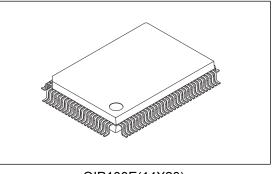
GGB LC75805PE

смов IC 1/1 to 1/4 Duty General-Purpose LCD Display Driver with LED Driver



LC75805PE is the 1/1 to 1/4 duty general-purpose LCD display driver with the LED driver to use for the instrument panel display by control with the controller. In addition, LC75805PE is able to drive up to 48 LED and LCD of up to 140 segments directly, and has a built-in 7ch PWM function for brightness adjustment of LED. Furthermore, because of built-in the oscillator circuit, it is possible to reduce external resister and capacitor for oscillation.

Features

- Switch of Static Drive, 1/2 Duty Drive, 1/3 Duty Drive and 1/4 Duty Drive can be controlled by serial data.
 - Static Drive (1/1 Duty Drive) : Capable of driving up to 38 segments.
 - 1/2 Duty Drive
- Capable of driving up to 74 segments.Capable of driving up to 108 segments.
- 1/3 Duty Drive
- 1/4 Duty Drive : Capable of driving up to 140 segments.
- Frame frequency of common and segment output waveform can be controlled by serial data.
- Turning on/off LED can be controlled by serial data. (Capable of driving up to 48 LED)
- Built-in 7ch PWM function for brightness adjustment of LED. (Resolution of 128 steps)
- Frame frequency of LED driver output waveform can be controlled by serial data.
- Serial data input supports CCB format communication with the system controller. (Support 5V operation)
- Backup function and forced turning off all segments by power-saving mode can be controlled by serial data.
- Switch of the internal oscillator operating mode and the external clock operating mode can be controlled by serial data.
- High generality, since display data is displayed directly without the intervention of a decoder circuit.
- The $\overline{\text{INH}}$ pin allows the display to be forced to the off state.
- Built-in Oscillator circuit (Built-in resister and capacitor for oscillation)

• CCB is ON Semiconductor[®] 's original format. All addresses are managed by ON Semiconductor[®] for this format.

QIP100E(14X20)

• CCB is a registered trademark of Semiconductor Components Industries, LLC.

ORDERING INFORMATION

See detailed ordering and shipping information on page 34 of this data sheet.

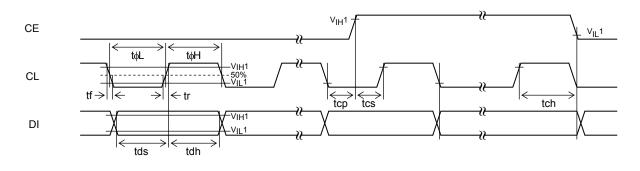
Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +6.5	V
Input voltage	V _{IN} 1	CE, CL, DI, INH, OSCI	-0.3 to +6.5	V
Output voltage	V _{OUT} 1	S1 to S38, COM1 to COM4	-0.3 to V _{DD} +0.3	
	V _{OUT} 2	LD1 to LD48	-0.3 to +35	V
Output current	IOUT1	S1 to S38	300	μA
	I _{OUT} 2	COM1 to COM4	3	
	IOUT3	LD1 to LD48	30	mA
Allowable power dissipation	Pd max	Ta=95°C	400	mW
Operating temperature	Topr		-40 to +95	°C
Storage temperature	Tstg		-55 to +150	°C

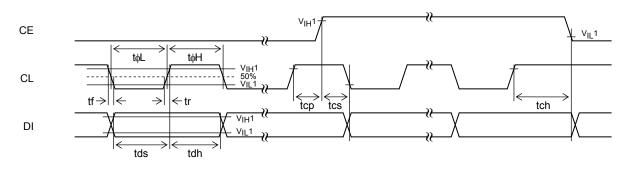
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at Ta = -40 to $+95^{\circ}C$, $V_{SS} = 0V$

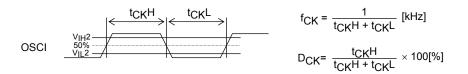

Deremeter	Ourseh al	Conditions		Ratings			Unit
Parameter	Symbol			min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		5.5	V
Input high-level voltage	V _{IH} 1	CE, CL, DI, INH		0.8V _{DD}		5.5	V
	V _{IH} 2	OSCI		0.8V _{DD}		5.5	v
Input low-level voltage	V _{IL} 1	CE, CL, DI, INH		0		0.2V _{DD}	V
	V _{IL} 2	OSCI		0		0.2V _{DD}	v
Output pull-up voltage	VOUP	LD1 to LD48, V_{DD} = 4.5 to 5.5V		0		30	V
External clock operating frequency	^f CK	OSCI, External clock operating mode	[Fig 3]	100	300	600	kHz
External clock duty	DCK	OSCI, External clock operating mode	[Fig 3]	30	50	70	%
Data setup time	tds	CL, DI [Fig 1]	, [Fig 2]	160			ns
Data hold time	tdh	CL, DI [Fig 1]	, [Fig 2]	160			ns
CE wait time	tcp	CE, CL [Fig 1]	, [Fig 2]	160			ns
CE setup time	tcs	CE, CL [Fig 1]	, [Fig 2]	160			ns
CE hold time	tch	CE, CL [Fig 1]	, [Fig 2]	160			ns
High-level clock pulse width	tφH	CL [Fig 1]	, [Fig 2]	160			ns
Low-level clock pulse width	tøL	CL [Fig 1]	, [Fig 2]	160			ns
Rise time	tr	CE, CL, DI [Fig 1]	, [Fig 2]		160		ns
Fall time	tf	CE, CL, DI [Fig 1]	, [Fig 2]		160		ns
INH switching time	tc	INH, CE [Fig 4], [Fig 5], [Fig 6]	, [Fig 7]	10			μs

Deremeter	Cumbal	Dia	Conditions		Ratings		Unit
Parameter	Symbol	Pin	Conditions	min	typ	max	Unit
Hysteresis	v_{H}	CE, CL, DI, INH			0.1V _{DD}		V
Input high-level current	I _{IH} 1	CE, CL, DI, INH	V _I = 5.5V			5.0	
	I _{IH} 2	OSCI	V _I = 5.5V			5.0	μA
Input low-level current	I _{IL} 1	CE, CL, DI, INH	V _I = 0V	-5.0			
	I _{IL} 2	OSCI	V _I = 0V	-5.0			μA
Output OFF leak current	IOFFH	LD1 to LD48	V _O = 30V			5.0	μA
Output high-level voltage	V _{OH} 1	S1 to S38	I _O = -20μA	V _{DD} -0.9			
	V _{OH} 2	COM1 to COM4	I _O = -100μA	V _{DD} -0.9			V
Output low-level voltage	V _{OL} 1	S1 to S38	I _O = 20μA			0.9	
	V _{OL} 2	COM1 to COM4	I _O = 100μA			0.9	V
	V _{OL} 3	LD1 to LD48	I _O = 20mA		0.25	0.5	1
Output middle-level voltage	V _{MID} 1	S1 to S36	1/3 bias I _O = $\pm 20\mu$ A	2/3V _{DD} -0.9		2/3V _{DD} +0.9	
·	V _{MID} 2	S1 to S36	1/3 bias I _O = ±20µA	1/3V _{DD} -0.9		1/3V _{DD} +0.9	V
	V _{MID} 3	COM1 to COM4	1/3 bias I _O = ±100μA	2/3V _{DD} -0.9		2/3V _{DD} +0.9	
	V _{MID} 4	COM1 to COM4	1/3 bias I _O = ±100μA	1/3V _{DD} -0.9		1/3V _{DD} +0.9	
	V _{MID} 5	COM1, COM2	1/2 bias I _O = ±100μA	1/2V _{DD} -0.9		1/2V _{DD} +0.9	
Oscillator frequency	fosc	Oscillator circuit	Internal oscillator operating mode	240	300	360	kHz
Current drain	I _{DD} 1	V _{DD}	Power save mode			15	
	I _{DD} 2	V _{DD}	V _{DD} = 5.5V Output open, Internal oscillator operating mode		750	1500	
	I _{DD} 3	V _{DD}	$V_{DD} = 5.5V$ Output open, External clock operating mode $f_{CK} = 300kHz$ $V_{IH}2 = 0.9V_{DD}$ $V_{IL}2 = 0.1V_{DD}$		750	1500	μA

Electrical Characteristics for the Allowable Operating Ranges


* Electrical Characteristics might be changed for the improvement without notice.

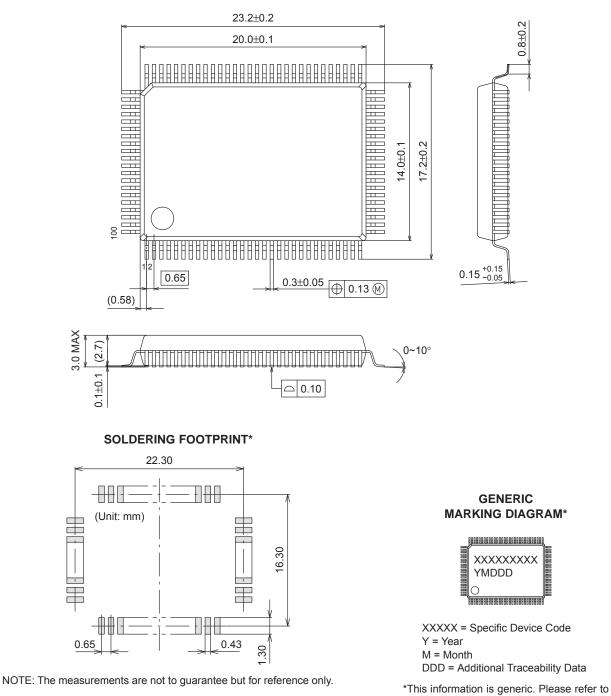
1. When CL is stopped at the low level.



