

Sample &

Buy

TS5A3159

SCDS174C -AUGUST 2004-REVISED MARCH 2015

TS5A3159 1-Ω SPDT Analog Switch

Technical

Documents

1 Features

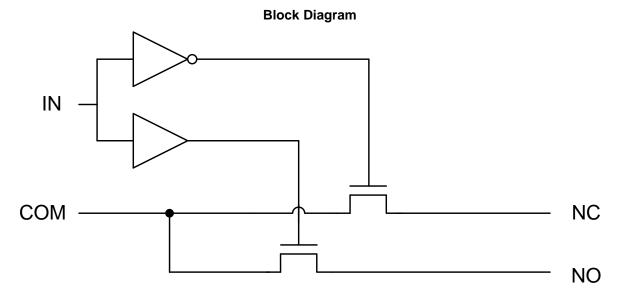
- Specified Break-Before-Make Switching
- Low ON-State Resistance (1 Ω)
- Control Inputs are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Mobile Phones
- Consumer and Computing
- Portable Instrumentation

3 Description

Tools &


Software

The TS5A3159 device is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance and an excellent ON-state resistance matching, with the break-before-make feature to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TS5A3159	SOT-23 (6)	2.90 mm × 1.60 mm		
155A3159	SC70 (6)	2.00 mm × 1.25 mm		

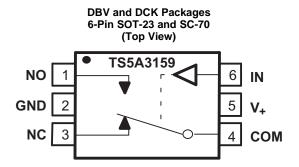
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1	Feat	ures 1
2	App	lications 1
3	Desc	cription 1
4	Revi	sion History 2
5	Pin (Configuration and Functions 3
6		cifications 3
	6.1	Absolute Maximum Ratings 3
	6.2	ESD Ratings 3
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics for 5-V Supply 4
	6.6	Electrical Characteristics for 3.3-V Supply 5
	6.7	Electrical Characteristics for 2.5-V Supply 6
	6.8	Electrical Characteristics for 1.8-V Supply
	6.9	Switching Characteristics for 5-V Supply
	6.10	Switching Characteristics for 3.3-V Supply
	6.11	Switching Characteristics for 2.5-V Supply 9
	6.12	Switching Characteristics for 1.8-V Supply
	6.13	Typical Characteristics 10
7	Para	meter Measurement Information 12

4 Revision History

Changes from Revision B (September 2004) to Revision C	Page
 Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information tab Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, Mechanical, Packaging, and Orderable Information section. 	n , and
Changes from Revision A (September 2004) to Revision B	Page
Removed Ordering Information table.	1
Changes from Original (August 2004) to Revision A	Page
Corrected Figure 11 graphic	12


8 Detailed Description 16 8.2 Functional Block Diagram 16 8.3 Feature Description...... 16 8.4 Device Functional Modes...... 16 Application and Implementation 17 9 9.1 Application Information..... 17 9.2 Typical Application 17

10	Pow	er Supply Recommendations	18
11	Layo	out	18
	11.1	Layout Guidelines	18
	11.2	Layout Example	18
12	Devi	ce and Documentation Support	19
	12.1	Device Support	19
	12.2	Documentation Support	20
	12.3	Trademarks	20
	12.4	Electrostatic Discharge Caution	20
	12.5	Glossary	20
13		hanical, Packaging, and Orderable mation	20

www.ti.com

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	NO	I/O	Digital control pin to select between NC and NO
2	GND	_	Ground
3	NC	I/O	Normally closed switch port
4	COM	I/O	Common switch port
5	V+		Power supply
6	IN	I	Switch select. High = COM connected to NO; Low = COM connected to NC.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V+	Supply voltage ⁽²⁾		-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	V ₊ + 0.5	V
I _{I/OK}	Analog port diode current	V_{NO} , V_{COM} < 0 or V_{NO} , V_{COM} > V_{+}		±50	mA
I _{NO} I _{COM}	ON-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}		±200	mA
	ON-state peak switch current ⁽⁵⁾			±400	mA
V _{IN}	Digital input voltage ⁽²⁾⁽³⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _{IN} < 0		-50	mA
	Continuous current through V ₊ or GN	Continuous current through V ₊ or GND		±100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(4) This value is limited to 5.5 V maximum.

(5) Pulse at 1-ms duration < 10% duty cycle.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD) E	lectrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
 JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SCDS174C - AUGUST 2004 - REVISED MARCH 2015

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Switch input/output voltage	0	V+	V
V+	Supply voltage	1.65	5.5	V
VI	Control input voltage	0	5.5	V
T _A	Operating temperature	-40	85	°C

6.4 Thermal Information

		TS5A3		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC-70)	UNIT
		6 PINS	6 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	165	165	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 5-V Supply

 V_{\star} = 4.5 V to 5.5 V and T_{A} = –40°C to 85°C (unless otherwise noted)

Р	ARAMETER	TEST CONDITIO	NS	TA	V.	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Sw	itch								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V+	V
r _{peak}	Peak ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -30 \text{ mA},$	Switch ON, see Figure 10	25°C Full	4.5 V		1	1.5 1.5	Ω
r _{on}	ON-state resistance	V_{NO} or V_{NC} = 2.5 V, I _{COM} = -30 mA,	Switch ON, see Figure 10	25°C Full	4.5 V		0.75	1.1 1.1	Ω
∆r _{on}	ON-state resistance match between channels	V_{NO} or V_{NC} = 2.5 V, I_{COM} = -30 mA,	Switch ON, see Figure 10	25°C	4.5 V		0.1		Ω
-	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -30 \text{ mA}$	Switch ON,	25°C	4.5 V		0.233		Ω
r _{on(flat)}	flatness	$V_{NO} \text{ or } V_{NC}$ = 1 V, 1.5 V, 2.5 V, I_{COM} = –30 mA	see Figure 10	25°C	4.3 V	0.15		52	
I _{NC(OFF)} ,	NC, NO	V_{NC} or $V_{NO} = 4.5 V$,	Switch OFF,	25°C	5.5 V	-2	0.2	2	nA
I _{NO(OFF)}	Off leakage current	$V_{COM} = 0 V,$	see Figure 11	Full	0.0 1	-20		20	
NC(ON),	NC, NO	V_{NC} or $V_{NO} = 4.5$ V,	Switch ON,	25°C	5.5 V	-4	2.8	4	nA
I _{NO(ON)}	On leakage current	V _{COM} = Open,	see Figure 12	Full		-40		40	
I _{COM(ON)}	COM On leakage current	$V_{NC} \text{ or } V_{NO}$ = 4.5 V or Open, V_{COM} = 4.5 V,	Switch ON, see Figure 12	25°C Full	5.5 V	-4 -40	0.47	4 40	nA
Digital Inpu	ut (IN)			-				Ļ	
V _{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		Full	5.5 V	-1		1	μA
Dynamic				-				Ļ	
		$V_{COM} = V_+,$	C ₁ = 35 pF,	25°C	4.5 V		20	35	
t _{ON}	Turnon time	$R_{L} = 50 \Omega,$	see Figure 14	Full	to 5.5 V			40	ns
	Town of the s	$V_{COM} = V_+,$	$C_1 = 35 \text{ pF},$	25°C	4.5 V		15	20	
t _{OFF}	Turnoff time	$R_{L} = 50 \Omega,$	see Figure 14	Full	to 5.5 V			35	ns

