: These bi		8.0s nber of TOF_DIF executed.	1.	0000s	
11:7	TDMI4:01	be executed	15 ence Measurement when the EVTM TDM[4:0]	ents: These bi		8.0s nber of TOF_DIF executed.	1. FF measurem	0000s	
11:7	TDM[4:0]	be executed	15 ence Measurement when the EVTM TDM[4:0]	ents: These bi		8.0s nber of TOF_DIF executed.	1. FF measurem	0000s	
11:7	TDM[4:0]	be executed	ance Measurement when the EVTM TDM[4:0] TDM[4:0] (0	ents: These bi		8.0s nber of TOF_DIF executed.	1. FF measurem	0000s	
11:7	TDM[4:0]	be executed	ance Measurement when the EVTM TDM[4:0] TDM[4:0] (0	ents: These bi		8.0s nber of TOF_DIF executed.	1. FF measurem	0000s	
11:7	TDM[4:0]	be executed	ance Measurement when the EVTM TDM[4:0] TDM[4:0] (0	ents: These bi		8.0s nber of TOF_DIF executed.	1. FF measurem	0000s	
11:7	TDM[4:0]	Temperature measureme	ence Measurement when the EVTM TDM[4:0] TDM[4:0] 0 1	ents: These bi //G1 or EVTMO decimal) t Frequency: / ments. It is a stecuted when the	Along with 8XS bart-cycle to start-	8.0s nber of TOF_DIF executed. Continue the time-cycle time durate	The delay betwion at which to	een emperature	
		Temperature measureme	ance Measurement when the EVTM TDM[4:0] TDM[4:0] 0 1 30 31 Te Measurement e cycle measurement cycles are executed when the EVTM TDM[4:0] (or product the cycle are executed to the cycles are executed the cycles are executed to the c	ents: These bi MG1 or EVTMO decimal) t Frequency: / ments. It is a st ecuted when th 0s)	Along with 8XS bart-cycle to start-	8.0s nber of TOF_DIF executed. Continue the time-cycle time durate	Tree measurements EYCLES 1 2 31 32 ne delay between the distriction at which the distriction at the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction at which the distriction a	een emperature	
6:1	TDM[4:0]	Temperature measureme	ance Measurement when the EVTM TDM[4:0] CO TDM[4:0] (CO T	ents: These bi MG1 or EVTMO decimal) t Frequency: / ments. It is a st ecuted when th 0s)	Along with 8XS bart-cycle to start-	8.0s nber of TOF_DIF executed. Continue the time durate the durate the time durate the time durate the time durate the time	The delay between the dis executed RATE	een emperatured.	
		Temperature measureme	ance Measurement when the EVTM TDM[4:0] TDM[4:0] TDM[4:0] (0 0 1 30 31 Te Measurement exclement cycles are exert to the cycles are exert + (TMF[3:0] x 1.	ents: These bi MG1 or EVTMO decimal) t Frequency: / ments. It is a st ecuted when th 0s)	Along with 8XS bart-cycle to start-	8.0s nber of TOF_DIF executed. Consists define the time-cycle time durate the durate the second se	The second of th	een emperatured.	
		Temperature measureme	ance Measurement when the EVTM TDM[4:0] CO TDM[4:0] (co T	ents: These bi //G1 or EVTMO decimal) t Frequency: / ments. It is a st ecuted when th 0s) decimal)	Along with 8XS bart-cycle to start-	8.0s nber of TOF_DIF executed. Continue the time durate the	The second of th	een emperatured. (8XS = 1)	
		Temperature measureme	ance Measurement when the EVTM TDM[4:0] TDM[4:0] 0 1 30 31 Te Measurement explained explaine	ents: These bi MG1 or EVTMO decimal) t Frequency: A ments. It is a st ecuted when th 0s) decimal)	Along with 8XS bart-cycle to start-	8.0s hber of TOF_DIF executed. Consists define the time-cycle time durate VTMG3 comman RATE (8XS = 0) 1s 2s	The second of th	een emperatured. (8XS = 1) .125s	