2. When CL is stopped at the high level.

[Fig 2]

3. OSCI pin clock timing in external clock operating mode.

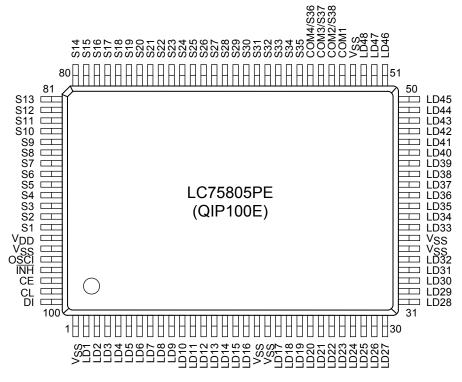

[Fig 3]

Package Dimensions

unit : mm

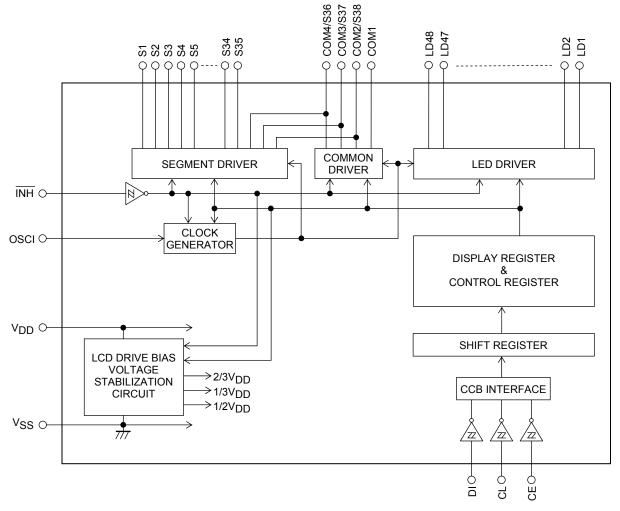
PQFP100 14x20 / QIP100E

CASE 122BV ISSUE A


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

No.A2119-5/34

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■",


may or may not be present.

Pin Assignment

Top view

Pin Functions

Symbol	Pin No.	Function	Active	I/O	Handling when unused
LD1 to LD16 LD17 to LD32 LD33 to LD48	2 to 17 20 to 35 38 to 53	These are LED driver output pins that display the display data for LED transferred by serial data input, and high- voltage open-drain output pins. (Pull-up voltage is 30[V] maximum.) In addition, brightness adjustment of LED is possible by PWM function, too.	-	0	OPEN
COM1 COM2/S38 COM3/S37 COM4/S36	55 56 57 58	These are common driver output pins, and Frame frequency is fo [Hz]. COM2/S38, COM3/S37 and COM4/S36 are possible to be used as the segment output by control data.	-	0	OPEN
S35 to S1	59 to 93	These are segment output pins that display the display data for LCD transferred by serial data input.	-	0	OPEN
OSCI	96	This is input pin for the external clock. Input the clock whose frequency (f_{CK}) is between 100 and 600[kHz] at external clock operating mode. Furthermore, connect to GND at internal oscillator operating mode.	-	I	GND
CE	98	These are input pins for serial data transfer, and connect to the controller.	н	I	
CL	99	CE: Chip enable		I	GND
DI	100	CL: Synchronized clock DI: Transfer data	-	Т	
ĪNH	97	Display off control input pin • INH = Low-level (V _{SS})Display forced off LD1 to LD48 = Z (High-impedance) COM1 = L (V _{SS}) COM2/S38 to COM4/S36 = L (V _{SS}) S1 to S35 = L (V _{SS}) Internal oscillator operation is stopped. External clock input is forbidden. • INH = High-level (V _{DD})Display on Internal oscillator operation is possible. (At Internal oscillator operating mode) External clock operating mode) However, serial data can be transferred during turn off.	L	I	GND
V _{DD}	94	This is power supply pin. Supply the voltage between 4.5V and 5.5V.	-	-	-
V _{SS}	1 18 19 36 37 54 95	These are power supply pins. Connect to GND.	-	-	-

Serial Data Transfer Format

1/4 Duty Drive

(1) When CL is stopped at the low level

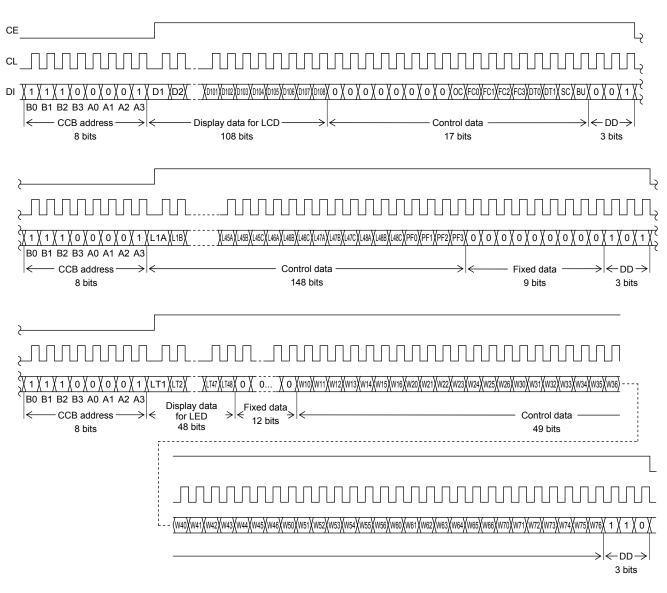
CE_										Ļ
CL_		ΠΠΓ								ЛЦ
ы]	(1	1 XD2X XD133	XD134XD135XD136XD137X	D138XD139XD140X	οχοχοχ	οχοχοχ	ο χ ο χος χεοχεί	C1XFC2XFC3XDT0XDT1	(scХвиХо)	
	← CCB address → ← 8 bits		data for LCD — 40 bits	> .	<		- Control data - 17 bits			DD→ bits
ح										Ļ
ح		Γ.ΓΓ								ЛŲ
रे २	(1 X 1 X 1 X 0 X 0 X 0 X 0 X 1 X L1 B0 B1 B2 B3 A0 A1 A2 A3	A XL1BX			.47CXL48AXL48BXL4	8CXPF0XPF1XP			(0)(0)(1)	
I	CCB address → ← 8 bits			trol data — 8 bits			>I<	 Fixed data — 9 bits 		DD → bits
ے										
` ج	mm			ЛЛЛ		ЛЛЛ				
रे र	<u>(1 </u>	1 XLT2XXLT47 XLT48	<u>(o X o X o X</u>	w10Xw11Xw12X	w13Xw14Xw15Xv	/16XW20XW21XW	122XW23XW24XW25XW	26XW30XW31XW32XW33	(w34Xw35Xw36)	
	B0 B1 B2 B3 A0 A1 A2 A3 CCB address > < 8 bits	Display data for LED 48 bits	<fixed data<br="">12 bits</fixed>	<				 Control data 49 bits 		
	1	· (W40XW41XW42XW43	(w44Xw45Xw46Xw50X	w51XW52XW53XV	v54Xw55Xw56Xv	60Xw61Xw62Xw	63XW64XW65XW66XW	70XW71XW72XW73XW74)	(W75XW76X 1 X	1 🛛 0 🗡
										$DD \rightarrow$

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD • • • Direction Data

• CCB address	"87H"
• D1 to D140	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
• SC	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A, L48B, L48C	Control data for Ch settings of PWM circuits that adjust brightness of LED
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	Display data for LED
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

(2) When CL is stopped at	the high level		
DI $X 1 X 1 X 1 X 0 X 0 X 0 X 0 X 1 X D$ B0 B1 B2 B3 A0 A1 A2 A3 < CCB address $>$ $<8 bits$	1 <u>XD2X X0133</u> X0134X0135X0136X0137X0138X0139X0140X 0 ————————————————————————————————————	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	$\left \left $
$\begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	AXL1BX XL45AXL45BXL45CXL46AXL46BXL46CXL47AXL47AXL47A Control data 148 bits	СХL484XL48BXL48CXPF0XPF1XPF2XPF3X 0 X 0 X 0 X >	$\begin{array}{c c} \hline \langle 0 & X & 0 & X & 0 & X & 0 & X & 0 & X & 0 & X & 0 & X & 1 & X & 0 & X & 1 & X \\ \hline \\ \hline \\ Fixed data &> & & & & & & & \\ 9 & bits & 3 & bits & 3 & bits & & & & & \\ \end{array}$
$\begin{array}{c c} & 1 \\ & 1$	Display data Fixed data	3Xw14Xw15Xw16Xw20Xw21Xw22Xw23Xw24Xw25Xw26	(w30Xw31Xw32Xw33Xw34Xw35Xw36) - Control data 49 bits
	 <u>{w40Xw41Xw42Xw43Xw44Xw45Xw46Xw50Xw51Xw52Xw53Xw5</u> 	4 <u>X</u> W55 <u>X</u> W56 <u>X</u> W60 <u>XW61XW62</u> XW63 <u>XW64</u> XW65 <u>XW66</u> XW70 <u>X</u>	W71XW72XW73XW74XW75XW76X 1 X 1 X 0 X →