Electrical Characteristics for 5-V Supply (continued)

$V_{+} = 4.5 \text{ V}$ to 5.5 V and T	$_{\Lambda} = -40^{\circ}$ C to 85°C (unles	s otherwise noted)
$r_{\pm} = 1.0$ r to 0.0 r and r		

F	PARAMETER	TEST CONDITIONS			V.	MIN TYP ⁽¹⁾	MAX	UNIT
t _{BBM}	Break-before-make time	$ \begin{array}{l} V_{NC} = V_{NO} = V_{+} \ / \ 2, \\ R_{L} = 50 \ \Omega, \end{array} $	C _L = 35 pF, see Figure 15	25°C Full	4.5 V to 5.5 V	1 12 1	14.5	ns
Q _C	Charge injection	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	See Figure 19	25°C	5 V	36		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 13	25°C	5 V	23		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 13	25°C	5 V	84		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{+} \text{ or GND},$	Switch ON, see Figure 13	25°C	5 V	84		pF
C _{IN}	Digital input capacitance	$V_{IN} = V_{+}$ or GND,	See Figure 13	25°C	5 V	2.1		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 16	25°C	5 V	100		MHz
O _{ISO}	OFF isolation	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch OFF, see Figure 17	25°C	5 V	-65		dB
X _{TALK}	Crosstalk	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch ON, see Figure 18	25°C	5 V	-65		dB
THD	Total harmonic distortion		f = 600 Hz to 20 kHz, see Figure 20	25°C	5 V	0.01%		
Supply								
l+	Positive supply current	$V_{IN} = V_+ \text{ or GND},$	Switch ON or OFF	Full	5.5 V		0.1	μA

6.6 Electrical Characteristics for 3.3-V Supply

V_{\star} = 3 V to 3.6 V and T_{A} = –40°C to 85°C (unless otherwise noted)

Analog signal range Peak ON-state resistance ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, see Figure 10	25°C		0		V+	V
Peak ON-state resistance	$I_{COM} = -24 \text{ mA},$,	25°C		0		V+	V
resistance	$I_{COM} = -24 \text{ mA},$,	25°C					
		see Figure 10		3 V		1.35	2.1	Ω
ON-state resistance		U	Full	3 V			2.1	12
UN-State resistance	V_{NO} or $V_{NC} = 2 V$,	Switch ON,	25°C	3 V		1.15	1.5	Ω
	$I_{COM} = -24 \text{ mA},$	see Figure 10	Full	3 V			1.5	12
ON-state resistance match between channels	V_{NO} or $V_{NC} = 2 V$, 0.8 V, $I_{COM} = -24 \text{ mA}$,	Switch ON, see Figure 10	25°C	3 V		0.11		Ω
ON state registeres	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON	25°C			0.225		
flatness	V_{NO} or $V_{NC} = 2 V$, 0.8 V, $I_{COM} = -24 \text{ mA}$,	see Figure 10	25°C	3 V		0.25		Ω
NC, NO Off leakage current	V_{NC} or $V_{NO} = 3 V$, $V_{COM} = 0$,	Switch OFF, see Figure 11	25°C	3.6 V		0.2		nA
NC, NO On leakage current	V_{NC} or V_{NO} = 3 V, V_{COM} = Open,	Switch ON, see Figure 12	25°C	3.6 V		2.8		nA
COM On leakage current	V_{NC} or $V_{NO} = 3 V$ or Open, $V_{COM} = 3 V$,	Switch ON, see Figure 12	25°C	3.6 V		0.47		nA
	match between channels ON-state resistance flatness NC, NO Off leakage current NC, NO On leakage current COM	$\label{eq:constant} \begin{array}{ll} \text{match} & \text{V}, \\ \text{between channels} & \text{I}_{COM} = -24 \text{ mA}, \\ \\ \text{ON-state resistance} \\ \begin{array}{l} 0 \leq \text{V}_{\text{NO}} \text{ or } \text{V}_{\text{NC}} \leq \text{V}_{+}, \\ \text{I}_{\text{COM}} = -24 \text{ mA}, \\ \\ \hline \text{V}_{\text{NO}} \text{ or } \text{V}_{\text{NC}} = 2 \text{ V}, 0.8 \\ \text{V}, \\ \text{I}_{\text{COM}} = -24 \text{ mA}, \\ \\ \hline \text{V}_{\text{NC}} \text{ or } \text{V}_{\text{NC}} = 3 \text{ V}, \\ \\ \hline \text{Off leakage current} & \text{V}_{\text{NC}} \text{ or } \text{V}_{\text{NO}} = 3 \text{ V}, \\ \hline \text{V}_{\text{COM}} = 0, \\ \\ \hline \text{NC}, \text{NO} \\ \text{On leakage current} & \text{V}_{\text{NC}} \text{ or } \text{V}_{\text{NO}} = 3 \text{ V}, \\ \hline \text{V}_{\text{COM}} = \text{Open}, \\ \hline \text{On leakage current} & \text{V}_{\text{NC}} \text{ or } \text{V}_{\text{NO}} = 3 \text{ V}, \\ \hline \text{V}_{\text{COM}} = 3 \text{ V}, \\ \hline \text{Open}, \\ \hline \text{V}_{\text{COM}} = 3 \text{ V}, \end{array} \right.$		match between channelsV, $I_{COM} = -24 \text{ mA},$ Switch ON, see Figure 1025°CON-state resistance flatness $0 \le V_{NO} \text{ or } V_{NC} \le V_{+},$ $I_{COM} = -24 \text{ mA},$ Switch ON, see Figure 1025°CNC, NO Off leakage current $V_{NO} \text{ or } V_{NC} = 2 \text{ V}, 0.8$ $V_{COM} = -24 \text{ mA},$ Switch ON, see Figure 1025°CNC, NO Off leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V},$ $V_{COM} = 0,$ Switch OFF, see Figure 1125°CNC, NO On leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V},$ $V_{COM} = 0pen,$ Switch ON, see Figure 1225°CCOM On leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V}$ or $V_{COM} = 3 \text{ V},$ Switch ON, see Figure 1225°C	match between channelsV, I COM = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ ON-state resistance flatness $0 \le V_{NO}$ or $V_{NC} \le V_{+}$, I COM = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ ON-state resistance flatness $0 \le V_{NO}$ or $V_{NC} \le V_{+}$, I COM = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ NC, NO Off leakage current V_{NC} or $V_{NO} = 3 \vee$, $V_{COM} = 0$,Switch OFF, see Figure 11 $25^{\circ}C$ $3.6 \vee$ NC, NO On leakage current V_{NC} or $V_{NO} = 3 \vee$, $V_{COM} = Open,Switch ON,see Figure 1225^{\circ}C3.6 \veeCOMOpen,V_{NC} or V_{NO} = 3 \vee orOpen,Switch ON,see Figure 1225^{\circ}C3.6 \vee$	match between channelsV, I_{COM} = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ 3 V ON-state resistance flatness $0 \le V_{NO} \text{ or } V_{NC} \le V_{+},$ $I_{COM} = -24 mA,$ Switch ON, see Figure 10 $25^{\circ}C$ 3 V ON-state resistance flatness $0 \le V_{NO} \text{ or } V_{NC} = 2 \text{ V}, 0.8$ $V_{,}$ $I_{COM} = -24 mA,$ Switch ON, see Figure 10 $25^{\circ}C$ 3 V NC, NO Off leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V},$ $V_{COM} = 0,$ Switch OFF, see Figure 11 $25^{\circ}C$ 3.6 V NC, NO On leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V},$ $V_{COM} = Open,$ Switch ON, see Figure 12 $25^{\circ}C$ 3.6 V COM On leakage current $V_{NC} \text{ or } V_{NO} = 3 \text{ V}$ Open,Switch ON, see Figure 12 $25^{\circ}C$ 3.6 V	match between channelsV, I_{COM} = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ 0.11 ON-state resistance flatness $0 \le V_{NO} \text{ or } V_{NC} \le V_{+},$ $I_{COM} = -24 mA,$ $0 \le V_{NO} \text{ or } V_{NC} \le V_{+},$ $I_{COM} = -24 mA,$ Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ 0.225 NC, NO Off leakage current $V_{NC} \text{ or } V_{NC} = 2 \vee, 0.8$ $V_{COM} = 0,$ Switch OFF, see Figure 11 $25^{\circ}C$ $3 \vee$ 0.225 NC, NO Off leakage current $V_{NC} \text{ or } V_{NO} = 3 \vee,$ $V_{COM} = 0,$ Switch OFF, see Figure 11 $25^{\circ}C$ $3.6 \vee$ 0.2 NC, NO On leakage current $V_{NC} \text{ or } V_{NO} = 3 \vee,$ $V_{COM} = Open,$ Switch ON, see Figure 12 $25^{\circ}C$ $3.6 \vee$ 2.8 COM On leakage current $V_{NC} \text{ or } V_{NO} = 3 \vee \text{ or } V_{NO} = 3 \vee \text{ or } Switch ON,$ see Figure 12 $25^{\circ}C$ $3.6 \vee$ 2.8	match between channelsV, I_{COM} = -24 mA,Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ 0.11 ON-state resistance flatness $0 \leq V_{NO}$ or $V_{NC} \leq V_{+}$, $I_{COM} = -24 mA,$ Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ 0.225 NC, NO Off leakage current V_{NO} or $V_{NC} = 2 \vee$, 0.8 $V_{COM} = -24 mA,$ Switch ON, see Figure 10 $25^{\circ}C$ $3 \vee$ 0.225 NC, NO Off leakage current V_{NC} or $V_{NO} = 3 \vee$, $V_{COM} = 0,$ Switch OFF, see Figure 11 $25^{\circ}C$ $3.6 \vee$ 0.2 NC, NO On leakage current V_{NC} or $V_{NO} = 3 \vee$, $V_{COM} = Open,$ Switch ON, see Figure 12 $25^{\circ}C$ $3.6 \vee$ 0.2 COM On leakage current V_{NC} or $V_{NO} = 3 \vee$, $V_{COM} = Open,$ Switch ON, see Figure 12 $25^{\circ}C$ $3.6 \vee$ 2.8 COM On leakage current V_{NC} or $V_{NO} = 3 \vee$ or $Open,$ Switch ON, see Figure 12 $25^{\circ}C$ $3.6 \vee$ 0.47