Table 18. Event Timing 2 Register

Wi	RITE OPCODE 40h	RE	AD OPCODE C0h	FLAS	SH STORED Yes	FACTOR	RY-STORED FL 0000h	ASH VALUE	
Bit	15	14	13	12	11	10	9	8	
Name	TMM4	TMM3	TMM2	TMM1	TMM0	CAL_USE	CAL_CFG2	CAL_CFG1	
Bit	7	6	5	4	3	2	1	0	
Name	CAL_CFG0	TP1	TP0	PRECYC2	PRECYC1	PRECYC0	PORTCYC1	PORTCYC0	
BIT	NAME				DESCRIPTIO				
		be execu	ature Measurem uted when the EN 1+ TMM[4:0]				ature measurer	nent cycles to	
			TMM[4:0]	(decimal)			CYCLES		
15:11	TMM[4:0]			0			1		
				1			2		
				30 			31 32		
10	CAL_USE	Calibrati of data v	ion Usage: This onlnt and Calibra while executing the factors as des	ationFrac registence EVTMG com	ers during meas mands. All time	urement, avera measurements	ging and accur	mulation	
			ion Configuration com		•	in the EVTMGx	cycle/sequenc	e where the	
						DESCRIPTIO	N		
		C	AL_CFG[2:0]	DURING	EVTMGX SEC THE CALIBR	QUENCES, AUT			
		000	b through 011b	Autocalibra	ation disabled				
9:7	CAL_CFG[2:0]		100b		ning of each TC ning of each ter	_ ,	1		
		The beginning of each TOF_DIFF cycle The beginning of each temperature sequence					ence		
			110b		ning of each TC ning of each ter				
			111b		ning of each TC ning of each ter				

Table 18. Event Timing 2 Register (continued)

BIT	NAME				DESCRI	PTION			
					et the number of te ence and the sequ				
_		TP1	TP0			DESCRIP	TION		
6:5	TP[1:0]	0	0	Mea	asure ports T1 and	1 T3			
		0	1	Mea	asure ports T2 and	1 T4			
		1	0	Mea	asure ports T1, T3	, and T2			
		1	1 1 Measure ports T1, T3, T2, and T4						
		preamble for i	reducing die	electric a	These 3 bits are us bsorption of the te surement sequence	emperature meas	surement	t capacitor. Each cycle	
		PRECY	/C2	P	PRECYC1	PRECYC	0	DESCRIPTION	
		0			0	0		0 dummy cycle	
		0			0	1		1 dummy cycles	
4:2	PRECYC[2:0]	0			1	0		2 dummy cycles	
		0			1	1		3 dummy cycles	
		1		0		0		4 dummy cycles	
		1		0		1		5 dummy cycles	
		1			1	0		6 dummy cycles	
		1			1	1		7 dummy cycles	
		temperature p	ort measur	ements.	define the time in It is a start-to-star urement ports. Se	t time. These bit	s also de		
1:0	PORTCYC[1:0]	РО	RTCYC1		PORT	CYC0	D	ESCRIPTION (µs)	
			0		0			128	
			0		1			256	
			1		0)		384	
			1		1			512	

Table 19. TOF Measurement Delay Register

WF	WRITE OPCODE		READ OPCODE		FLASH STORED		FACTORY-STORED FLASH VALUE		
	41h		C1h		Yes		0000h		
Bit	15	14	13	12	11	10	9	8	
Name	DLY15	DLY14	DLY13	DLY12	DLY11	DLY10	DLY9	DLY8	
Bit	7	6	5	4	3	2	1	0	
Name	DLY7	DLY6	DLY5	DLY4	DLY3	DLY2	DLY1	DLY0	
BIT	NAME				DESCRIPTIO)N			
15:0	DLY[15:0]	4MHz of analog condition has exp	This is hexadecimal value ranging from 0000h to FFFFh (decimal 0 to 65535). It is a multiple 4MHz crystal period (250ns). Settings less than 0012h are reserved and should not be used analog comparator driven by the STOP_UP and STOP_DN device pins does not generate a condition until this delay, counted from the internally generated start pulse for the acoustic w has expired. This delay applies to early edge detect wave. Care must be taken to set the TIN bits in the TOF2 register so that a timeout interrupt does not occur before this delay expires.						

Table 20. Calibration and Control Register

WF	WRITE OPCODE 42h		EAD OPCODE C2h	FLA	FLASH STORED Yes		FACTORY-STORED FLASH VALUE 0000h		
Bit	15	14	13	12	11	10	9	8	
Name	Х	Х	Х	Х	CMP_EN	CMP_SEL	INT_EN	ET_CONT	
								•	
Bit	7	6	5	4	3	2	1	0	
Name	CONT_INT	CLK_S2	CLK_S1	CLK_S0	CAL_ PERIOD3	CAL_ PERIOD2	CAL_ PERIOD1	CAL_ PERIOD0	
				•					
BIT	NAME				DESCRIPTIO	N			
15:12	Х	Reserve	ed						
11	CMP_EN	1 = CMI	Comparator/UP_DN Output Enable: 1 = CMP_OUT/UP_DN output device pin is enabled. 0 = CMP_OUT/UP_DN output device pin is driven low.						