(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD ••• Direction Data

• CCB address	"87H"
• D1 to D140	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
• SC	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A,	Control data for Ch settings of PWM circuits that adjust brightness of LED
L48B, L48C	
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

1/3 Duty Drive

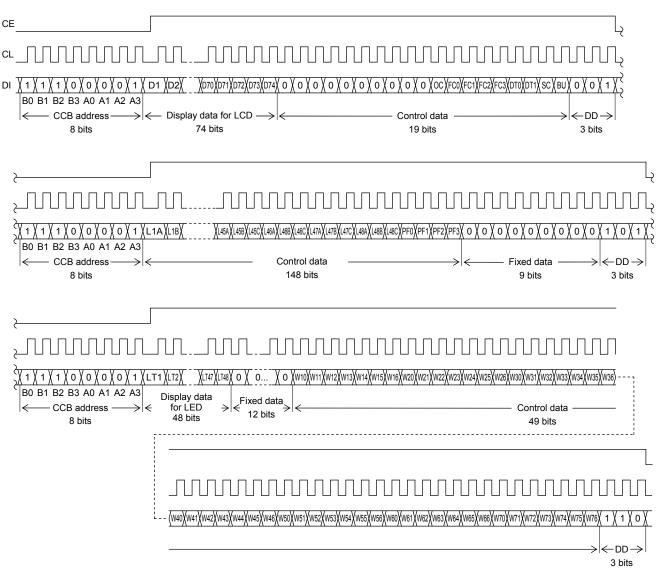
(1) When CL is stopped at the low level

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD • • • Direction Data

• CCB address	"87H"
• D1 to D108	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
• SC	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
	Control data for Ch settings of PWM circuits that adjust brightness of LED
L48B, L48C	
	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	Display data for LED
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

(2) When CL is stopped a	t the high level		
CE			
DI $X 1 X 1 X 1 X 0 X 0 X 0 X 0 X 1 BO B1 B2 B3 A0 A1 A2 A3CCB address 8 bits$		0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	$\frac{2}{2} \frac{1}{2} \frac{1}$
$\begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	<u>⟨L1A)⟨L1B)⟨ 454)⟨L458)⟨L450)⟨L464)⟨L468)⟨L460)⟨L47A)⟨L478)</u> < Control data 148 bits		$\begin{array}{c c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 &$
$\begin{cases} \begin{array}{c} & & \\ & & \\ & & \\ \\ & & \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	(LT1)/LT2)	w13Xw14Xw15Xw16Xw20Xw21Xw22Xw23Xw24Xw25Xw26X	^{₩30} ₩31Ҳ₩32Ҳ₩33Ҳ₩34Ҳ₩35Ҳ₩36) - Control data ———— 49 bits
			VITIXW72XW73XW74XW75XW76X 1 X 1 X 0 X
		עריעייאלעייאלעייאלעייאלעייאלעייאלעייאלעי	


(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) $DD \bullet \bullet \bullet$ Direction Data

• CCB address	"87H"
• D1 to D108	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A,	Control data for Ch settings of PWM circuits that adjust brightness of LED
L48B, L48C	
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	Display data for LED
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

1/2 Duty Drive

(1) When CL is stopped at the low level

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD ••• Direction Data

• CCB address • D1 to D74 • OC	
	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A, L48B, L48C	Control data for Ch settings of PWM circuits that adjust brightness of LED
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	Display data for LED
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

(2) When CL is stopped	l at the high level				
CE					
DI $X 1 X 1 X 1 X 0 X 0 X 0 X 0 X 1$ B0 B1 B2 B3 A0 A1 A2 A3 CCB address	$-\eta - \alpha - \alpha - \alpha - \alpha - \alpha - \alpha - \alpha$)74X o X o X o X o X o X o X o X >	0 X 0 X 0 X 0 X 0 XOCXFC0XFC1XFC2X Control data 19 bits	FC3XDT0XDT1XSCXBUX 0 X 0 	\rightarrow
	「 ¬			MMM	
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\$	$-\Lambda$ Λ Λ $-\Lambda$ Λ Λ Λ Λ	464XL466XL46cXL47AXL47BXL47CXL48AXL — Control data ——— 148 bits	488XL48CXPF0XPF1XPF2XPF3X O X O X 		$\begin{array}{c c} & 1 \\ \hline \\ & 1 \\ \hline \\ & -DD \\ \hline \\ & 3 \\ \end{array}$
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c c} & & \\ \hline \\ \hline$		Γ ν15χ₩16 <u>χ</u> ₩20χ₩21χ₩22χ₩23χ₩24χ₩25χ	ـــــــــــــــــــــــــــــــــــــ	5 <u><u></u> (1) (5<u>)</u> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</u>
	<u>{W40XW41XW42XW43XW44XW45X</u> v	Г /46XW50XW51XW52XW53XW54XW55XV	Г v56Xw60Xw61Xw62Xw63Xw64Xw65Xw66X		$\begin{array}{c} \hline \\ \hline $

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD $\bullet \bullet \bullet$ Direction Data

• CCB address	"87H"
• D1 to D74	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
• SC	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A,	Control data for Ch settings of PWM circuits that adjust brightness of LED
L48B, L48C	
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	Display data for LED
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

Static Drive (1/1 Duty Driv (1) When CL is stopped a			
CE			L,
∝		uuuuuu	nnnnn,
DI $X 1 X 1 X 1 X 0 X 0 X 0 X 0 X 1 X 0$ BO B1 B2 B3 A0 A1 A2 A3 \leftarrow CCB address \rightarrow $<$ 8 bits	Display data	0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	$\frac{C3(DT0(DT1)(SC)(BU)(0)(0)(1)(2)}{<} < DD \rightarrow 3$ bits
			Ļ
		mmm	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$ \\ \begin{array}{c} \end{array}\\		78XL47CXL48AXL488XL48CXPF0XPF1XPF2XPF3X 0 X 0 X 0 >	$ \begin{array}{c c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Display data for LED 48 bits 		
	(w40Xw41Xw42Xw43Xw44Xw45Xw46Xw50Xw51Xw52Xw5 	зХм54Хм55Хм56Хм60Хм61Хм62Хм63Хм64Хм66Хм66Хм	70 <u>(</u> ₩71 <u>/</u> ₩72 <u>/</u> ₩73 <u>/</u> ₩74 <u>/</u> ₩75 <u>/</u> ₩76 <u>/</u> 1 <u>/</u> 1 <u>/</u> 0 <u>/</u> →

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD • • • Direction Data

 CCB address	
• FC0 to FC3 Control data for setting of the frame frequency of common and segment output waveform	
 DT0, DT1 Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD SC Control data for turning on/off segments 	
• BU Control data for switch of Normal mode and Power-saving mode	
• L1A, L1B, L1C to L48A, Control data for Ch settings of PWM circuits that adjust brightness of LED L48B, L48C	
• PF0 to PF3 Control data for setting of the frame frequency of LED driver output waveform	
LT1 to LT48 Display data for LED	
• W10 to W16, W20 to W26, PWM data of PWM circuits of LED driver output	
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

(2) When CL is stopped	at the high level				
CE					
					ΛĻ
DI $\overline{\langle 1 \rangle \langle 1 \rangle \langle 1 \rangle \langle 0 \rangle \langle 0 \rangle \langle 0 \rangle \langle 0 \rangle \langle 1}$ B0 B1 B2 B3 A0 A1 A2 A3 CCB address 8 bits	Display data ↓ Control Contr	 (o X o X o X o X o X o X o X o X o X o	X 0 X 0 X 0 X 0 X 0 XOCXFC0XFC1XFC Control data		$0 \times 1 \times 2$ DD \rightarrow bits
ا ۲۰۰۰٬۰۰۰٬۰۰۰٬۰۰۰٬	······				
X 1 X 1 X 1 X 0 X 0 X 0 X 0 X 1 B0 B1 B2 B3 A0 A1 A2 A3 ← CCB address 8 bits	<u> </u>	(1458)(1456)(1464)(1468)(1466)(1474)(1478)(1470)(148 	X1488X148CXPF0XPF1XPF2XPF3X 0 X 0 >	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X ── Fixed data ──── 9 bits	$ \begin{array}{c c} \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$
	Display uala	<pre> [</pre>	<u>\</u> \ <u>\</u> \ <u>\</u> W15\Xw16\Xw20\Xw21\Xw22\Xw23\Xw24\Xw2	∑W26∑W30∑W31∑W32∑W33∑W34∑ —— Control data — 49 bits	 мз <u>бХизб</u>)
	 	 (w44Xw45Xw46Xw50Xw51Xw52Xw53Xw54Xw5	L Xw56Xw60Xw61Xw62Xw63Xw64Xw65Xw66	<u>}</u>	$\frac{1}{3 \text{ bits}}$

(Note 1) The input of serial data is taken in at the rising edge of CL, and latched at the falling edge of CE. In addition, this IC has the function that counts the number of CL clock to receive the correct serial data. That is to say, because it isn't latched at the falling edge of CE when the number of the count of CL in each serial data is wrong, receiving wrong serial data can be prevented.