(1) $T_A = 25^{\circ}C$.

Electrical Characteristics for 3.3-V Supply (continued)

	PARAMETER	TEST CO	NDITIONS	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IH}	Input logic high			Full		2		5.5	V
VIL	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		Full	3.6 V	-1		1	μA
Dynamic									
		$V_{COM} = V_+,$	C _L = 35 pF,	25°C	3 V		30	40	
t _{ON}	Turnon time	$R_L = 50 \Omega,$	see Figure 14	Full	to 3.6 V			55	ns
		$V_{COM} = V_+,$	C ₁ = 35 pF,	25°C	3 V		20	25	
t _{OFF}	Turnoff time	$R_L = 50 \Omega,$	see Figure 14	Full	to 3.6 V			40	ns
	Break-before-make	$V_{NC} = V_{NO} = V_{+} / 2,$	$C_1 = 35 pF_1$	25°C	3 V	1	21	29	
t _{BBM}	time	$R_{\rm L} = 50 \ \Omega,$	see Figure 15	Full	to 3.6 V	1			ns
Q _C	Charge injection	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	see Figure 19	25°C	3.3 V		20		рС
$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V+$ or GND,	Switch OFF, see Figure 13	25°C	3.3 V		23		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 13	25°C	3.3 V		84		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$	Switch ON, see Figure 13	25°C	3.3 V		84		pF
C _{IN}	Digital input capacitance	$V_{IN} = V_+ \text{ or GND},$	See Figure 13	25°C	3.3 V		2.1		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 16	25°C	3.3 V		100		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, see Figure 17	25°C	3.3 V		-65		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, see Figure 18	25°C	3.3 V		-65		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \end{array} $	f = 600 Hz to 20 kHz, see Figure 20	25°C	3.3 V		0.015%		
Supply									
I+	Positive supply current	$V_{IN} = V_+ \text{ or GND},$	Switch ON or OFF	Full	3.6 V			0.1	μA

 V_{\star} = 3 V to 3.6 V and T_{A} = –40°C to 85°C (unless otherwise noted)

6.7 Electrical Characteristics for 2.5-V Supply

 V_{\star} = 2.3 V to 2.7 V and T_{A} = –40°C to 85°C (unless otherwise noted)