Table 20. Calibration and Control Register (continued)

BIT	NAME			DESCRIP	TION	
10	CMP_SEL	pin and is only us 1 = CMP_EN: Th 0 = UP_DN: The High Output: U	eed when CMP_E e output monitors output monitors t pstream measure	N = 1. the receiver front he launch direction ment (Launch_UF	e the output function of the C end comparator output. In of the pulse launcher. It to STOP_UP) DN to STOP_DN)	MP_OUT/UP_DN
9	INT_EN	Interrupt Enable the INT pin.	: This bit, when s	et, enables the ĪN	T pin. All interrupt sources a	re wire-ORed to
8	ET_CONT	command to control This bit, when cle The cur measur The cur measur The cur measur The cur	tinuously execute eared, causes: rently executing I ement cycles and rently executing I ements cycles.	until the HALT co EVTMG1 comman I/or one sequence EVTMG2 comman	en set, causes the currently emmand is received by the Mand to run one sequence of TC of temperature measurement of to run one sequence of TC d to run one sequence of terms.	AX35103. DF_DIFF nt. DF_DIFF
7	CONT_INT	assert the INT pin allows the host m hit data. When this bit is c	n (if enabled) afte dicroprocessor to leared, the currer	r every TOF_DIFF interrogate the cur	e currently executing EVTM for temperature measureme rrent event for accuracy of m MGx command interrupt ger	nt cycle. This easurements and
		_			rval that the MAX35103 wait	-
		0114 00	011/ 04	011/ 00	DESCRIPT	ION
		CLK_S2	CLK_S1	CLK_S0	32kHz CLOCK CYCLES	TYPICAL TIME
		0	0	0	16	488µs
	0114 070 07	0	0	1	48	1.46ms
6:4	CLK_S[2:0]	0	1	0	96	2.93ms
		0	1	1	128	3.9ms
		1	0	0	168	5.13ms
		1	0	1	4MHz oscillator on continue	ously
		1	1	0	4MHz oscillator on continue	ously
		1	1	1	4MHz oscillator on continue	ously

Table 20. Calibration and Control Register (continued)

BIT	NAME		DESCRIPTION				
		4MHz Ceramic Oscillator Calibration Period: These bits define the number of 32.768kHz oscillator periods to measure for determination of the 4MHz ceramic oscillator period. 32kHz clock cycles = 1+ CAL_PERIOD[3:0]					
			DESCR	PTION			
3:0	CAL PERIOD[3:0]	CAL_PERIOD[3:0] (decimal)	32kHz CLOCK CYCLES (decimal)	32kHz CLOCK CYCLES (µs)			
0.0	o/ i=_: _: i == [o.o]	0	1	30.5			
		1	2	61			
		14	15	457.7			
		15	16	488.0			

Table 21. Real-Time Clock Register

WR	WRITE OPCODE 43h		READ OPCODE C3h		FLASH-STORED Yes		FACTORY-STORED FLASH VALU 0000h			
Bit	15	14	13	12	11	10	9	8		
Name	X	Х	Х	Х	Х	Х	Х	Х		
Bit	7	6	5	4	3	2	1	0		
Name	Х	32K_BP	32K_EN	EOSC	AM1	AM0	WF	WD_EN		
							•	'		
BIT	NAME				DESCRIPTIO	N				
15:7	Х	Reserved								
6	32K_BP	to the 32	2kHz Bypass: This bit, when set, allows an external CMOS-level 32.768kHz signal to be applied to the 32KX1 device pin. The internal 32.768kHz oscillator is bypassed and the external signal is riven into the MAX35103 core.							
5	32K_EN		2kHz Clock Output Enable: This bit enables the 32KOUT device pin to drive a CMOS-level quare wave representation of the 32kHz crystal.							
4	EOSC		Enable Oscillator: This active-low bit when set to logic 0 starts the real-time clock oscillator. When his bit is set to logic 1, the oscillator is stopped.							

Table 21. Real-Time Clock Register (continued)

BIT	NAME			DESCRIPTION				
		the AM1 or AM2 to the alarm setti INT device pin is	3 contains a time-of-day alarm. The alarm is activated when either then the RTC's hours or minutes value increments to a value equal egisters, the AF bit in the Interrupt Status register is set and the nabled) and remains asserted until the Interrupt Status register is or with a read register command.					
3:2	AM[1:0]	AM1	AM0	ALARM FUNCTION				
		0	0	No alarm				
		0	1	Alarm when minutes match				
		1	0	Alarm when hours match				
		1	1	Alarm when hours and minutes match				
1	WF	to a zero to clear	Watchdog Flag: This bit is set when the watchdog counter reaches zero. This bit must be written to a zero to clear the bit. Writing this bit to a zero when the WDO pin is asserted low releases the WDO pin to its inactive high-impedance state.					
0	WD_EN	Watchdog Enab 1 = Watchdog tin 0 = Watchdog tin	ner is enabled.	and the $\overline{\text{WDO}}$ pin is high impedance.				