(Note 2) DD • • • Direction Data

• CCB address	"87H"
• D1 to D38	Display data for LCD
• OC	Control data for switch of internal oscillator operating mode and external clock operating mode
• FC0 to FC3	Control data for setting of the frame frequency of common and segment output waveform
• DT0, DT1	Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD
• SC	Control data for turning on/off segments
• BU	Control data for switch of Normal mode and Power-saving mode
• L1A, L1B, L1C to L48A,	Control data for Ch settings of PWM circuits that adjust brightness of LED
L48B, L48C	
• PF0 to PF3	Control data for setting of the frame frequency of LED driver output waveform
• LT1 to LT48	
• W10 to W16, W20 to W26,	PWM data of PWM circuits of LED driver output
W30 to W36, W40 to W46,	
W50 to W56, W60 to W66	
W70 to W76	

Control data Functions

(1) OC ... Control data for switch of internal oscillator operating mode and external clock operating mode This control data bit selects either the internal oscillator operating mode or external clock operating mode.

OC	Fundamental clock operating mode	Input pin (OSCI) state
0	Internal oscillator operating mode	Connect to GND
1	External clock operating mode	Input the clock (f _{CK} = 100 to 600 [kHz]) from the outside

(2) FC0 to FC3 ... Control data for setting of the frame frequency of common and segment output waveform. These control data bits set the frame frequency of common and segment output waveform.

				Frame frequency of common and segment output waveform fo [Hz]		
FC0	FC1	FC2	FC3	Internal oscillator operating mode (Control data OC ="0", fosc = 300 [kHz] typ)	External clock operating mode (Control data OC ="1", f _{CK} = 300 [kHz] typ)	
0	0	0	0	fosc/4992	f _{CK} /4992	
1	0	0	0	fosc/4608	f _{CK} /4608	
0	1	0	0	fosc/4224	f _{CK} /4224	
1	1	0	0	fosc/3840	f _{CK} /3840	
0	0	1	0	fosc/3456	f _{CK} /3456	
1	0	1	0	fosc/3072	f _{CK} /3072	
0	1	1	0	fosc/2688	f _{CK} /2688	
1	1	1	0	fosc/2496	f _{CK} /2496	
0	0	0	1	fosc/2448	f _{CK} /2448	
1	0	0	1	fosc/2304	f _{CK} /2304	
0	1	0	1	fosc/2112	f _{CK} /2112	
1	1	0	1	fosc/1920	f _{CK} /1920	
0	0	1	1	fosc/1728	f _{CK} /1728	
1	0	1	1	fosc/1536	f _{CK} /1536	
0	1	1	1	fosc/1344	f _{CK} /1344	
1	1	1	1	fosc/1152	f _{CK} /1152	

(3) DT0, DT1 ... Control data for setting of drive scheme (setting of 1/1 to 1/4 Duty Drive scheme) of LCD These control bits select 1/4-Duty 1/3-Bias Drive, 1/3-Duty 1/3-Bias Drive, 1/2-Duty 1/2-Bias Drive, or Static Drive (1/1-Duty Drive) of LCD.

		Each pin state			
DT0	DT1	DT1 Drive scheme for LCD	COM2/S38	COM3/S37	COM4/S36
0	0	1/4-Duty 1/3-Bias Drive	COM2	COM3	COM4
1	0	1/3-Duty 1/3-Bias Drive	COM2	COM3	S36
0	1	1/2-Duty 1/2-Bias Drive	COM2	S37	S36
1	1	Static Drive (1/1-Duty Drive)	S38	S37	S36

Note) COM2 to COM4: Common output / S38 to S36: Segment output

(4) SC ... Control data for turning on/off segments

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

Note that when the segments are turned off by setting SC to 1, the segments are turning off by outputting segment off waveforms from the segment output pins.

(5) BU ... Control data for switch of Normal mode and Power-saving mode

This control data bit selects either Normal mode or Power-saving mode.

BU	Mode
0	Normal mode
1	Power-saving mode (The oscillation of internal oscillator circuit is stopped when internal oscillator operating mode (OC = [0]), and the receiving of external clock isn't admitted when external clock operating mode (OC = [1]). In addition, common and segment output pins are V _{SS} level, and LED driver output pins are High impedance.

(6) L1A, L1B, L1C to L48A, L48B, L48C ... Control data for Ch settings of PWM circuits that adjust brightness of LED These control data bits set the Ch of PWM circuit for LED driver output pins, LD1 to LD48.

LnA	LnB	LnC	Ch of PWM circuit for LED driver output LDn
0	0	0	PWM circuit is not selected. (The setting of turning on/off of the duty 100% by Display data LTn for LED is possible.)
1	0	0	PWM circuit (Ch1) is selected.
0	1	0	PWM circuit (Ch2) is selected.
1	1	0	PWM circuit (Ch3) is selected.
0	0	1	PWM circuit (Ch4) is selected.
1	0	1	PWM circuit (Ch5) is selected.
0	1	1	PWM circuit (Ch6) is selected.
1	1	1	PWM circuit (Ch7) is selected.

Note) LnA, LnB, LnC (n = 1 to 48) data are control data that set the Ch of PWM circuit for LED driver output pins LDn (n = 1 to 48).

For example, if (L1A, L1B, L1C) = (1, 0, 0), (L11A, L11B, L11C) = (1, 1, 0) and (L21A, L21B, L21C) = (0, 1, 1) is set, LED driver output pin LD1 select PWM circuit (Ch1) and LED driver output pin LD11 select PWM circuit (Ch3) and LED driver output pin LD21 select PWM circuit (Ch6).

(7) PF0 to PF3 ... Control data for setting of the frame frequency of LED driver output waveform These control data bits set the frame frequency of LED driver output waveform of LED output pin setting PWM circuit (Ch1 to Ch7).

				Frame frequency of LED driver output waveform fp [Hz]					
PF0	PF0 PF1 PF2 F		PF3	Internal oscillator operating mode (Control data OC ="0", fosc = 300 [kHz] typ)	External clock operating mode (Control data OC ="1", f _{CK} = 300 [kHz] typ)				
0	0	0	0	fosc/1664	f _{CK} /1664				
1	0	0	0	fosc/1536	f _{CK} /1536				
0	1	0	0	fosc/1408	f _{CK} /1408				
1	1	0	0	fosc/1280	f _{CK} /1280				
0	0	1	0	fosc/1152	f _{CK} /1152				
1	0	1	0	fosc/1024	f _{CK} /1024				
0	1	1	0	fosc/896	f _{CK} /896				
1	1	1	0	fosc/768	f _{CK} /768				
0	0	0	1	fosc/640	f _{CK} /640				
1	0	0	1	fosc/512	f _{CK} /512				

Note) If (PF0, PF1, PF2, PF3) = (X, 1, 0, 1), (X, X, 1, 1) are set, the frame frequency (fosc/1408, fCK/1408) of setting (PF0, PF1, PF2, PF3) = (0, 1, 0, 0) is selected.

(8) W10 to W16, W20 to W26, W30 to W36, W40 to W46, W50 to W56, W60 to W66, W70 to W76

... PWM data of PWM circuit for LED driver output These control data bits set LED lighting time per 1 frame of LED driver output waveform of LED driver