P/	ARAMETER	TEST CON	T _A	۷.	MIN	TYP ⁽¹⁾	MAX	UNIT	
Analog Swi	tch								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V+	V
_	Peak ON-state	$0 \le V_{NO}$ or $V_{NC} \le V_+$,	Switch ON,	25°C	0.5.1		1.7	2.7	0
r _{peak}	resistance	$I_{COM} = -8 \text{ mA},$	see Figure 10	Full	2.5 V			2.7	Ω
	ON-state	V_{NO} or $V_{NC} = 1.8 V$,	Switch ON,	25°C	2.5 V		1.45	2	Ω
r _{on}	resistance	$I_{COM} = -8 \text{ mA},$	see Figure 10	Full	2.5 V			2	Ω
Δr _{on}	ON-state resistance match between channels	$\label{eq:VNO} \begin{array}{l} V_{NO} \mbox{ or } V_{NC} = 0.8 \mbox{ V}, \mbox{ 1.8 V}, \\ I_{COM} = -8 \mbox{ mA}, \end{array}$	Switch ON, see Figure 10	25°C	2.5 V		0.7		Ω

Electrical Characteristics for 2.5-V Supply (continued)

P	PARAMETER	TEST CON	DITIONS	TA	V.	MIN TYP ⁽¹⁾	MAX	UNIT
r _{on(flat)}	ON-state resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -8 \text{ mA},$	Switch ON,	25°C	2.5 V	0.5		Ω
'on(nat)	flatness	$\label{eq:VNO} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 0.8 \text{ V}, \ 1.8 \text{ V} \\ I_{COM} = -8 \text{ mA}, \end{array}$	see Figure 10	25°C	2.0 1	0.45		
I _{NC(OFF)} , I _{NO(OFF)}	NC, NO Off leakage current		Switch OFF, see Figure 11	25°C	2.7 V	0.2		nA
I _{NC(ON)} , I _{NO(ON)}	NC, NO On leakage current	V_{NC} or V_{NO} = 2.3 V, V_{COM} = Open,	Switch ON, see Figure 12	25°C	2.7 V	2.8		nA
I _{COM(ON)}	COM On leakage current	V_{NC} or V_{NO} = 2.3 V or Open, V_{COM} = 2.3 V,	Switch ON, see Figure 12	25°C	2.7 V	0.47		nA
Digital Inpu	ut (IN)							
V _{IH}	Input logic high			Full		1.8	5.5	V
V _{IL}	Input logic low			Full		0	0.6	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		Full	2.7 V	-1	1	μA
Dynamic								
	_		C _I = 35 pF,	25°C	2.3 V	40	55	
t _{ON}	Turnon time	$V_{COM} = V_+, R_L = 50 \ \Omega,$	see Figure 14	Full	to 2.7 V		70	ns
			C _L = 35 pF,	25°C	2.3 V	30	40	
t _{OFF}	Turnoff time	$V_{COM} = V_+, R_L = 50 \ \Omega,$	see Figure 14	Full	to 2.7 V		55	ns
	Break-before-make	$V_{NC} = V_{NO} = V_{+} / 2,$	C _L = 35 pF,	25°C	2.3 V	1 33	39	
t _{BBM}	time	$R_{\rm L} = 50 \ \Omega,$	see Figure 15	Full	to 2.7 V	1		ns
Q _C	Charge injection	$C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V},$	See Figure 19	25°C	2.5 V	13		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch OFF, see Figure 13	25°C	2.5 V	23		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 13	25°C	2.5 V	84		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{+} \text{ or } GND,$	Switch ON, see Figure 13	25°C	2.5 V	84		pF
C _{IN}	Digital input capacitance	$V_{IN} = V+ \text{ or } GND,$	See Figure 13	25°C	2.5 V	2.1		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 16	25°C	2.5 V	100		MHz
O _{ISO}	OFF isolation	$\begin{aligned} R_L &= 50 \ \Omega, \\ f &= 1 \ MHz, \end{aligned}$	Switch OFF, see Figure 17	25°C	2.5 V	-64		dB
X _{TALK}	Crosstalk	$\begin{aligned} R_L &= 50 \ \Omega, \\ f &= 1 \ MHz, \end{aligned}$	Switch ON, see Figure 18	25°C	2.5 V	-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ f = 600 Hz to 20 kHz,	C _L = 50 pF, see Figure 20	25°C	2.5 V	0.025%		
Supply					· · · ·			
l+	Positive supply current	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	Full	2.7 V		0.1	μA

6.8 Electrical Characteristics for 1.8-V Supply

 V_{\star} = 1.65 V to 1.95 V and T_{A} = –40°C to 85°C (unless otherwise noted)

P	ARAMETER	TEST CONDI	TIONS	T _A	V.	MIN TYP ⁽¹⁾	MAX	UNIT
Analog Sw	vitch							
V _{COM} , V _{NO} , V _{NC}	Analog signal					0	V+	V
r _{peak}	Peak ON- resistance	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -2 \text{ mA},$	Switch ON, see Figure 10	25°C Full	1.8 V	4	4.9 4.9	Ω
ſon	ON-state resistance	V_{NO} or V_{NC} = 1.5 V, I _{COM} = -2 mA,	Switch ON, see Figure 10	25°C Full	1.8 V	1.7	3.2 3.2	Ω
	ON-state	$V_{NO} \text{ or } V_{NC} = 0.6 \text{ V}, 1.5 \text{ V},$	Switch ON,	25°C		0.7	3.2	
∆r _{on}	resistance match between channels	$V_{NO} \text{ of } V_{NC} = 0.0 \text{ v}, 1.3 \text{ v},$ $I_{COM} = -2 \text{ mA},$	see Figure 10	Full	1.8 V	0.7		Ω
		$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$		25°C		1.85		
on(flat)	ON-state resistance flatness	$I_{COM} = -2 \text{ mA},$	Switch ON, see Figure 10	Full 25°C	1.8 V	1.85 0.9		Ω
		V_{NO} or $V_{NC} = 0.6$ V, 1.5 V, $I_{COM} = -2$ mA,	J	Full		0.9		
NC(OFF), NO(OFF)	NC, NO OFF leakage current	$\label{eq:VNC} \begin{array}{l} V_{NC} \text{ or } V_{NO} = 1.65 \text{ V}, \\ V_{COM} = 0, \end{array}$	Switch OFF, see Figure 11	25°C	1.95 V	0.2		nA
NC(ON), NO(ON)	NC, NO ON leakage current	V_{NC} or V_{NO} = 1.65 V, V_{COM} = Open,	Switch ON, see Figure 12	25°C	1.95 V	2.8		nA
COM(ON)	COM ON leakage current		Switch ON, see Figure 12	25°C	1.95 V	0.47		nA
Digital Inpu	ut (IN)	Γ			1 1			
V _{IH}	Input logic high			Full		1.5	5.5	V
V _{IL}	Input logic low			Full		0	0.6	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 5.5 V or 0		Full	1.95 V	-1	1	μΑ
Dynamic		-						
	-	$V_{COM} = V_+,$	C ₁ = 35 pF,	25°C	1.65 V	65	70	
ON	Turnon time	$R_L = 50 \Omega,$	see Figure 14	Full	to 1.95 V		95	ns
		$V_{COM} = V_+,$	$C_{1} = 35 \text{ pF},$	25°C	1.65 V	40	55	
OFF	Turnoff time	$R_L = 50 \Omega,$	see Figure 14	Full	to 1.95 V		70	ns
	Break-before-make	$V_{NC} = V_{NO} = V_{+} / 2,$	$C_{l} = 35 pF_{l}$	25°C	1.65 V	1 60	72	
BBM	time	$R_L = 50 \Omega,$	see Figure 15	Full	to 1.95 V	0.5		ns
с С	Charge injection	$C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V},$	See Figure 19	25°C	1.8 V	13		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or V_{NO} = V+ or GND,	Switch OFF, see Figure 13	25°C	1.8 V	23		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{+}$ or GND,	Switch ON, see Figure 13	25°C	1.8 V	84		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_+ \text{ or GND},$	Switch ON, see Figure 13	25°C	1.8 V	84		pF
C _{IN}	Digital input capacitance	$V_{IN} = V_+ \text{ or GND},$	See Figure 13	25°C	1.8 V	2.1		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON, see Figure 16	25°C	5.5 V	100		MHz
O _{ISO}	OFF isolation	$ \begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array} $	Switch OFF, see Figure 17	25°C	1.8 V	-63		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, see Figure 18	25°C	1.8 V	-63		dB