Status Register Descriptions

Table 22. Interrupt Status Register

WRITE OPCODE READ Read Only			AD OPCODE FEh			H STORED No		DEFAULT VALUE 0000h	
Bit	15	14	13	12	11	10	9	8	
Name	то	AF	х	TOF	TE	LDO	TOF_ EVTMG	TEMP_ EVTMG	
Bit	7	6	5	4	3	2	1	0	
Name	FLASH	CAL	HALT	CSWI	INIT	POR	Х	Х	

Note: This register is read only and bits are self-clearing upon a read to this register. See the *Device Interrupt Operations* section for more information.

BIT	NAME	DESCRIPTION
15	ТО	Timeout: The TO bit is set if any one of the t ₁ , t ₂ , Hit1 through Hit6, or temperature measurements do not occur within the associated timeout window.
14	AF	Alarm Flag: Set when the RTC's hours or minutes value increments to a value equal to the alarm settings in Alarm registers.
13	Х	Reserved

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Table 22. Interrupt Status Register (continued)

BIT	NAME	DESCRIPTION
12	TOF	Time of Flight: Set when the TOF_UP, TOF_DN, or TOF_DIFF command has completed. During execution of The EVTMG1 or EVTMG2 command, this bit is set and the INT pin asserts (if enabled) upon completion of each of the cycles of the event defined by the TOF difference measurements setting if the CONT_INT bit in the Calibration and Control register has been set.
11	TE	Temperature: Set when the temperature command has completed. During execution of The EVTMG1 or EVTMG3 command, this bit is set and the $\overline{\text{INT}}$ pin asserts (if enabled) upon completion of each of the cycles of the event defined by the temperature measurements setting if the CONT_INT bit in the Calibration and Control register has been set.
10	LDO	Internal LDO Stabilized: Set when the internal low-dropout regulator is turned on by either the LDO_Timed or LDO_ON and has stabilized. Once asserted, a flash command can be sent to the MAX35103.
9	TOF_EVTMG	Event Timing TOF Completed: Set when either the EVTMG1 or EVTMG2 commands have completed its last TOF_DIFF measurement cycle. This indicates that the data in the TOF_DIFF, TOF_DIFF_AVG, AVGUP, and AVGDN Results registers is valid.
8	TEMP_EVTMG	Event Timing Temperature Completed: Set when the EVTMG1 or EVTMG3 commands have completed its last temperature measurements. This indicates that the data in the T1, T2, T3, T4, T1_AVG, T2AVG, T3AVG, and T4_AVG Results registers is valid.
7	FLASH	Flash Ready: Set when the flash memory is ready to be accessed. During execution of any command that requires write access to the flash memory (write flash, transfer configuration to flash, block erase, initialize), the SPI port is inactive and should not be exercised. The host microprocessor is interrupted by the assertion of the $\overline{\text{INT}}$ pin (if enabled) once the command has been completed and the SPI of the MAX35103 is available for access.
6	CAL	Calibrate: Set after completion of the Calibrate command when the command is manually sent by the host microprocessor. When calibration occurs as a result of the setting of the Cal_Use, Cal_AUTO and Cal_CFGx bits in the Event Timing 2 register and the MAX35103 is automatically executing calibration commands as required during execution of any of the EVTMGx commands, this bit is not set.
5	HALT	HALT: Set when the HALT command has completed.
4	CSWI	Case Switch: Set when a high logic level is detected on the CSW device pin.
3	INIT	Initialize: Set when the Initialize command has completed.
2	POR	Power-On-Reset: Set when the MAX35103 has been successfully powered by application of V _{CC} . Upon application of power, the SPI port becomes inactive until this bit has been set.
1:0	X	Reserved

Table 23. Control Register

WRITE OPCODE FFh		REA	READ OPCODE 7Fh		FLASH STORED No		DEFAULT VALUE 0000h	
Bit	15	14	13	12	11	10	9	8
Name	Х	Х	Х	Х	Х	Х	AFA	CSWA
Bit	7	6	5	4	3	2	1	0
Name	X	X	X	X	X	X	X	X
				<u></u>			<u> </u>	<u> </u>
BIT	NAME				DESCRIPTION	N		
15:10	Х	Reserve	d					
9	AFA	settings i register.	n the RTC regis	iter. This bit is s ne RTC alarm s	ne RTC's hours a set at the same to settings, a 0 mus o.	ime as the AF	bit in the Interr	upt Status
8	CSWA	MAX3510 the Interr detection	03 has detected upt Status regis	l a tamper cond ster. Once set, t ch detection mu	the CSW pin de lition. This bit is his bit must be v ust be rearmed b	set at the sam vritten to a 0 t	ne time as the Coordinate or the case	SWI bit in se switch
7:0	X	Reserved	Reserved					

Conversion Results Register Descriptions

The devices conversion results registers are all read-only volatile SRAM. Values are not stored in the flash memory and the POR value for all registers is 0000h.

