

General Description

The MAX9325 low-skew, 2:8 differential driver features extremely low output-to-output skew (50ps max) and part-to-part skew (225ps max). These features make the device ideal for clock and data distribution across a backplane or board. The device selects one of the two differential HSTL or LVECL/LVPECL inputs and repeats them at eight differential outputs. Outputs are compatible with LVECL and LVPECL, and can directly drive 50Ω terminated transmission lines.

The differential inputs can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output voltage VBB. All inputs have internal pulldown resistors to VEE. The internal pulldowns and a fail-safe circuit ensure differential low default outputs when the inputs are left open or at VEE.

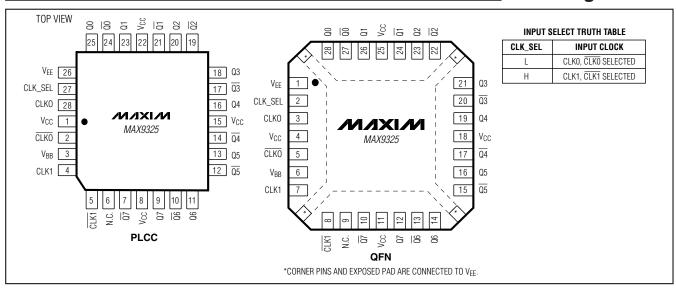
The MAX9325 operates over a 2.375V to 3.8V supply range for interfacing to differential HSTL and LVPECL signals. This allows high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For LVECL operation, the device operates with a -2.375V to -3.8V supply.

The MAX9325 is offered in 28-lead PLCC and spacesaving 28-lead QFN packages. The MAX9325 is specified for operation from -40°C to +85°C.

Applications

Precision Clock Distribution Low-Jitter Data Repeaters

Features


- ♦ 50ps (max) Output-to-Output Skew
- ♦ 1.5ps_{RMS} (max) Random Jitter
- ♦ Guaranteed 300mV Differential Output at 700MHz
- ♦ +2.375V to +3.8V Supplies for Differential HSTL/LVPECL
- ♦ -2.375V to -3.8V Supplies for Differential LVECL
- ◆ Two Selectable Differential Inputs
- ♦ On-Chip Reference for Single-Ended Inputs
- ♦ Outputs Low for Inputs Open or at VEE
- ◆ Pin Compatible with MC100LVE310

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9325EQI	-40°C to +85°C	28 PLCC
MAX9325EGI	-40°C to +85°C	28 QFN 5mm x 5mm

Functional Diagram appears at end of data sheet.

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} - V _{EE} 0.3V to +4.1V Inputs (CLK_, CLK_, CLK_SEL) to V _{EE} 0.3V to (V _{CC} + 0.3V) CLK to CLK+3.0V
Continuous Output Current50mA
Surge Output Current
VBB Sink/Source Current±0.65mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
28-Lead PLCC (derate 10.5mW/°C above +70°C)842mW
θ _{JA} in Still Air+95°C/W
θ _{JC} +25°C/W

28-Lead QFN (derate 20.8mW/°C above	+70°C)1667mW
θ _{JA} in Still Air	+48°C/W
θJC	+2°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (CLK_, CLK_, Q_, Q	_)≥2kV
Soldering Temperature (10s)	+300°C
- · · · · · ·	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $((V_{CC} - V_{EE}) = 2.375V \text{ to } 3.8V, R_L = 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } (V_{CC} - V_{EE}) = 3.3V, V_{IH} = (V_{CC} - 1V), V_{IL} = (V_{CC} - 1.5V).) \text{ (Notes 1-4)}$

PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	STIMBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SINGLE-ENDED	INPUT (CLI	K_SEL)										
Single-Ended Input High Voltage	VIH	Figure 1	V _C C - 1.165		Vcc	V _C C - 1.165		V _C C	V _C C - 1.165		V _C C	V
Single-Ended Input Low Voltage	VIL	Figure 1	VEE		V _{CC} - 1.475	VEE		V _{CC} - 1.475	VEE		V _{CC} - 1.475	V
Input Current	I _{IN}	V _{IH} , V _{IL}	-10.0		+150	-10.0		+150	-10.0		+150	μΑ
DIFFERENTIAL I	NPUT (CLK	(_, CLK _)										
Single-Ended Input High Voltage	VIH	Figure 1	V _{CC} - 1.165		V _C C	V _{CC} - 1.165		Vcc	V _C C - 1.165		V _{CC}	V
Single-Ended Input Low Voltage	VIL	Figure 1	VEE		V _{CC} - 1.475	VEE		V _{CC} - 1.475	VEE		VCC - 1.475	V
Differential Input High Voltage	VIHD	Figure 1	V _{EE} + 1.2		V _C C	V _{EE} + 1.2		V _C C	V _{EE} + 1.2		V _C C	V

DC ELECTRICAL CHARACTERISTICS (continued)