(1) $T_A = 25^{\circ}C$.

8 Submit Documentation Feedback

Electrical Characteristics for 1.8-V Supply (continued)

 $V_{+} = 1.65$ V to 1.95 V and $T_{A} = -40^{\circ}$ C to 85°C (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	T _A	٧,	MIN TYP ⁽¹⁾	MAX	UNIT
Supply								
l+	Positive supply current	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	Full	1.8 V		0.1	μA

6.9 Switching Characteristics for 5-V Supply

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	T _A	٧,	MIN	TYP	MAX	UNIT
	Turnon time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	4.5 V to		20	35	
t _{ON}	rumon time		see Figure 14	Full	5.5 V			40	ns
	Turn off time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	4.5 V to		15	20	~~~
t _{OFF}	Turnoff time	$R_L = 50 \Omega$,	see Figure 14	Full	5.5 V			35	ns
+	Break-before-	$V_{\rm NC} = V_{\rm NO} = V_{+}/2,$	C _L = 35 pF,	25°C	4.5 V to	1	12	14.5	20
t _{BBM}	make time	$R_L = 50 \Omega$,	see Figure 15	Full	5.5 V	1			ns

6.10 Switching Characteristics for 3.3-V Supply

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	TA	V.	MIN	TYP	MAX	UNIT
+	Turnon time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	3 V to		30	40	20
t _{ON}	rumon time	$R_L = 50 \Omega$,	see Figure 14	Full	3.6 V			55	ns
+	Turnoff time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	3 V to		20	25	20
t _{OFF}	rumon ume	$V_{COM} = V_+, \\ R_L = 50 \ \Omega,$	see Figure 14	Full	3.6 V			40	ns
	Break-before-	$V_{NC} = V_{NO} = V_{+}/2,$	C _L = 35 pF,	25°C	3 V to	1	21	29	20
t _{BBM}	make time	$R_L = 50 \Omega$,	see Figure 15	Full	3.6 V	1			ns

6.11 Switching Characteristics for 2.5-V Supply

over operating free-air temperature range (unless otherwise noted)

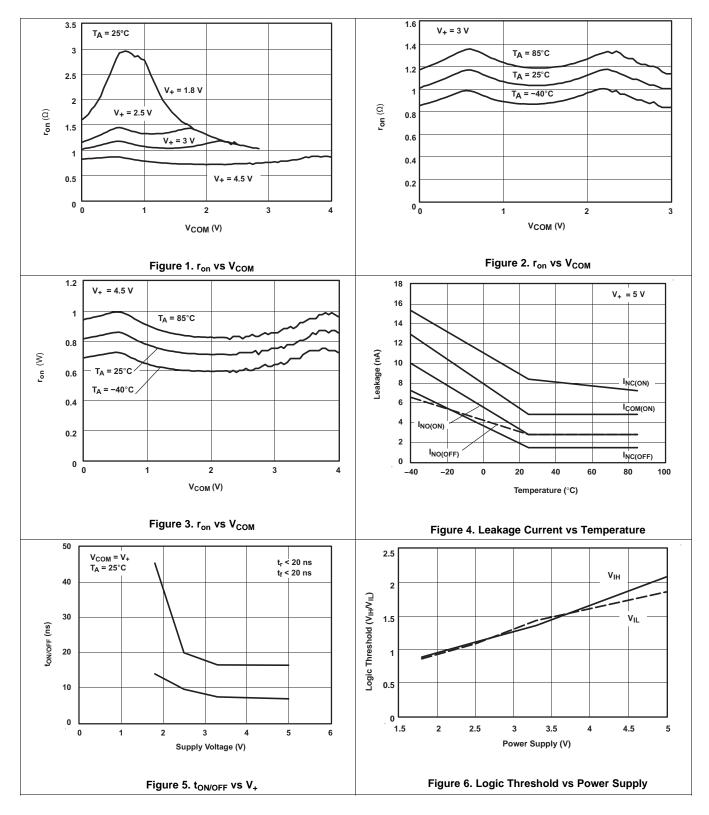
	PARAMETER	TEST	CONDITIONS	T _A	V.	MIN	TYP	MAX	UNIT
+	Turnon time	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	2.3 V to		40	55	20
t _{ON}	rumon ume		see Figure 14	Full	2.7 V			70	ns
	Turnoff time	$V_{COM} = V_+,$	$C_{L} = 35 \text{ pF},$	25°C	2.3 V to		30	40	20
t _{OFF}	rumon ume	$R_L = 50 \Omega$,	see Figure 14	Full	2.7 V			55	ns
	Break-before-	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{L} = 50 \Omega,$	C _L = 35 pF,	25°C	2.3 V to	1	33	39	20
t _{BBM}	make time	$R_L = 50 \Omega$,	see Figure 15	Full	2.7 V	1			ns

6.12 Switching Characteristics for 1.8-V Supply

over operating free-air temperature range (unless otherwise noted)