Table 24. Conversion Results Registers Description

READ ONLY ADDRESS	NAME		DESCRIPTION							
		Bit 15 through Bit 8 holds the 8-bit value of the pulse width ratio $(t_1 \div t_2)$.for the upstream measurement. Each bit is weighted as follows:								
		BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	
		1	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	
C4h	WVRUP		period of th					where t _{ide} al is asurement. Ea		
		BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
		1	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	
		The maxir	num value o	of each of th	ese ratios is	1.9921875		•		
C5h	Hit1UPInt	a binary re	epresentatio	n of the nur	mber of t _{4Mh}		at contribute	This integer p to the time re		
C6h	Hit1UPFrac	representa	16-bit fractional value of the first hit in the upstream direction. This fractional portion is a binary representation of one $t_{\rm 4MHz}$ period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16}$ x $t_{\rm 4MHz}$.							
C7h	Hit2UPInt	is a binary	15-bit fixed-point integer value of the second hit in the upstream direction. This integer portion is a binary representation of the number of t_{AMHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2^{15} - 1) x t_{AMHz} .							
C8h	Hit2UPFrac	binary rep	resentation		_{Iz} period qua	-		fractional portion. The maxi		
C9h	Hit3UPInt	a binary re	15-bit fixed-point integer value of the third hit in the upstream direction. This integer portion is a binary representation of the number of t_{AMHZ} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2^{15} - 1) x t_{AMHZ} .							
CAh	Hit3UPFrac	representa	16-bit fractional value of the third hit in the upstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.							
CBh	Hit4UPInt	a binary re	15-bit fixed-point integer value of the fourth hit in the upstream direction. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4MHz}$.							
CCh	Hit4UPFrac	16-bit fractional value of the fourth hit in the upstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.								

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME				DES	CRIPTION			
CDh	Hit5UPInt	a binary re	15-bit fixed-point integer value of the fifth hit in the upstream direction. This integer portion is a binary representation of the number of t _{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x t _{4MHz} .						
CEh	Hit5UPFrac	16-bit fractional value of the fifth hit in the upstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16}$ x t_{4MHz} .							
CFh	Hit6UPInt	a binary re	epresentation	on of the nur		z periods tha		. This integer to the time re	
D0Fh	Hit6UPFrac	representa	16-bit fractional value of the sixth hit in the upstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.						
D1h	AVGUPInt	integer po	rtion is a bii	nary represe	-	e number of	t _{4MHz} period	e upstream d ds that contrib	
D2h	AVGUPFrac	16-bit fractional value of the average of the hits recorded in the upstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.							
			_		t value of the	-	ratio (t ₁ /t ₂).	for the downs	tream
	WVRDN	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
		1	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125
D3h			of the pulse					nere t _{ideal} is e ment. Each bi	
		BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
		1	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125
		The maxir	num value	of each of th	ese ratios is	1.9921875.			
D4h	Hit1DNInt	a binary re	15-bit fixed-point integer value of the first hit in the downstream direction. This integer portion is a binary representation of the number of t _{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x t _{4MHz} .						
D5h	Hit1DNFrac	binary rep	16-bit fractional value of the first hit in the downstream direction. This fractional portion is a binary representation of one $t_{\rm 4MHz}$ period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16}$ x $t_{\rm 4MHz}$.						
D6h	Hit2DNInt	is a binary	representa	ition of the n		_{IHz} periods t		ection. This in te to the time	

