

October 2014

DF005S2 - DF10S2 Bridge Rectifier

Features

- Maximum Surge Rating: $I_{FSM} = 85 \text{ A}$ $I^2t = 30 \text{ A}^2\text{Sec}$
- Optimized V_F: Typical 0.93 V at 2 A, 25°C
- · DF10S Socket Compatible
- Glass Passivated Junctions
- Space Saving
- Lead Free in Comply with EU RoHS 2002/95/EU Directives
- Green Molding Compound: IEC61249 Halogen Free
- · Qualified with IR Reflow and Wave Soldering

Description

With the ever-pressing need to improve power supply efficiency, improve surge rating, improve reliability, and reduce size, the DFxS2 family sets a new standard in performance.

The new design offers an improved surge rating of 85 A. This is especially important when striving to improve reliability and increase efficiency. High efficiency designs strive to reduce circuit resistance, which, unfortunately can result in increased inrush surge. As such higher surge current ratings can be required to maintain or improve reliability.

The design also offers improved efficiency by achieving a 2 A V_F of 1.1 V maximum at 25°C. This lower V_F also supports cooler and more efficient operation.

Finally, the DFxS2 achieves all this in a SDIP surface mount form factor, reducing board space and volumetric requirements vs. competitive devices.

Ordering Information

Part Number	Top Mark	Package	Packing Method	
DF005S2	DF005S2	SDIP 4L	Tape and Reel	
DF01S2	DF01S2	SDIP 4L	Tape and Reel	
DF02S2	DF02S2	SDIP 4L	Tape and Reel	
DF04S2	DF04S2	SDIP 4L	Tape and Reel	
DF06S2	DF06S2	SDIP 4L	Tape and Reel	
DF08S2	DF08S2	SDIP 4L	Tape and Reel	
DF10S2	DF10S2	SDIP 4L	Tape and Reel	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Value						Unit	
		DF005S2	DF01S2	DF02S2	DF04S2	DF06S2	DF08S2	DF10S2	Uill
V _{RRM}	Maximum Recurrent Peak Reverse Voltage	50	100	200	400	600	800	1000	V
V _{RMS}	Maximum RMS Bridge Input Voltage	35	70	140	280	420	560	700	V
V _{DC}	Maximum DC Blocking Voltage	50	100	200	400	600	800	1000	V
I _{F(AV)}	Maximum Average Forward Current T _A = 40°C				2.0				А
I _{FSM}	Peak Forward Surge Current 8.3 ms Single Half-Sine Wave Superimposed on Rated Load(JEDEC Method)	ngle Half-Sine erimposed on		85				А	
T _{STG}	Storage Temperature Range			-{	55 to +150)			°C
TJ	Operating Junction Temperature Range			-{	55 to +150)			°C

Thermal Characteristics(1)

Symbol	Parameter	Conditions	Max.	Unit
		Single-Die Measurement (Maximum Land Pattern: 13 x 13 mm)	60	
R _{θJA}	Junction to Ambient	Multi-Die Measurement (Maximum Land Pattern: 13 x 13 mm)	50	°C/W
		Multi-Die Measurement (Minimum Land Pattern: 1.3 x 1.5 mm)	100	
ΨJL	Thermal Characterization Parameter, Junction to Lead	Single-Die Measurement (Maximum and Minimum Land Pattern)	25	°C/W

Note:

1. The thermal resistances ($R_{\theta JA} \& \psi_{JL}$) are characterized with the device mounted on the following FR4 printed circuit boards, as shown in Figure 1 and Figure 2. PCB size: 76.2 x 114.3 mm.

Heating effect from adjacent dice is considered and only two dices are powered at the same time.