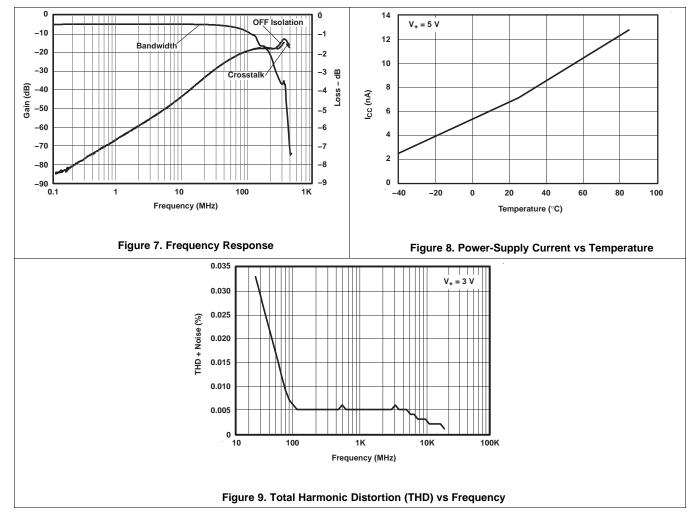
	eraanig nee an tempere	31 (1 1 1 1							
	PARAMETER	TEST CONDITIONS T		T _A	V.	MIN	TYP	MAX	UNIT
		Voou = V.	$C_{l} = 35 \text{ pF},$	25°C	1.65 V		65	70	
t _{ON}	Turnon time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	see Figure 14	Full	to 1.95 V			95	ns
		Voou = V.	C _L = 35 pF,	25°C	1.65 V		40	55	
t _{OFF}	Turnoff time		see Figure 14	Full	to 1.95 V			70	ns
	Break-before-	$V_{\rm NC} = V_{\rm NO} = V_{\rm +}/2,$	C _L = 35 pF,	25°C	1.65 V	1	60	72	
t _{BBM}	make time	$R_{\rm L} = 50 \ \Omega,$	see Figure 15	Full	to 1.95 V	1			ns

Copyright © 2004–2015, Texas Instruments Incorporated

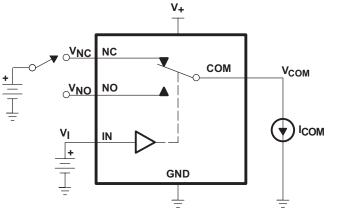

TS5A3159 SCDS174C – AUGUST 2004 – REVISED MARCH 2015

www.ti.com

NSTRUMENTS


Texas

6.13 Typical Characteristics



Typical Characteristics (continued)

7 Parameter Measurement Information

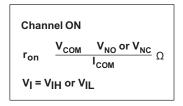
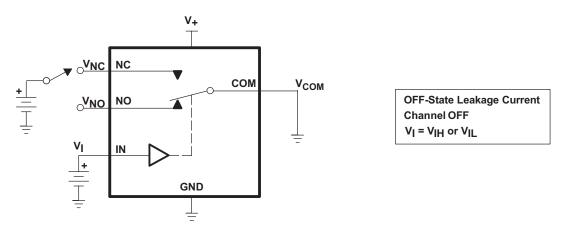
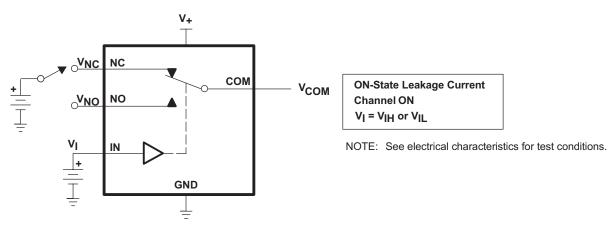
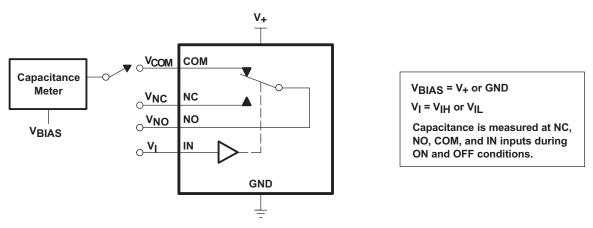
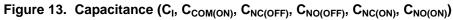
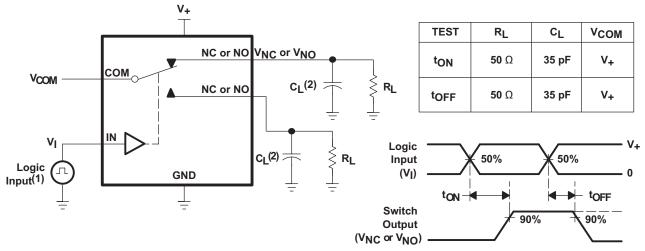


Figure 10. ON-State Resistance (ron)


Figure 11. OFF-State Leakage Current (I_{NC(OFF)}, I_{NO(OFF)})





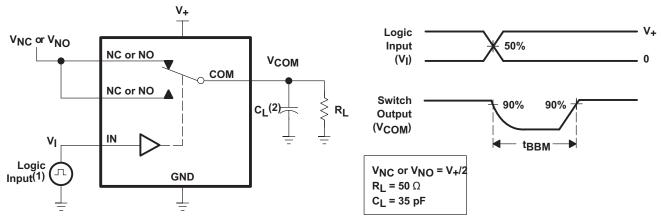

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

Figure 14. Turnon (t_{ON}) and Turnoff Time (t_{OFF})

STRUMENTS www.ti.com

EXAS

(1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

(2) C_L includes probe and jig capacitance.

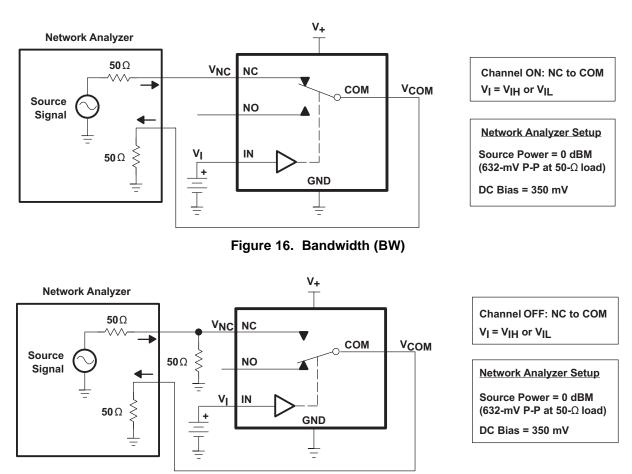
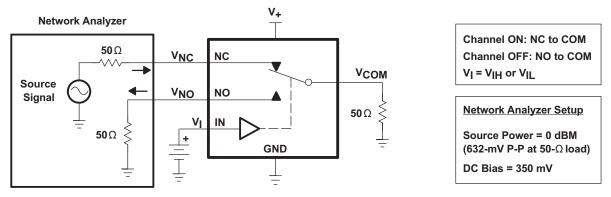
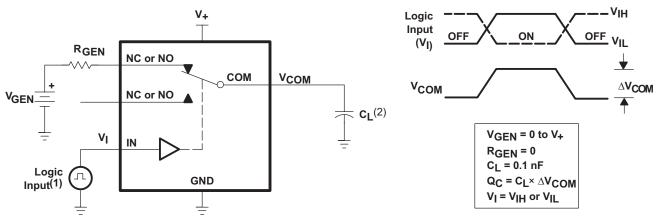
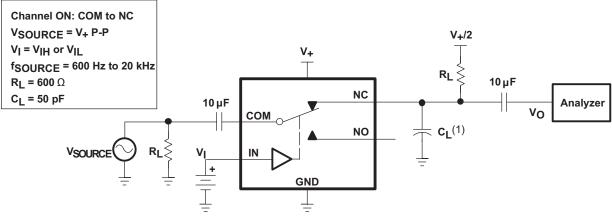
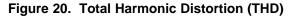