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME	DESCRIPTION
D7h	Hit2DNFrac	16-bit fractional value of the second hit in the downstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
D8h	Hit3DNInt	15-bit fixed-point integer value of the third hit in the downstream direction. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4MHz}$.
D9h	Hit3DNFrac	16-bit fractional value of the third hit in the downstream direction. This fractional portion is a binary representation of one t_{AMHZ} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{AMHZ}$.
DAh	Hit4DNInt	15-bit fixed-point integer value of the fourth hit in the downstream direction. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4MHz}$.
DBh	Hit4DNFrac	16-bit fractional value of the fourth hit in the downstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
DCh	Hit5DNInt	15-bit fixed-point integer value of the fifth hit in the downstream direction. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4M}H_z$.
DDh	Hit5DNFrac	16-bit fractional value of the fifth hit in the downstream direction. This fractional portion is a binary representation of one t_{AMHZ} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{AMHZ}$.
DEh	Hit6DNInt	15-bit fixed-point integer value of the sixth hit in the downstream direction This integer portion is a binary representation of the number of $t_{\rm 4MHz}$ periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x $t_{\rm 4MHz}$.
DFh	Hit6DNFrac	16-bit fractional value of the sixth hit in the downstream direction. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
E0h	AVGDNInt	15-bit fixed-point integer value of the average of the hit times recorded in the downstream direction. This integer portion is a binary representation of the number of $t_{\rm 4MHz}$ periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15}-1) \times t_{\rm 4MHz}$.
E1h	AVGDNFrac	16-bit fractional value of the average of the hit times recorded in the downstream direction. This fractional portion is a binary representation of one period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME		DESCRIPTION						
E2h	TOF_DIFFInt	recorded in This integer	16-bit fixed-point two's-complement integer portion of the difference of the averages for the hits recorded in both the upstream and downstream directions. It is computed as: AVGUP – AVGDN This integer represents the number of t _{4MHz} periods that contribute to computation. The maximum size of the integer is 7FFFh or (2 ¹⁵ – 1) x t _{4MHz} . The minimum size of this integer is 8000h or -2 ¹⁵ x t _{4MHz} .						
E3h	TOF_ DIFFFrac	recorded ir representa	both the up	stream and	downstream quantized to	difference of directions. TI a 16-bit reso	nis fractional	portion is a	binary
		integer that during exe TOF_Rang	t indicates the cution of eith	ne range of volumer of the EV times the	alid error-free TMG1 or EV	OF_Range. ⁻ e TOF_DIFF TMG2 comm launch perio	measureme ands. The m	nts that were	made ue of
		BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
		MSB		TO	F_Range 8-l	oit binary inte	ger		LSB
		The formulas to calculate the range and resolution of the TOF_Range integer for a given DPL[3:0] bit setting are shown below: Maximum range (µs) = DPL[3:0] + 1 Resolution = Maximum range/256							
		DPL[3:0]			NCH JENCY		M RANGE s)		LUTION is)
		000	01b	1M	1Hz	2	2	7.8	175
	TOF_Cycle_	000	02b	666.6kHz		3		11.7185	
E4h	Count								
	/TOF_Range		10b	133.3kHz		15		58.59375	
		11	11b	125kHz		16		62	2.5
		binary integers been totaled AVGFrac a command error check bits in the I in the Inter Cycle Cour	ger that indic commands hed for the pure nd TOF_DIF is executed liking, once the Event Timing rupt Status r	cates the nun as executed. rpose of aver F_AVGInt re by either the e complete r g 1 register h egister causi e equal to the	nber of valid It also represented in the registers. It is EVTMG1 or number of cylas been coming the INT d	oF cycle cour error-free cyc sents the nu affects the r incremented EVTMG2 sec cles defined l pleted and the evice pin to the ne TOF differ	cles that eith mber of TOF esults provide every time a quence. Because the TOF cone TOF_EVT pe asserted (er of the EV _DIFF cycle ded in the TC an error-free ause of this difference ma TMG bit has b (if enabled),	FMG1 or s that have F_DIFF_ TOF_DIFF internal asurements been set the TOF
		DIT 7	DITE	DIT 5	DIT 4	DIT 2	DIT 2	DIT 4	DIT 0
		BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
		MSB	MSB TOF cycle count 8-bit binary integer LSB						

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME	DESCRIPTION
		16-bit fixed-point two's-complement integer portion of the average of the accumulated TOF_DIFF measurements. It is computed as:
	TOF_DIFF_	TOF_Cycle_Count TOF_DIFFn
E5h	AVGInt	TOF_Cycle_Count
		This integer represents the number of t_{4MHz} periods that contribute to the computation. The maximum size of the integer is 7FFFh or (2^{15} - 1) x t_{4MHz} . The minimum size of this integer is 8000h or - 2^{15} x t_{4MHz} .
E6h	TOF_DIFF_ AVGFrac	16-bit fractional portion of the two's-complement average of the accumulated TOF_DIFF measurements. This fractional portion is a binary representation of one t _{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or (2 ¹⁶ - 1)/2 ¹⁶ x t _{4MHz} .
E7h	T1Int	15-bit fixed-point integer value of the time taken to discharge the timing capacitor through the RTD connected to the T1 device pin. This integer portion is a binary representation of the number of t _{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x t _{4MHz} .
E8h	T1Frac	16-bit fractional value of the time taken to charge the timing capacitor through the RTD connected to the T1 device pin. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
E9h	T2Int	15-bit fixed-point integer value of the time taken to charge the timing capacitor through the RTD connected to the T2 device pin. This integer portion is a binary representation of the number of periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x t _{4MHz} .
EAh	T2Frac	16-bit fractional value of the time taken to charge the timing capacitor through the RTD connected to the T2 device pin. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
EBh	T3Int	15-bit fixed-point integer value of the time taken to charge the timing capacitor through the RTD connected to the T3 device pin. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x t_{4MHz} .
ECh	T3Frac	16-bit fractional value of the time taken to charge the timing capacitor through the RTD connected to the T3 device pin. This fractional portion is a binary representation of one t _{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or (2 ¹⁶ - 1)/2 ¹⁶ x t _{4MHz} .
EDh	T4Int	15-bit fixed-point integer value of the time taken to charge the timing capacitor through the RTD connected to the T4 device pin. This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4MHz}$.