((V_{CC} - V_{EE}) = 2.375V to 3.8V, R_L = 50Ω ±1% to V_{CC} - 2V. Typical values are at (V_{CC} - V_{EE}) = 3.3V, V_{IH} = (V_{CC} - 1V), V_{IL} = (V_{CC} - 1.5V).) (Notes 1–4)

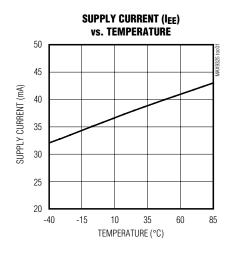
DADAMETED	OVMDOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input Low Voltage	VILD	Figure 1	VEE		V _C C - 0.095	VEE		V _C C - 0.095	VEE		V _C C - 0.095	V
Differential Input Voltage	V _{IHD} -	(V _{CC} - V _{EE}) < 3.0V, Figure 1	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - VEE	
	V _{ILD}	(V _{CC} - V _{EE}) ≥ 3.0V, Figure 1	0.095		3.0	0.095		3.0	0.095		3.0	V
Input Current	I _{IN}	V _{IH} , V _{IL} , V _{IHD} , V _{ILD}	-10.0		+150.0	-10.0		+150.0	-10.0		+150.0	μΑ
OUTPUT (Q_, \overline{Q}	_)											
Single-Ended Output High Voltage	Vон	Figure 2	V _C C - 1.085	V _{CC} - 0.977	V _{CC} - 0.880	V _{CC} - 1.025	V _C C - 0.949	V _C C - 0.88	V _C C - 1.025	V _{CC} - 0.929	V _C C - 0.88	V
Single-Ended Output Low Voltage	V _{OL}	Figure 2	V _C C - 1.810	V _{CC} - 1.695	V _{CC} - 1.620	V _{CC} - 1.810	V _{CC} - 1.697	V _{CC} - 1.62	V _C C - 1.810	V _{CC} - 1.698	V _{CC} - 1.62	V
Differential Output Voltage	VoH - VoL	Figure 2	535	718		595	749		595	769		mV
REFERENCE VO	LTAGE OU	TPUT (VBB)										
Reference Voltage Output	V _{BB}	$IBB = \pm 0.5 \text{mA}$ (Note 5)	V _{CC} - 1.38	V _{CC} - 1.318	V _{CC} - 1.26	V _C C - 1.38	V _C C - 1.325	V _{CC} - 1.26	V _C C - 1.38	V _{CC} - 1.328	V _C C - 1.26	V
SUPPLY												
Supply Current	I _{EE}	(Note 6)		35	50		39	55		42	65	mA

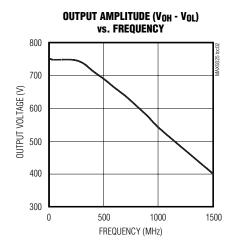
AC ELECTRICAL CHARACTERISTICS—PLCC Package

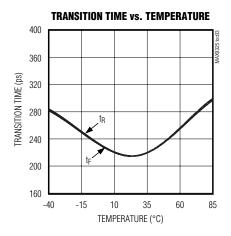
 $((V_{CC} - V_{EE}) = 2.375 V \text{ to } 3.8 V, \ R_L = 50 \Omega \pm 1\% \text{ to } V_{CC} - 2 V, \ f_{IN} \le 500 \text{MHz}, \text{ input transition time} = 125 \text{ps (} 20\% \text{ to } 80\%). \ Typical values are at (V_{CC} - V_{EE}) = 3.3 V, \ V_{IH} = (V_{CC} - 1 V), \ V_{IL} = (V_{CC} - 1.5 V).) \text{ (Note 7)}$

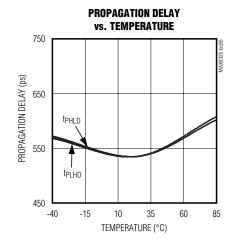
DADAMETED	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input-to-Output Delay	tpLHD tpHLD	Figure 2	525		725	550		750	575		775	ps
Single-Ended Input-to-Output Delay	tplh tphl	Figure 3 (Note 8)	500		750	550		800	600		850	ps
Output-to- Output Skew	tskoo	(Note 9)			50			50			50	ps
Part-to-Part Skew	tskpp	Differential input (Note 10)			160			190			225	ps
Added Random Jitter	t _{RJ}	f _{IN} = 0.5GHz clock pattern (Note 11)			1.5			1.5			1.5	psRMS
Added Deterministic Jitter	t _{DJ}	f _{IN} = 1.0Gbps, 2E ²³ - 1 PRBS pattern (Note 11)			100			100			100	psp-p
Switching Frequency	f _{MAX}	V _{OH} - V _{OL} ≥ 300mV clock pattern	1.5			1.5			1.5			GHz
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 2	140		440	140		440	140		440	ps

AC ELECTRICAL CHARACTERISTICS—QFN Package


 $((V_{CC} - V_{EE}) = 2.375V \text{ to } 3.8V, R_L = 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, f_{IN} \le 500MHz, input transition time = 125ps (20% to 80%). Typical values are at <math>(V_{CC} - V_{EE}) = 3.3V, V_{IH} = (V_{CC} - 1V), V_{IL} = (V_{CC} - 1.5V).)$ (Note 7)