Figure 17. OFF Isolation (O_{ISO})

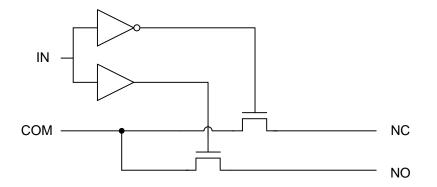

Figure 18. Crosstalk (X_{TALK})

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

(1) C_L includes probe and jig capacitance.

TEXAS INSTRUMENTS

www.ti.com


8 Detailed Description

8.1 Overview

The TS5A3159 is a single-pole-double-throw (SPDT) solid-state analog switch. The TS5A3159, like all analog switches, is bidirectional. When powered on, each COM pin is connected to the NC pin. For this device, NC stands for *normally closed* and NO stands for *normally open*. If IN is low, COM is connected to NC. If IN is high, COM is connected to NO.

The TS5A3159 is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other.

8.2 Functional Block Diagram

8.3 Feature Description

The low ON-state resistance, ON-state resistance matching, and charge injection in the TS5A3159 make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device.

The 1.65-V to 5.5-V operation allows compatibility with more logic levels, and the bidirectional I/Os can pass analog signals from 0 V to V_{+} with low distortion.

8.4 Device Functional Modes

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS5A3159 can be used in a variety of customer systems. The TS5A3159 can be used anywhere multiple analog or digital signals must be selected to pass across a single line.

9.2 Typical Application

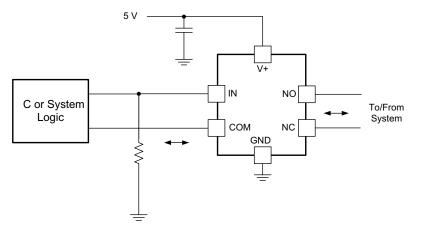
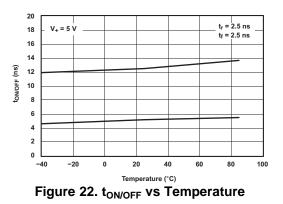


Figure 21. System Schematic for TS5A3159


9.2.1 Design Requirements

In this particular application, V₊ was 1.8 V, although V₊ is allowed to be any voltage specified in *Recommended Operating Conditions*. A decoupling capacitor is recommended on the V+ pin. See *Power Supply Recommendations* for more details.

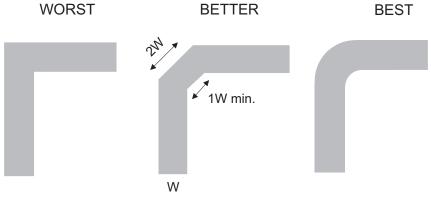
9.2.2 Detailed Design Procedure

In this application, IN is, by default, pulled low to GND. Choose the resistor size based on the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if applicable). If the GPIO is open-drain, use pullup resistors instead.

9.2.3 Application Curve

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.


Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the VCC pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD}, a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Below figure shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN pin must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels, floating control inputs can cause increased I_{CC} or unknown switch selection states.

11.2 Layout Example

Figure 23. Trace Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NC}	Voltage at NC
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON
r _{peak}	Peak ON-state resistance over a specified voltage range
Δr _{on}	Difference of r _{on} between channels
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) being open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Minimum input voltage for logic low for the control input (IN)
V _{IN}	Voltage at IN
I _{IH} , I _{IL}	Leakage current measured at IN
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal, and analog outputs (COM, NC, or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal, and analog outputs (COM, NC, or NO) signal when the switch is turning OFF.
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO), when the control signal changes state.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_O$, C_L is the load capacitance, and ΔV_O is the change in analog output voltage.

Table 2. Parameter Description

STRUMENTS

EXAS

SYMBOL	DESCRIPTION
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
C _{IN}	Capacitance of IN
O _{ISO}	OFF isolation of the switch is a measurement OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
I+	Static power-supply current with the control (IN) terminal at V+ or GND
ΔI_+	This is the increase in I ₊ for each control (IN) input that is at the specified voltage, rather than at V ₊ or GND.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.3 Trademarks

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A3159DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DBVRE4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DBVRG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DBVTE4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DBVTG4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JA8K ~ JA8R)	Samples
TS5A3159DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAK ~ JAR ~ JAZ)	Samples
TS5A3159DCKRE4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAK ~ JAR ~ JAZ)	Samples
TS5A3159DCKRG4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAK ~ JAR ~ JAZ)	Samples
TS5A3159DCKT	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAK ~ JAR ~ JAZ)	Samples
TS5A3159DCKTG4	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JAK ~ JAR ~ JAZ)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

 $\label{eq:TBD: The Pb-Free/Green conversion plan has not been defined.$

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

PACKAGE OPTION ADDENDUM

10-Jun-2014

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

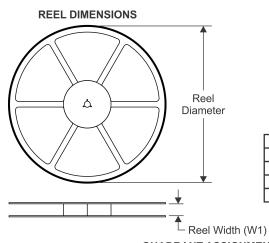
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

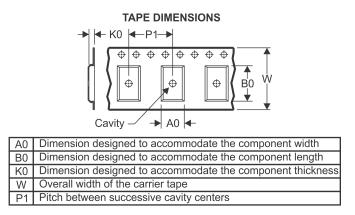
OTHER QUALIFIED VERSIONS OF TS5A3159 :

• Automotive: TS5A3159-Q1

• Enhanced Product: TS5A3159-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