					-	-	$C_{1,7}$	0 01			outpt		cronn	101 1		
outpu	t pin s	setting	<u>g</u> PWN	VI CITC	<u> </u>	h1 to		I								
Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	Wn6	LED lighting time per 1 frame		Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	Wn6	LED lighting time per 1 frame
0	0	0	0	0	0	0	(1/128) × Tp		0	0	0	0	0	0	1	(65/128) × Tp
1	0	0	0	0	0	0	(1/128) × Tp (2/128) × Tp		1	0	0	0	0	0	1	(66/128) × Tp
0	1	0	0	0	0	0	(3/128) × Tp		0	1	0	0	0	0	1	(67/128) × Tp
1	1	0	0	0	0	0	(4/128) × Tp		1	1	0	0	0	0	1	(68/128) × Tp
0	0	1	0	0	0	0	(5/128) × Tp		0	0	1	0	0	0	1	(69/128) × Tp
1	0	1	0	0	0	0	(6/128) × Tp		1	0	1	0	0	0	1	(70/128) × Tp
0	1	1	0	0	0	0	(7/128) × Tp		0	1	1	0	0	0	1	(71/128) × Tp
1	1	1	0	0	0	0	(8/128) × Tp		1	1	1	0	0	0	1	(72/128) × Tp
0	0	0	1	0	0	0	(9/128) × Tp (10/128) × Tp		0	0	0	1	0	0	1	(73/128) × Tp (74/128) × Tp
0	1	0	1	0	0	0	(10/128) × Tp (11/128) × Tp		0	1	0	1	0	0	1	(75/128) × Tp
1	1	0 0	1	0	0	0	(12/128) × Tp		1	1	0	1	0	0	1	(76/128) × Tp
0	0	1	1	0	0	0	(13/128) × Tp		0	0	1	1	0	0	1	(77/128) × Tp
1	0	1	1	0	0	0	(14/128) × Tp		1	0	1	1	0	0	1	(78/128) × Tp
0	1	1	1	0	0	0	(15/128) × Tp		0	1	1	1	0	0	1	(79/128) × Tp
1	1	1	1	0	0	0	(16/128) × Tp		1	1	1	1	0	0	1	(80/128) × Tp
0	0	0	0	1	0	0	(17/128) × Tp		0	0	0	0	1	0	1	(81/128) × Tp
1	0	0	0	1	0	0	(18/128) × Tp		1	0	0	0	1	0	1	(82/128) × Tp
0	1	0	0	1	0	0	(19/128) × Tp (20/128) × Tp		0	1	0	0	1	0	1	(83/128) × Tp (84/128) × Tp
0	0	0	0	1	0	0	(20/128) × Tp (21/128) × Tp		0	0	1	0	1	0	1	(84/128) × Tp (85/128) × Tp
1	0	1	0	1	0	0	(22/128) × Tp		1	0	1	0	1	0	1	(86/128) × Tp
0	1	1	0	1	0	0	(23/128) × Tp		0	1	1	0	1	0	1	(87/128) × Tp
1	1	1	0	1	0	0	(24/128) × Tp		1	1	1	0	1	0	1	(88/128) × Tp
0	0	0	1	1	0	0	(25/128) × Tp		0	0	0	1	1	0	1	(89/128) × Tp
1	0	0	1	1	0	0	(26/128) × Tp		1	0	0	1	1	0	1	(90/128) × Tp
0	1	0	1	1	0	0	(27/128) × Tp		0	1	0	1	1	0	1	(91/128) × Tp
1	1	0	1	1	0	0	(28/128) × Tp (29/128) × Tp		1	1	0	1	1	0	1	(92/128) × Tp
0	0	1	1	1	0	0	(29/128) × Tp (30/128) × Tp		1	0	1	1	1	0	1	(93/128) × Tp (94/128) × Tp
0	1	1	1	1	0	0	(31/128) × Tp		0	1	1	1	1	0	1	(95/128) × Tp
1	1	1	1	1	0	0	(32/128) × Tp		1	1	1	1	1	0	1	(96/128) × Tp
0	0	0	0	0	1	0	(33/128) × Tp		0	0	0	0	0	1	1	(97/128) × Tp
1	0	0	0	0	1	0	(34/128) × Tp		1	0	0	0	0	1	1	(98/128) × Tp
0	1	0	0	0	1	0	(35/128) × Tp		0	1	0	0	0	1	1	(99/128) × Tp
1	1	0	0	0	1	0	(36/128) × Tp		1	1	0	0	0	1	1	(100/128) × Tp
0	0	1	0	0	1	0	(37/128) × Tp		0	0	1	0	0	1	1	(101/128) × Tp
1	0	1	0	0	1	0	(38/128) × Tp (39/128) × Tp		1	0	1	0	0	1	1	(102/128) × Tp (103/128) × Tp
1	1	1	0	0	1	0	(40/128) × Tp		1	1	1	0	0	1	1	(103/128) × Tp (104/128) × Tp
0	0	0	1	0	1	0	(41/128) × Tp		0	0	0	1	0	1	1	(105/128) × Tp
1	0	0	1	0	1	0	(42/128) × Tp		1	0	0	1	0	1	1	(106/128) × Tp
0	1	0	1	0	1	0	(43/128) × Tp		0	1	0	1	0	1	1	(107/128) × Tp
1	1	0	1	0	1	0	(44/128) × Tp		1	1	0	1	0	1	1	(108/128) × Tp
0	0	1	1	0	1	0	(45/128) × Tp		0	0	1	1	0	1	1	(109/128) × Tp
1	0	1	1	0	1	0	(46/128) × Tp		1	0	1	1	0	1	1	(110/128) × Tp
0	1	1	1	0	1	0	(47/128) × Tp		0	1	1	1	0	1	1	(111/128) × Tp (112/128) × Tp
0	0	0	0	1	1	0	(48/128) × Tp (49/128) × Tp		0	0	0	0	1	1	1	(112/128) × Tp (113/128) × Tp
1	0	0	0	1	1	0	(50/128) × Tp		1	0	0	0	1	1	1	(113/128) × Tp (114/128) × Tp
0	1	0	0	1	1	0	(51/128) × Tp		0	1	0	0	1	1	1	(115/128) × Tp
1	1	0	0	1	1	0	(52/128) × Tp		1	1	0	0	1	1	1	(116/128) × Tp
0	0	1	0	1	1	0	(53/128) × Tp		0	0	1	0	1	1	1	(117/128) × Tp
1	0	1	0	1	1	0	(54/128) × Tp		1	0	1	0	1	1	1	(118/128) × Tp
0	1	1	0	1	1	0	(55/128) × Tp		0	1	1	0	1	1	1	(119/128) × Tp
1	1	1	0	1	1	0	(56/128) × Tp		1	1	1	0	1	1	1	(120/128) × Tp
0	0	0	1	1	1	0	(57/128) × Tp		0	0	0	1	1	1	1	(121/128) × Tp
1	0	0	1	1	1	0	(58/128) × Tp (59/128) × Tp		1	0	0	1	1	1	1	(122/128) × Tp (123/128) × Tp
1	1	0	1	1	1	0	(60/128) × Tp		1	1	0	1	1	1	1	(123/128) × Tp (124/128) × Tp
0	0	1	1	1	1	0	(61/128) × Tp		0	0	1	1	1	1	1	(124/128) × Tp (125/128) × Tp
1	0	1	1	1	1	0	(62/128) × Tp		1	0	1	1	1	1	1	(126/128) × Tp
0	1	1	1	1	1	0	(63/128) × Tp		0	1	1	1	1	1	1	(127/128) × Tp
1	1	1	1	1	1	0	(64/128) × Tp		1	1	1	1	1	1	1	(128/128) × Tp
							A circuit (Ch1) /					-				

Note) W10 to W16 : PWM data of PWM circuit (Ch1) / W20 to W26 : PWM data of PWM circuit (Ch2) W30 to W36 : PWM data of PWM circuit (Ch3) / W40 to W46 : PWM data of PWM circuit (Ch4) W50 to W56 : PWM data of PWM circuit (Ch5) / W60 to W66 : PWM data of PWM circuit (Ch6) W70 to W76 : PWM data of PWM circuit (Ch7)

 $Tp = \frac{1}{fp}$

Descriptions of Display data for LCD

(1) Correspondence of output pins to display data for LCD at 1/4 Duty Drive

Contespondent	e or outpu	it philo to t	ispiaj aai	a for LCD
Output Pin	COM1	COM2	COM3	COM4
S1	D1	D2	D3	D4
S2	D5	D6	D7	D8
S3	D9	D10	D11	D12
S4	D13	D14	D15	D16
S5	D17	D18	D19	D20
S6	D21	D22	D23	D24
S7	D25	D26	D27	D28
S8	D29	D30	D31	D32
S9	D33	D34	D35	D36
S10	D37	D38	D39	D40
S11	D41	D42	D43	D44
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68
S18	D69	D70	D71	D72

1/4 Duty Dilve				
Output Pin	COM1	COM2	COM3	COM4
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	D113	D114	D115	D116
S30	D117	D118	D119	D120
S31	D121	D122	D123	D124
S32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136
S35	D137	D138	D139	D140

For example, the table below lists the output states for the S21 output pin.

Display data			Output nin (S21) state				
D81	D82	D83	D84	Output pin (S21) state			
0	0	0	0	The LCD segments corresponding to COM1, COM2, COM3 and COM4 are off.			
0	0	0	1	The LCD segment corresponding to COM4 is on.			
0	0	1	0	The LCD segment corresponding to COM3 is on.			
0	0	1	1	The LCD segments corresponding to COM3 and COM4 are on.			
0	1	0	0	The LCD segment corresponding to COM2 is on.			
0	1	0	1	The LCD segments corresponding to COM2 and COM4 are on.			
0	1	1	0	The LCD segments corresponding to COM2 and COM3 are on.			
0	1	1	1	The LCD segments corresponding to COM2, COM3 and COM4 are on.			
1	0	0	0	The LCD segment corresponding to COM1 is on.			
1	0	0	1	The LCD segments corresponding to COM1 and COM4 are on.			
1	0	1	0	The LCD segments corresponding to COM1 and COM3 are on.			
1	0	1	1	The LCD segments corresponding to COM1, COM3 and COM4 are on.			
1	1	0	0	The LCD segments corresponding to COM1 and COM2 are on.			
1	1	0	1	The LCD segments corresponding to COM1, COM2 and COM4 are on.			
1	1	1	0	The LCD segments corresponding to COM1, COM2 and COM3 are on.			
1	1	1	1	The LCD segments corresponding to COM1, COM2, COM3 and COM4 are on.			