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME		DESCRIPTION						
EEh	T4Frac	connected period qua	16-bit fractional value of the time taken to charge the timing capacitor through the RTD connected to the T4 device pin. This fractional portion is a binary representation of one t _{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or (2 ¹⁶ - 1)/2 ¹⁶ x t _{4MHz} .						
EFh	Temp_Cycle_ Count	cycles that the numbe affects the every time sequence. by the tem the Temp_ to be asset	either of the r of temperat results provi an error-free Because of perature mea EVTMG bit htted (if enable	s an 8-bit bin. EVTMG1 or ture cycles the ded in the To e temperature this internal e asurements b has been set ed), the temperatus bits in t	EVTMG3 con at have bee command in the command in the Evin the Interrupter at the Evin the Interrupter at the Evin the Interrupter at the Evin the E	ommands han totaled for and Tx_AVGI s executed by once the cent Timing 2 upt Status rege count may	s executed. Ithe purpose nt registers. by either the loomplete nur register has gister causing not be equal	It also repres of averaging It is increme EVTMG1 or nber of cycle been comple g the INT de	ents , which nted EVTMG3 es defined eted and vice pin
		BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
		Х	Х	Х	Х	Х	Х	Х	Х
		BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
F0h	T1_AVGInt	This intege	15-bit fixed-point integer value of the average of the T1 port measurements. It is computed as:						
F1h	T1_AVGFrac	16-bit fractional portion of the average of the T1 port measurements. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.							
F2h	T2_AVGInt	This intege	r portion is a	-	Temp_Cycle_Coun = 1 emp_Cycle_Cemp_Cycle_Cesentation of	T2 _n Count the number	of t _{4MHz} peri	iods that con	

Table 24. Conversion Results Registers Description (continued)

READ ONLY ADDRESS	NAME	DESCRIPTION
F3h	T2_AVGFrac	16-bit fractional portion of the average of the T2 port measurements. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
F4h	T3_AVGInt	15-bit fixed-point integer value of the average of the T3 port measurements. It is computed as: $\frac{\sum_{n=1}^{Temp_Cycle_Count} T3_n}{Temp_Cycle_Count}$ This integer portion is a binary representation of the number of periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ -1) x t_{4MHz} .
F5h	T3_AVGFrac	16-bit fractional portion of the average of the T3 port measurements. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16} \times t_{4MHz}$.
F6h	T4_AVGInt	15-bit fixed-point integer value of the average of the T4 port measurements. It is computed as: $\frac{\sum_{n=1}^{\text{Temp_Cycle_Count}} T4_n}{\text{Temp_Cycle_Count}}$ This integer portion is a binary representation of the number of t_{4MHz} periods that contribute to the time results. The maximum size of the integer is 7FFFh or $(2^{15} - 1) \times t_{4MHz}$.
F7h	T4_AVGFrac	16-bit fractional portion of the average of the T4 port measurements. This fractional portion is a binary representation of one t_{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or $(2^{16} - 1)/2^{16}$ x t_{4MHz} .
F8h	Calibration Int	15-bit fixed-point integer value of the time taken to measure the period of the 32.768kHz crystal oscillator during execution of the calibrate command. This integer portion is a binary representation of the number of $t_{\rm 4MHz}$ periods that contribute to the time results. The maximum size of the integer is 7FFFh or (2 ¹⁵ - 1) x $t_{\rm 4MHz}$.
F9h	Calibration Frac	16-bit fractional value of the time taken to measure the period of the 32.768kHz crystal oscillator during execution of the calibrate command. This fractional portion is a binary representation of one t _{4MHz} period quantized to a 16-bit resolution. The maximum size of the fraction is FFFFh or (2 ¹⁶ - 1)/2 ¹⁶ x t _{4MHz} .
FAh		Reserved
FBh		Reserved
FCh		Reserved

Flash Opcode Commands

To access the flash memory, the internal low-dropout voltage regulator that powers the flash circuitry must be enabled. This can be done two ways: sending the LDO_Timed command prior to the desired flash access or sending the LDO_ON command to the MAX35103 prior to desired flash access. See the LDO_Timed and LDO_ON command descriptions for details. To manipulate the flash memory, there are three commands supported by the device: read flash, write flash, and block erase flash.

Read Flash Command

The read flash command is used to sequentially read a continuous stream of data from the internal 8KB of flash using a built-in autoincrement address counter. For 8KB, 13 address bits are needed to indicate the starting address in memory to begin the read stream. Since the memory array is organized in X16 fashion, the starting address must fall on any even number address. The read stream continues until the $\overline{\text{CE}}$ signal is deasserted. Once the automatic internal address counter has been incremented to the last memory location in the array, it wraps around to the bottom of the memory array and the data for the first memory location of the array is read. Figure 18 illustrates the serial peripheral interface signaling associated with the read flash command.