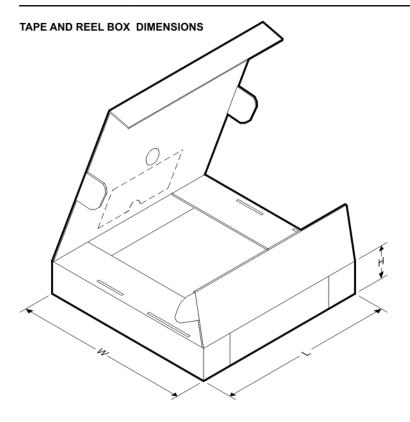

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

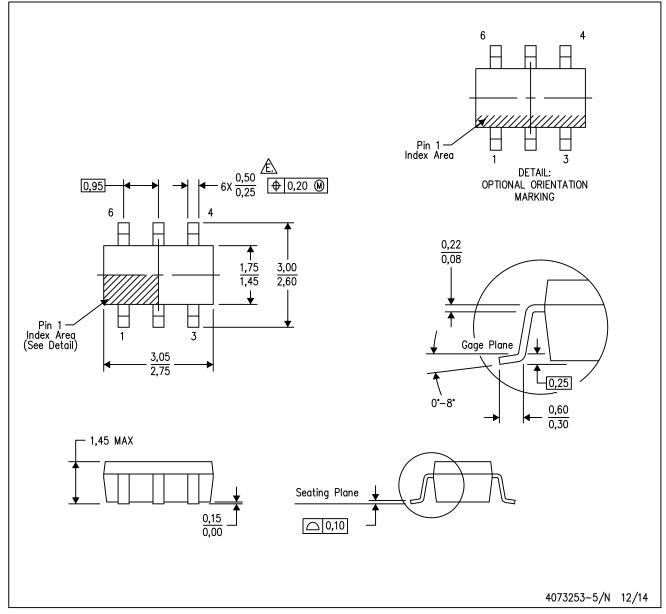

*All dimensions are nomina Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3159DBVR	SOT-23	DBV	6	3000	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
TS5A3159DBVT	SOT-23	DBV	6	250	180.0	9.2	3.17	3.23	1.37	4.0	8.0	Q3
TS5A3159DCKR	SC70	DCK	6	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
TS5A3159DCKT	SC70	DCK	6	250	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

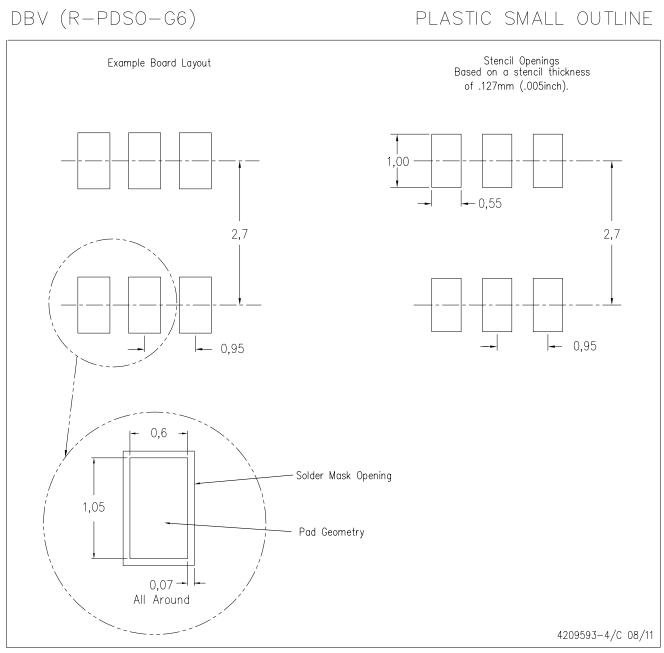
7-Nov-2013



*All dimensions are nominal

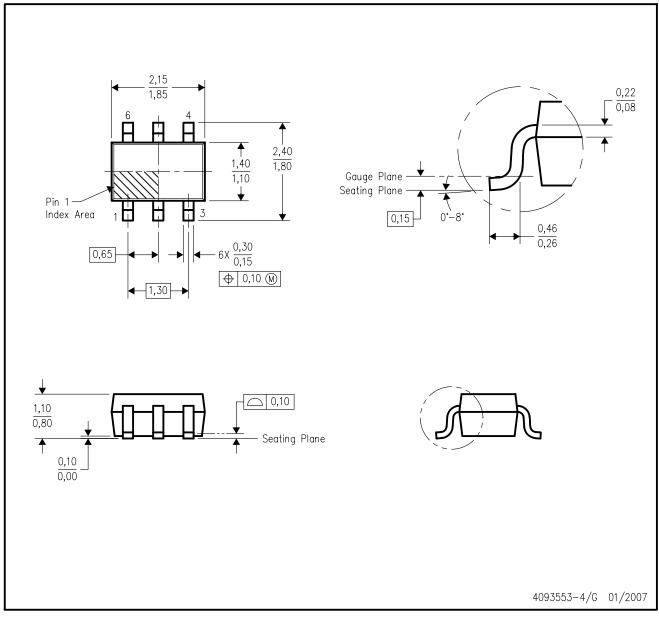
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3159DBVR	SOT-23	DBV	6	3000	205.0	200.0	33.0
TS5A3159DBVT	SOT-23	DBV	6	250	205.0	200.0	33.0
TS5A3159DCKR	SC70	DCK	6	3000	205.0	200.0	33.0
TS5A3159DCKT	SC70	DCK	6	250	205.0	200.0	33.0

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

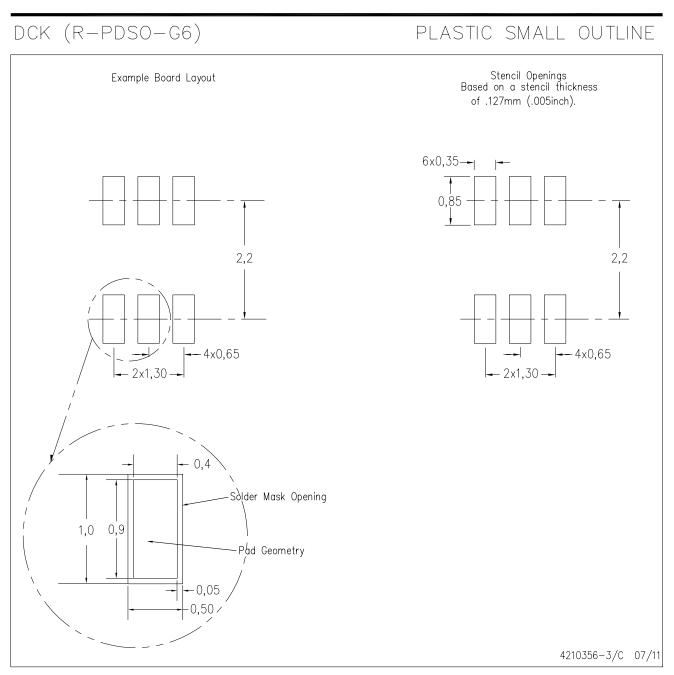
- NOTES:
 - A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 - È Falls within JEDEC MO-178 Variation AB, except minimum lead width.

LAND PATTERN DATA


NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com