(2) Correspondence of output pins to display data for LCD at 1/3 Duty Drive

Output Pin	COM1	COM2	COM3
S1	D1	D2	D3
S2	D4	D5	D6
S3	D7	D8	D9
S4	D10	D11	D12
S5	D13	D14	D15
S6	D16	D17	D18
S7	D19	D20	D21
S8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
S12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54
S19	D55	D56	D57

IOI LCD at 1/	I LCD at 1/3 Duty Drive						
Output Pi	n CC	M1	COM2	COM3			
S20	D	58	D59	D60			
S21	D	61	D62	D63			
S22	D	64	D65	D66			
S23	D	67	D68	D69			
S24	D	70	D71	D72			
S25	D	73	D74	D75			
S26	D	76	D77	D78			
S27	D	79	D80	D81			
S28	D	82	D83	D84			
S29	D	85	D86	D87			
S30	D	88	D89	D90			
S31	D	91	D92	D93			
S32	D	94	D95	D96			
S33	D	97	D98	D99			
S34	D1	00	D101	D102			
S35	D1	03	D104	D105			
S36/COM	4 D1	06	D107	D108			

Note) S36/COM4 pin is selected segment output.

For example, the table below lists the output states for the S21 output pin.

[Display dat	а				
D61	D62	D63	Output pin (S21) state			
0	0	0	The LCD segments corresponding to COM1, COM2 and COM3 are off.			
0	0	1	The LCD segment corresponding to COM3 is on.			
0	1	0	The LCD segment corresponding to COM2 is on.			
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.			
1	0	0	The LCD segment corresponding to COM1 is on.			
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.			
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.			
1	1	1	The LCD segments corresponding to COM1, COM2 and COM3 are on.			

(3)	Correspondenc	e of outpu	it pins to c	lisp	lay data for LC	D at 1/2 L	Duty Drive
	Output Pin	COM1	COM2		Output Pin	COM1	COM2
	S1	D1	D2		S20	D39	D40
	S2	D3	D4		S21	D41	D42
	S3	D5	D6		S22	D43	D44
	S4	D7	D8		S23	D45	D46
	S5	D9	D10		S24	D47	D48
	S6	D11	D12		S25	D49	D50
	S7	D13	D14		S26	D51	D52
	S8	D15	D16		S27	D53	D54
	S9	D17	D18		S28	D55	D56
	S10	D19	D20		S29	D57	D58
	S11	D21	D22		S30	D59	D60
	S12	D23	D24		S31	D61	D62
	S13	D25	D26		S32	D63	D64
	S14	D27	D28		S33	D65	D66
	S15	D29	D30		S34	D67	D68
	S16	D31	D32		S35	D69	D70
	S17	D33	D34		S36/COM4	D71	D72
	S18	D35	D36		S37/COM3	D73	D74
	S19	D37	D38				

(3) Correspondence of output pins to display data for LCD at 1/2 Duty Drive

Note) S36/COM4 and S37/COM3 pins are selected segment output.

For example, the table below lists the output states for the S21 output pin.

Displa	iy data	Output pin (S21) state			
D41	D42				
0	0	The LCD segments corresponding to COM1 and COM2 are off.			
0	1	The LCD segment corresponding to COM2 is on.			
1	0	The LCD segment corresponding to COM1 is on.			
1	1	The LCD segment corresponding to COM1 and COM2 are on.			

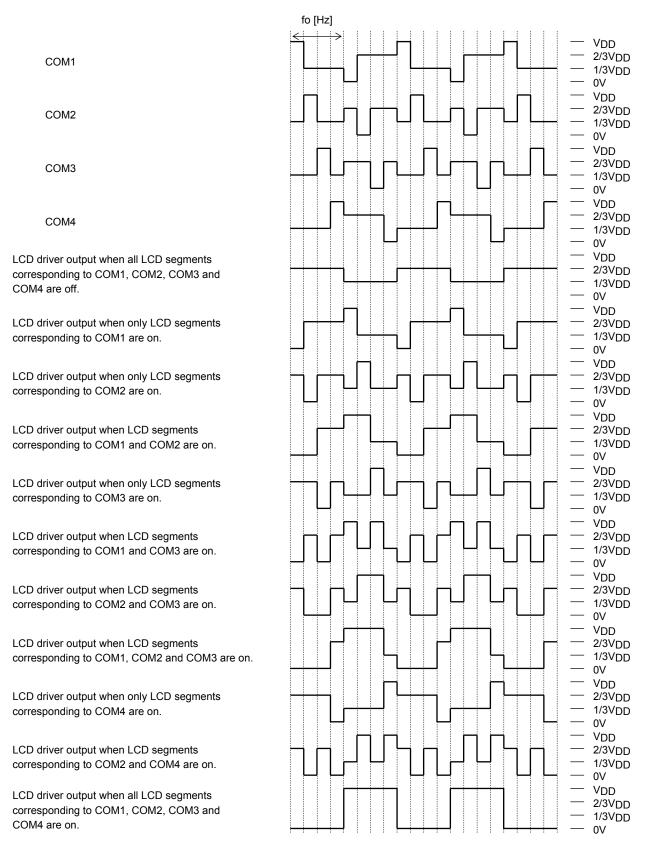
(4) Correspondence of output pins to display data for LCD at Static Drive (1/1 Duty Drive)

conceptine		n pi	no to anopiaj a	
Output Pin	COM1		Output Pin	COM1
S1	D1		S21	D21
S2	D2		S22	D22
S3	D3		S23	D23
S4	D4		S24	D24
S5	D5		S25	D25
S6	D6		S26	D26
S7	D7		S27	D27
S8	D8		S28	D28
S9	D9		S29	D29
S10	D10		S30	D30
S11	D11		S31	D31
S12	D12		S32	D32
S13	D13		S33	D33
S14	D14		S34	D34
S15	D15		S35	D35
S16	D16		S36/COM4	D36
S17	D17		S37/COM3	D37
S18	D18		S38/COM2	D38
S19	D19			
S20	D20			

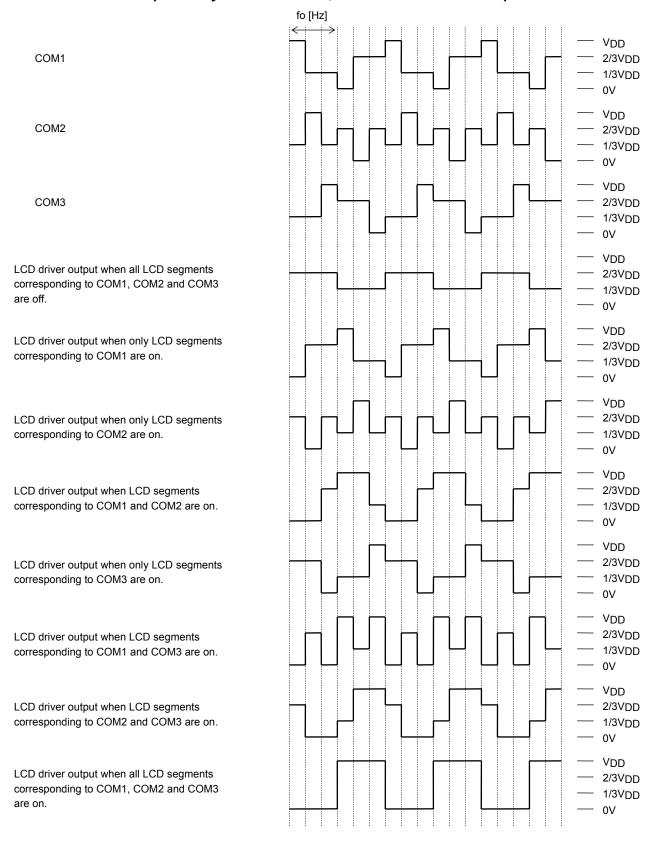
Note) S36/COM4, S37/COM3 and S38/COM2 pins are selected segment output.

East amountaile	the toble haloses	L'ata the a continuet atatas	fourthe CO1 continued in the
For example	The range below	insis the olimbilit states	s for the SZT olliptit pin
i or example,		moto the output bluter	s for the S21 output pin.

Display data						
D21	Output pin (S21) state					
0	The LCD segment to COM1 is off.					
1	The LCD segment to COM1 is on.					

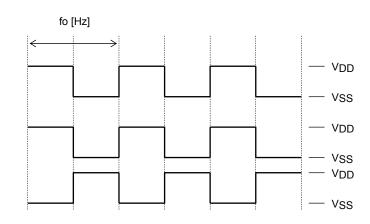

Correspondence	e of output pins to	o di	splay data for	LED
Output Pin	Display data		Output Pin	Display data
LD1	LT1		LD25	LT25
LD2	LT2		LD26	LT26
LD3	LT3		LD27	LT27
LD4	LT4		LD28	LT28
LD5	LT5		LD29	LT29
LD6	LT6		LD30	LT30
LD7	LT7		LD31	LT31
LD8	LT8		LD32	LT32
LD9	LT9		LD33	LT33
LD10	LT10		LD34	LT34
LD11	LT11		LD35	LT35
LD12	LT12		LD36	LT36
LD13	LT13		LD37	LT37
LD14	LT14		LD38	LT38
LD15	LT15		LD39	LT39
LD16	LT16		LD40	LT40
LD17	LT17		LD41	LT41
LD18	LT18		LD42	LT42
LD19	LT19		LD43	LT43
LD20	LT20		LD44	LT44
LD21	LT21		LD45	LT45
LD22	LT22		LD46	LT46
LD23	LT23		LD47	LT47
LD24	LT24		LD48	LT48

Correspondence of output pins to display data for LED


For example, the table below lists the output states for the LD21 output pin.

