

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

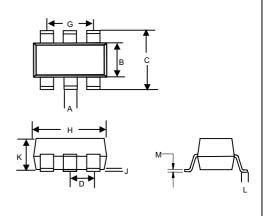
Phone: (818) 701-4933 Fax: (818) 701-4939

MMDT4401

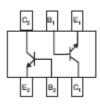
Features

- Halogen free available upon request by adding suffix "-HF"
- Lead Free Finish/RoHS Compliant ("P" Suffix designates RoHS Compliant. See ordering information)
- Ultra-Small Surface Mount Package
- Epitaxial Planar Die Construction Epoxy meets UL 94 V-0 flammability rating
- Moisure Sensitivity Level 1
- Marking:K2X

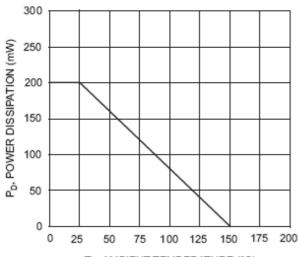
Maximum Ratings @ 25°C Unless Otherwise Specified

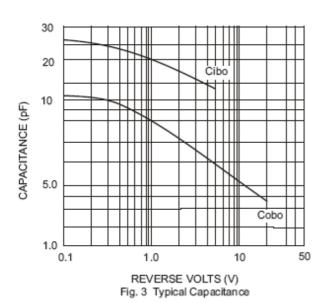

Symbol	Rating	Rating(NPN)	Unit
V_{CEO}	Collector-Emitter Voltage	40	V
V_{CBO}	Collector-Base Voltage	60	V
V_{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current-Continuous	0.6	Α
Pc	Collector Dissipation	0.2	W
T_J	Operating Junction Temperature	-55 to +150	$^{\circ}\mathbb{C}$
T _{STG}	Storage Temperature	-55 to +150	$^{\circ}\mathbb{C}$

Electrical Characteristics @ 25°C Unless Otherwise Specified


Symbol	Parameter		Min	Max	Units
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C =1mAdc, I _B =0)		40		Vdc
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage (I _C =100uAdc, I _E =0)		60		Vdc
$V_{(BR)EBO}$	Collector-Emitter Breakdown Voltage (I _E =100uAdc, I _C =0)		6		Vdc
I _{CBO}	Collector Cutoff Current (V _{CB} =50Vdc,I _E =0)			0.1	uAdc
I _{EBO}	Emitter Cutoff Current (V _{EB} =-5Vdc,I _C =0)			0.1	uAdc
h _{FE}	DC Current Gain $(I_C=0.1\text{mAdc}, V_{CE}=1\text{Vdc})$ $(I_C=1\text{mAdc}, V_{CE}=1\text{Vdc})$ $(I_C=10\text{mAdc}, V_{CE}=1\text{Vdc})$ $(I_C=150\text{mAdc}, V_{CE}=1\text{Vdc})$ $(I_C=500\text{mAdc}, V_{CE}=2\text{Vdc})$		20 40 80 100 40	 300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage (I _c =150mAdc, I _B =15mAdc) (I _c =500mAdc, I _B =50mAdc)			0.4 0.75	Vdc
$V_{BE(sat)}$	Base-Emitter Saturation Voltage (I _C =150mAdc, I _B =15mAdc) (I _C =500mAdc, I _B =50mAdc)		0.75	0.95 1.2	Vdc
f⊤	Current Gain-Bandwidth Product (V _{CE} =10.0Vdc, I _C =20mAdc, f=100MHz)		250		MHz
C _{ob}	Output Capacitance (V _{CB} =5Vdc, f=1.0MHz, I _E =0)			6.5	pF
t _d	Delay Time	V_{CC} =30V, I_{C} =150mA,		15	ns
t _r	Rise Time	V_{BE} =2.00V, I_{B1} =15.00mA		20	ns
t _S	Storage Time	V _{CC} =30V, I _C =150mA,		225	ns
t_f	Fall Time	$I_{B1}=-I_{B2}=15mA$		30	ns

NPN Plastic-Encapsulate Transistors


SOT-363


DIMENSIONS					
	INCHES		MM		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.006	.014	0.15	0.35	
В	.045	.053	1.15	1.35	
С	.085	.096	2.15	2.45	
D	.02	6	0.65N	ominal	
G	.047	.055	1.20	1.40	
Н	.071	.087	1.80	2.20	
J		.004		0.10	
K	.035	.043	0.90	1.10	
Ĺ	.010	.018	0.26	0.46	
M	.003	.006	0.08	0.15	

Micro Commercial Components

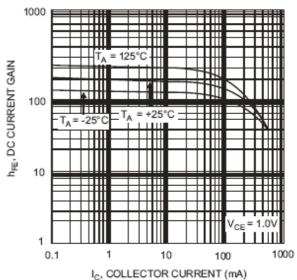
T_A, AMBIENT TEMPERATURE (°C) Fig. 1 Max Power Dissipation vs Ambient Temperature

O.1

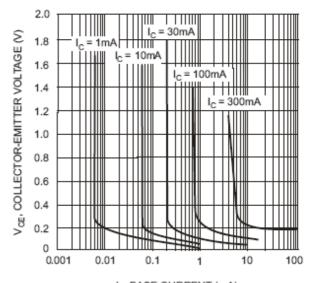
O.2

O.4

T_A = 150°C


T_A = 150°C

T_A = -50°C


1 10 100 1000

0.5

I_C, COLLECTOR CURRENT (mA) Fig. 5 Collector Emitter Saturation Voltage vs. Collector Current

I_C, COLLECTOR CURRENT (mA) Fig. 2 Typical DC Current Gain vs Collector Current

I_B, BASE CURRENT (mA) Fig. 4 Typical Collector Saturation Region

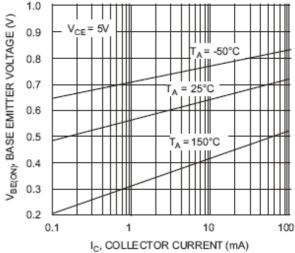


Fig. 6 Base Emitter Voltage vs. Collector Current

Micro Commercial Components

Ordering Information:

Device	Packing
Part Number-TP	Tape&Reel 3Kpcs/Reel

Note: Adding "-HF" suffix for halogen free, eg. Part Number-TP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com