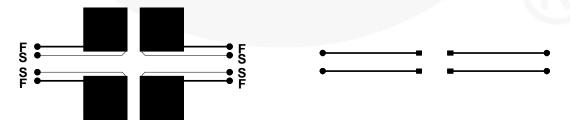


Figure 1. Maximum Pads of 2 oz Copper

Figure 2. Minimum Pads of 2 oz Copper

Electrical Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage Drop per Bridge Element	I _F = 2.0 A			1.1	V
	DC Reverse Current	$T_J = 25^{\circ}C$			3	μА
	at Rated DC Blocking Voltage	T _J = 125°C			500	
l ² t	Rating for Fusing (t < 8.3 ms)				30	A ² S
CJ	Junction Capacitance	V _R = 4.0 V, f = 1.0 MHz		23		pF

Typical Performance Characteristics

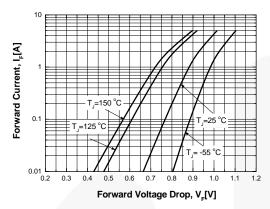


Figure 3. Typical Instantaneous Forward Characteristics

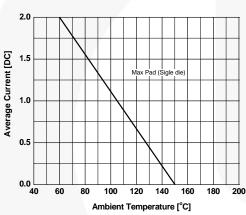


Figure 5. Maximum Average Current vs.
Ambient Temperature

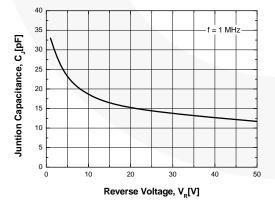


Figure 7. Typical Junction Capacitance

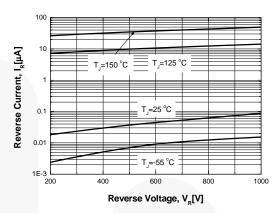


Figure 4. Typical Reverse Characteristics

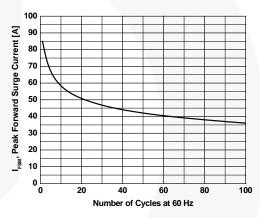
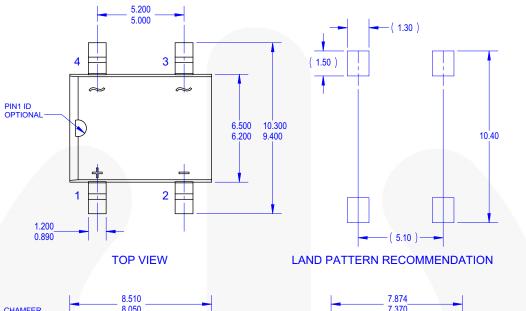
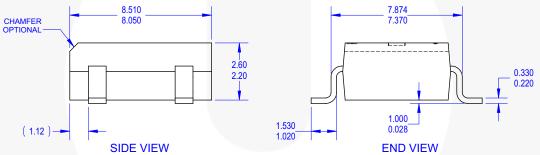




Figure 6. Peak Forward Surge Current vs.

Number of Cycles at 60Hz

Physical Dimensions

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY REFERENCE STANDARD.
 B. ALL DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
 G. DRAWING FILE NAME: MKT-SDIP04AREV4.

Figure 8. 4-LEAD, SDIP, 6.5 MM WIDE

TinyBoost®

TinyBuck[®]

TinyCalc™

TinyLogic[®]

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

TranSiC™

μSerDes™

LIHC

TriFault Detect™

TRUECURRENT®*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ Awinda® AX-CAP®* FRFET®

Global Power Resource SM GreenBridge™ BitSiC™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ $CROSSVOLT^{\text{\tiny TM}}$ GTO™ CTL™ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™ DEUXPEED[®]

Making Small Speakers Sound Louder Dual Cool™ and Better™ EcoSPARK®

MegaBuck™ EfficientMax™ MICROCOUPLER™ $\mathsf{ESBC}^{\mathsf{TM}}$ MicroFET™ **f**® MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ MotionGrid® FACT® FAST® MTi[®] MTx® FastvCore™ MVN[®]

FETBench™ mWSaver[®] **FPSTM** OptoHiT™

PowerTrench® PowerXS™

Programmable Active Droop™

OFET QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFFT[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ VoltagePlus™ XSTM Xsens™ Sync-Lock™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification		Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 171

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com