Display data	Output pin (LD21) state
LT21	
0	LED is off. (High impedance output)
1	LED is on. Note) If (L21A, L21B, L21C) = (0, 0, 0) is set, the LED by 100% duty is on. If (L21A, L21B, L21C) = (1, 0, 0) is set, the LED depending on the contents of PWM data, W10 to W16, of PWM circuit (Ch1) is on. If (L21A, L21B, L21C) = (0, 1, 0) is set, the LED depending on the contents of PWM data, W20 to W26, of PWM circuit (Ch2) is on. If (L21A, L21B, L21C) = (1, 1, 0) is set, the LED depending on the contents of PWM data, W30 to W36, of PWM circuit (Ch3) is on. If (L21A, L21B, L21C) = (0, 0, 1) is set, the LED depending on the contents of PWM data, W40 to W46, of PWM circuit (Ch4) is on. If (L21A, L21B, L21C) = (0, 0, 1) is set, the LED depending on the contents of PWM data, W40 to W46, of PWM circuit (Ch4) is on. If (L21A, L21B, L21C) = (1, 0, 1) is set, the LED depending on the contents of PWM data, W50 to W56, of PWM circuit (Ch5) is on. If (L21A, L21B, L21C) = (0, 1, 1) is set, the LED depending on the contents of PWM data, W60 to W66, of PWM circuit (Ch6) is on. If (L21A, L21B, L21C) = (0, 1, 1) is set, the LED depending on the contents of PWM data, W60 to W66, of PWM circuit (Ch6) is on. If (L21A, L21B, L21C) = (1, 1, 1) is set, the LED depending on the contents of PWM data, W70 to W76, of PWM circuit (Ch7) is on.

LCD drive waveform (1/4-Duty 1/3-Bias drive, Frame inversion drive)


LCD drive waveform (1/3-Duty 1/3-Bias drive, Frame inversion drive)

LCD drive waveform (1/2-Duty 1/2-Bias drive, Frame inversion drive)

fo [Hz] VDD COM1 1/2VDD VSS VDD COM2 1/2VDD Vss - Vdd LCD driver output when all LCD segments corresponding to COM1 and COM2 are off. - Vss - Vdd LCD driver output when only LCD segments corresponding to COM1 are on. - Vss - VDD LCD driver output when only LCD segments corresponding to COM2 are on. - Vss - Vdd LCD driver output when all LCD segments corresponding to COM1 and COM2 are on. - Vss

LCD drive waveform (Static Drive)

COM1

LCD driver output when LCD segments are off.

LCD driver output when LCD segments are on.

				Frame frequency of common and s	egment output waveform fo [Hz]
FC0	FC1	FC2	FC3	Internal oscillator operating mode (Control data OC = "0",	External clock operating mode (Control data OC = "1",
0	0	0	0	fosc = 300 [kHz] typ)	$f_{CK} = 300 [\text{kHz}] \text{typ}$
0	0	0	0	fosc/4992	f _{CK} /4992
1	0	0	0	fosc/4608	f _{CK} /4608
0	1	0	0	fosc/4224	f _{CK} /4224
1	1	0	0	fosc/3840	f _{CK} /3840
0	0	1	0	fosc/3456	f _{CK} /3456
1	0	1	0	fosc/3072	f _{CK} /3072
0	1	1	0	fosc/2688	f _{CK} /2688
1	1	1	0	fosc/2496	f _{CK} /2496
0	0	0	1	fosc/2448	f _{CK} /2448
1	0	0	1	fosc/2304	f _{CK} /2304
0	1	0	1	fosc/2112	f _{CK} /2112
1	1	0	1	fosc/1920	f _{CK} /1920
0	0	1	1	fosc/1728	f _{CK} /1728
1	0	1	1	fosc/1536	f _{CK} /1536
0	1	1	1	fosc/1344	f _{CK} /1344
1	1	1	1	fosc/1152	f _{CK} /1152

LED drive waveform

LD1 to LD6 (PWM Ch1)	< Lighting		\rightarrow	←	(4.4.4			\rightarrow	— V _{OUP} — V _{SS}
LD7 to LD12 (PWM Ch2)		3) × 1p g period > 28) × Tp	>		←	2/128) : 		\rightarrow	— V _{OUP} — V _{SS}
LD13 to LD18 (PWM Ch3)		ting perio /128) × Tr	_		(; ~		28) × T		
LD19 to LD24 (PWM Ch4)		(16/128)	k i	< Lighti	ng per	iod >	6/128)	_ ←	——————————————————————————————————————
LD25 to LD30 (PWM Ch5)		(32/128)	\rightarrow	< Lighti	ng per	iod >	, ← 2/128)	\rightarrow	——————————————————————————————————————
LD31 to LD36 (PWM Ch6)		(48/128)	\rightarrow	< Lighti	ng per	Ľ	< <u> </u>	× Tp	——————————————————————————————————————
LD37 to LD42 (PWM Ch7)	Ĺ	ighting peri (64/128)	~			_< (6/	4/128)	→ × Tp	——————————————————————————————————————
LD43 to LD45	< Continuous I	ights out >	>						— V _{OUP} — V _{SS}
LD46 to LD48	< Continuous	lighting >							— V _{OUP} — V _{SS}
	<tp< td=""><td></td><td></td><td></td><td></td><td>Тр</td><td></td><td>\rightarrow</td><td>Tp=$\frac{1}{\text{fp}}$</td></tp<>					Тр		\rightarrow	Tp= $\frac{1}{\text{fp}}$
	to L6B L1C to L6C	W10	W11	W12	W13	W14 0	W15	W16	PWM (Ch) PWM Ch1, (112/128) x Tp
	0	1 '	'		'	U	'	'	1 WW OIT, (112/120) X IP
LT7 to LT12 L7A to L12A L7B to	D L12B L7C to L120	C W20	W21	W22	W23	W24	W25	W26	PWM (Ch)
1 0	1 0	1	1	1	1	1	0	1	PWM Ch2, (96/128) x Tp

LT13 to LT18	L13A to L18A	L13B to L18B	L13C to L18C	W30	W31	W32	W33	W34	W35	W36	PWM (Ch)
1	1	1	0	1	1	1	1	0	0	1	PWM Ch3, (80/128) x Tp
T19 to T24	1 19A to 1 24A	I 19B to I 24B	1 19C to 1 24C	W40	W41	W42	W43	W44	W45	W46	PWM (Ch)

LT19 to	LT24	L19A to L24A	L19B to L24B	L19C to L24C	W40	W41	W42	W43	W44	W45	W46	PWM (Ch)
1		0	0	1	1	1	1	1	0	0	0	PWM Ch4, (16/128) x Tp

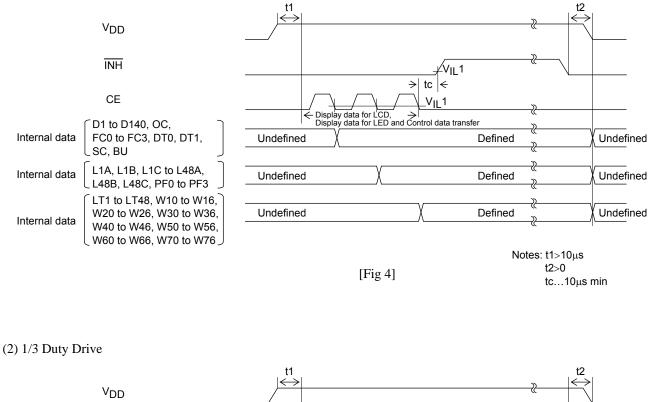
1 1 0 1 1 1 1 1 0 0 PWM Ch5, (32/128) x Tp		LT25 to LT30	L25A to L30A	L25B to L30B	L25C to L30C	W50	W51	W52	W53	W54	W55	W56	PWM (Ch)
	ſ	1	1	0	1	1	1	1	1	1	0	0	PWM Ch5, (32/128) x Tp

[LT31 to LT36	L31A to L36A	L31B to L36B	L31C to L36C	W60	W61	W62	W63	W64	W65	W66	PWM (Ch)
	1	0	1	1	1	1	1	1	0	1	0	PWM Ch6, (48/128) x Tp

LT37 to LT42	L37A to L42A	L37B to L42B	L37C to L42C	W70	W71	W72	W73	W74	W75	W76	PWM (Ch)
1	1	1	1	1	1	1	1	1	1	0	PWM Ch7, (64/128) x Tp

LT43 to LT45	L43A to L45A	L43B to L45B	L43C to L45C	PWM (Ch)
0	0	0	0	No select PWM, Turning off

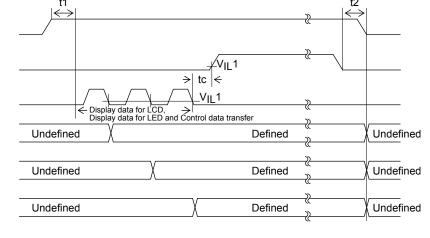
LT46 to LT48	L46A to L48A	L46B to L48B	L46C to L48C	PWM (Ch)
1	0	0	0	No select PWM, Turning on

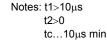

PF0	PF1	PF2	PF3	Frame frequency of LED driver output waveform fp [Hz]	
				Internal oscillator operating mode (Control data OC ="0", fosc = 300 [kHz] typ)	External clock operating mode (Control data OC ="1", f _{CK} = 300 [kHz] typ)
0	0	0	0	fosc/1664	f _{CK} /1664
1	0	0	0	fosc/1536	f _{CK} /1536
0	1	0	0	fosc/1408	f _{CK} /1408
1	1	0	0	fosc/1280	f _{CK} /1280
0	0	1	0	fosc/1152	f _{CK} /1152
1	0	1	0	fosc/1024	f _{CK} /1024
0	1	1	0	fosc/896	f _{CK} /896
1	1	1	0	fosc/768	f _{CK} /768
0	0	0	1	fosc/640	f _{CK} /640
1	0	0	1	fosc/512	f _{CK} /512

Note) If (PF0, PF1, PF2, PF3) = (X, 1, 0, 1) or (X, X, 1, 1) are set, frame frequency (fosc/1408, f_{CK}/1408) of setting (PF0, PF1, PF2, PF3) = (0, 1, 0, 0) is selected.