Write Flash Command

The flash is written in the MAX35103 in a word-only manner. The architecture allows a single 16-bit word to be written to the array supporting the maximum access SPI clock speed of t_{SCK} . The location to be programmed must have previously been erased with the block erase flash command.

To perform a write flash command, the starting flash memory address must fall on an even flash memory address (i.e., the least significant bit of the address (A15–A0) must be 0). The 16-bit address word and at least one 16-bit word of data must be clocked into the device before the $\overline{\text{CE}}$ pin is deasserted. If more than 16 bits of data are clocked into the device during a single $\overline{\text{CE}}$ assertion, only the last bounded 16-bit data word is written. This is not a FIFO register. Any fraction of a 16-bit word is ignored, and the previous whole 16-bit word is written.

Once the 16 bits of data are clocked into the device, the host microprocessor deasserts the $\overline{\text{CE}}$ device pin and then waits. The MAX35103 sets the flash bit in the Interrupt Status register and assert the $\overline{\text{INT}}$ device pin (if enabled) to tell the host microprocessor that the next write flash command can be sent to the MAX35103. The host microprocessor can then read the Interrupt Status register after the INT device pin is asserted. Figure 19 illustrates the serial peripheral interface signaling associated with the write flash command.

Figure 18. Read Flash Opcode Command Protocol

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Block Erase Flash Command

A block of 128 words (256 bytes) can be erased in a single operation. For the 8KB array, there are 32 such 128 word (256 Byte) blocks. The block to be erased is selected by the 16-bit address word in the block erase flash SPI protocol sequence as illustrated in Figure 20.

The erased block is the block that contains the specified address. The time from $\overline{\text{CE}}$ deassert to $\overline{\text{CE}}$ assert for the next block erase flash command needs to be approximately terase. Also, the device sets the flash bit in the Interrupt Status register and asserts the $\overline{\text{INT}}$ device pin

(if enabled) to tell the host microprocessor that the next block erase flash command can be sent. The host microprocessor can read the Interrupt Status register after the INT device pin is asserted instead of waiting for t_{FRASE} .

Flash Memory Map

This memory is accessed by the read flash, write flash, and the block erase flash commands. All flash memory is erased when the MAX35103 leaves the factory. This means that each flash location has a value of FFFFh until written by a user to a different value.

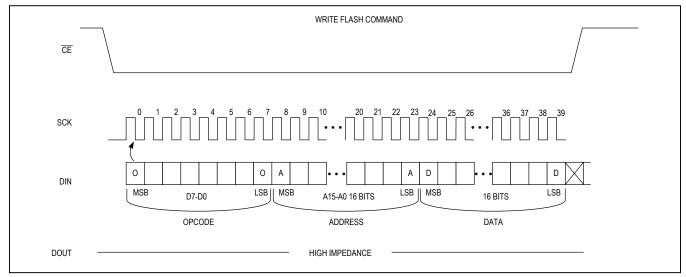


Figure 19. Write Flash Opcode Command Protocol

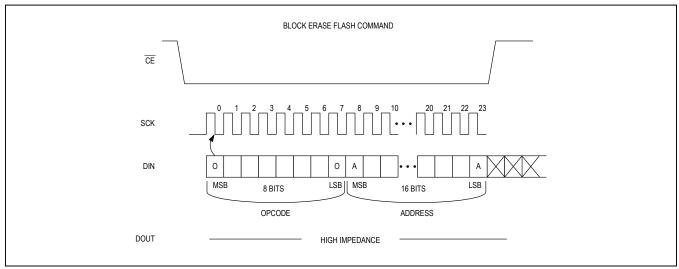


Figure 20. Block Erase Flash Opcode Command Protocol

Table 25. Flash Memory Map

FLASH ADDRESS (evens only)	BLOCK (decimal)	DESCRIPTION
0000h to 00FFh	0	User flash
0100h to 01FFh	1	User flash
0200h to 02FFh	2	User flash
		User flash
1D00h to 1DFFh	29	User flash
1E00h to 1EFFh	30	User flash
1F00h to 1FFFh	31	User flash

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX35103EHJ+	-40°C to +85°C	32 TQFP-EP*
MAX35103EHJ+T	-40°C to +85°C	32 TQFP-EP*

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
32 TQFP-EP	H32E+6	<u>21-0079</u>	90-0326

T = Tape and reel.

^{*}EP = Exposed pad.

MAX35103

Reduced Power Time-to-Digital Converter with AFE, RTC, and Flash

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/14	Initial release	_
1	1/15	Updated Figure 12	21

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com