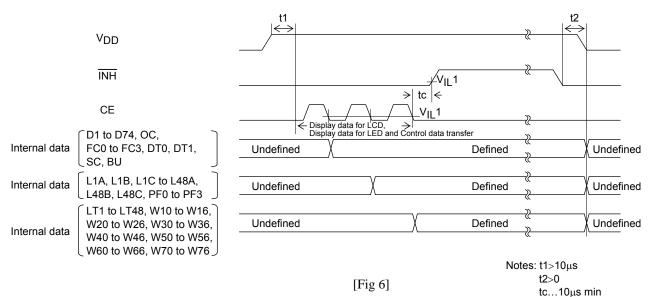
Display Control and the INH Pin

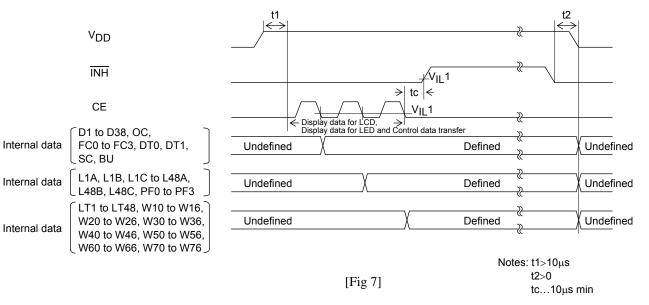
Since the LSI internal data (1/4 Duty Drive: LCD display data D1 to D140 + LED display data LT1 to LT48 + control data, 1/3 Duty Drive: LCD display data D1 to D108 + LED display data LT1 to LT48 + control data, 1/2 Duty Drive: LCD display data D1 to D74 + LED display data LT1 to LT48 + control data, Static Drive: LCD display data D1 to D38 + LED display data LT1 to LT48 + control data) is undefined when power is first applied, applications should set the INH pin low at the same time as power is applied to turn off the display of LCD and LED (LD1 to LD48 • • • High impedance, COM1 and COM2/S38 to COM4/S36 and S35 to S1 • • • VSS level). The serial data is transferred from the controller during this period, and then input $\overline{INH} = "H"$ after the serial data is transferred. This procedure prevents meaningless display at power on. (See [Fig 4], [Fig 5], [Fig 6], [Fig 7])


(1) 1/4 Duty Drive



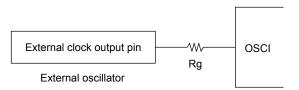
CE


Internal data	D1 to D108, OC, FC0 to FC3, DT0, DT1, SC, BU	
Internal data	L1A, L1B, L1C to L48A, L48B, L48C, PF0 to PF3	
Internal data	LT1 to LT48, W10 to W16 W20 to W26, W30 to W36 W40 to W46, W50 to W56 W60 to W66, W70 to W76	, , ,


[Fig 5]

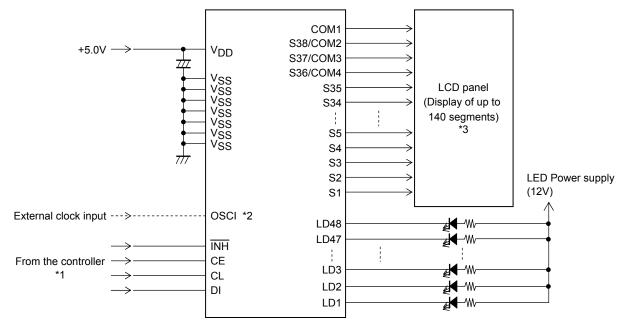
(3) 1/2 Duty Drive

(4) Static Drive (1/1 Duty Drive)



OSCI pin Peripheral Circuit

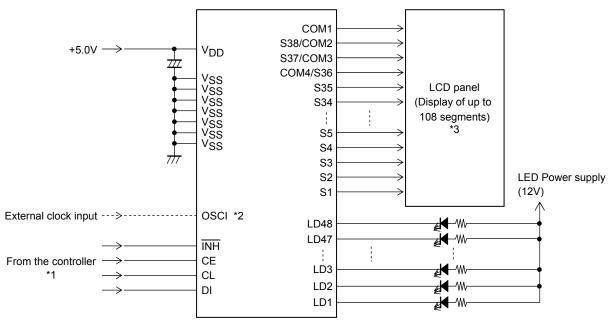
Internal oscillator operating mode (Control data OC ="0")
 Connect OSCI pin to GND if internal oscillator operating mode is selected.



(2) External clock operating mode (Control data OC ="1") Input the external clock (f_{CK} = 100 to 600 [kHz]) to OSCI pin if external clock operating mode is selected.

Application Circuit Example 1

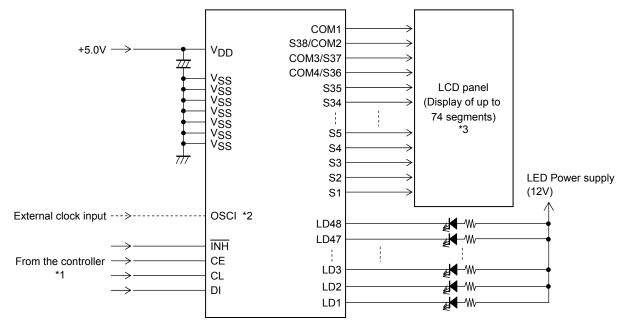
1/4-Duty, 1/3-Bias



*1 Pins (CE, CL, DI, INH) connected to the controller are supported 5V.

- *2 External clock input pin OSCI is supported 5V. Connect to GND at internal oscillator operating mode, and input the external clock (f_{CK} = 100 to 600 [kHz]) to OSCI pin at external clock operating mode. (See "OSCI pin peripheral circuit")
- *3 Load capacity of the LCD panel is recommended 9000 [pF] or less.

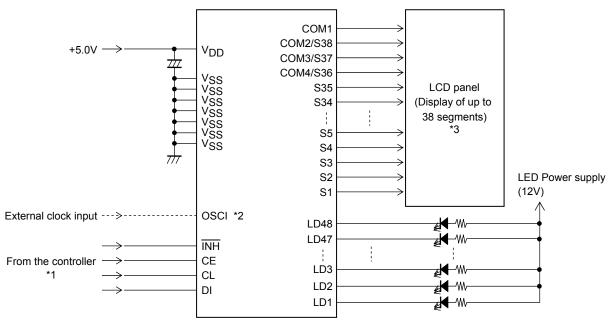
Application Circuit Example 2


1/3-Duty, 1/3-Bias

- *1 Pins (CE, CL, DI, INH) connected to the controller are supported 5V.
- *2 External clock input pin OSCI is supported 5V. Connect to GND at internal oscillator operating mode, and input the external clock (f_{CK} = 100 to 600 [kHz]) to OSCI pin at external clock operating mode. (See "OSCI pin peripheral circuit")
- *3 Load capacity of the LCD panel is recommended 9000 [pF] or less.

Application Circuit Example 3

1/2-Duty, 1/2-Bias



*1 Pins (CE, CL, DI, INH) connected to the controller are supported 5V.

- *2 External clock input pin OSCI is supported 5V. Connect to GND at internal oscillator operating mode, and input the external clock (f_{CK} = 100 to 600 [kHz]) to OSCI pin at external clock operating mode. (See "OSCI pin peripheral circuit")
- *3 Load capacity of the LCD panel is recommended 9000 [pF] or less.

Application Circuit Example 4

Static (1/1-Duty)

- *1 Pins (CE, CL, DI, INH) connected to the controller are supported 5V.
- *2 External clock input pin OSCI is supported 5V. Connect to GND at internal oscillator operating mode, and input the external clock (f_{CK} = 100 to 600 [kHz]) to OSCI pin at external clock operating mode. (See "OSCI pin peripheral circuit")
- *3 Load capacity of the LCD panel is recommended 9000 [pF] or less.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC75805PEH-3H	QIP100E(14X20) (Pb-Free / Halogen Free)	250 / Tray Foam
LC75805PES-3H	QIP100E(14X20) (Pb-Free / Halogen Free)	250 / Tray Foam

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com