DADAMETED	SYMBOL	CONDITIONS		-40°C			+25°C	+25°C				UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input-to-Output Delay	tpLHD tpHLD	Figure 2	250		575	298		553	309		576	ps
Single-Ended Input-to-Output Delay	tplh tphl	Figure 3 (Note 8)	253		581	310		586	324		606	ps
Output-to- Output Skew	tskoo	(Note 9)			50			50			50	ps
Part-to-Part Skew	tskpp	Differential input (Note 10)			192			215			218	ps
Added Random Jitter	tRJ	f _{IN} = 0.5GHz clock pattern (Note 11)			1.5			1.5			1.5	psrms
Added Deterministic Jitter	t _D J	f _{IN} = 1.0Gbps, 2E ²³ - 1 PRBS pattern (Note 11)			95			95			95	psp-p
Switching Frequency	fMAX	V _{OH} - V _{OL} ≥ 300mV clock pattern	1.5			1.5			1.5			GHz
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 2	97		411	104		210	111		232	ps


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- Note 3: DC parameters production tested at T_A = +25°C and guaranteed by design over the full operating temperature range.
- **Note 4:** Single-ended input operation using V_{BB} is limited to $(V_{CC} V_{EE}) = 3.0V$ to 3.8V.
- **Note 5:** Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.
- Note 6: All pins open except Vcc and VFF.
- **Note 7:** Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 8: Measured from the 50% point of the input signal with the 50% point equal to V_{BB}, to the 50% point of the output signal.
- Note 9: Measured between outputs of the same part at the signal crossing points for a same-edge transition. Differential input signal.
- Note 10: Measured between outputs of different parts under identical condition for same-edge transition.
- Note 11: Device jitter added to the input signal. Differential input signal.


Typical Operating Characteristics

(PLCC package, typical values are at (V_{CC} - V_{EE}) = 3.3V, V_{IH} = (V_{CC} - 1V), V_{IL} = (V_{CC} - 1.5V), R_L = 50 Ω ±1% to V_{CC} - 2V, f_{IN} = 500MHz, input transition time = 125ps (20% to 80%).)

____Pin Description

Р	IN		
PLCC	QFN	NAME	FUNCTION
1, 8, 15, 22	4, 11, 18, 25	Vcc	Positive Supply Voltage. Bypass each V_{CC} to V_{EE} with $0.1\mu F$ and $0.01\mu F$ ceramic capacitors. Place the capacitors as close to the device as possible, with the smaller value capacitor closest to the device.
2	5	CLK0	Inverting Differential Clock Input 0. Internal $105k\Omega$ pulldown to V_{EE} .
3	6	V_{BB}	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass V_{BB} to V_{CC} with a 0.01µF ceramic capacitor. Otherwise leave open.
4	7	CLK1	Noninverting Differential Clock Input 1. Internal 105k Ω pulldown to VEE.
5	8	CLK1	Inverting Differential Clock Input 1. Internal $105k\Omega$ pulldown to V_{EE} .
6	9	N.C.	Not Connected
7	10	Q7	Inverting Q7 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
9	12	Q7	Noninverting Q7 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
10	13	Q6	Inverting Q6 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
11	14	Q6	Noninverting Q6 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
12	15	Q5	Inverting Q5 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
13	16	Q5	Noninverting Q5 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
14	17	Q4	Inverting Q4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
16	19	Q4	Noninverting Q4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
17	20	Q3	Inverting Q3 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
18	21	Q3	Noninverting Q3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
19	22	Q2	Inverting Q2 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
20	23	Q2	Noninverting Q2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
21	24	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
23	26	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
24	27	Q0	Inverting Q0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
25	28	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
26	1	VEE	Negative Supply Voltage
27	2	CLK_SEL	Clock Select Input. When driven low, the CLK0 input is selected. Drive high to select the CLK1 Input. The CLK_SEL threshold is equal to V_{BB} . Internal 75k Ω pulldown to V_{EE} .
28	3	CLK0	Noninverting Differential Clock Input 0. Internal 105k Ω pulldown to VEE.
Exposed	Exposed Pad	_	Internally Connected to VEE

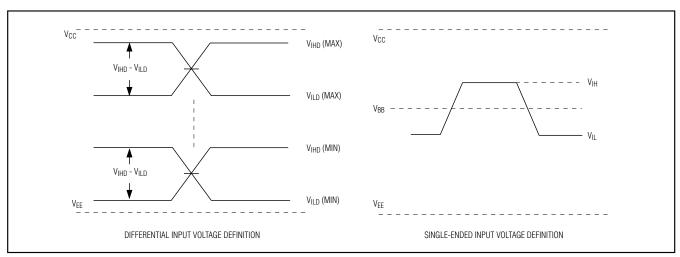


Figure 1. Input Voltage Definitions

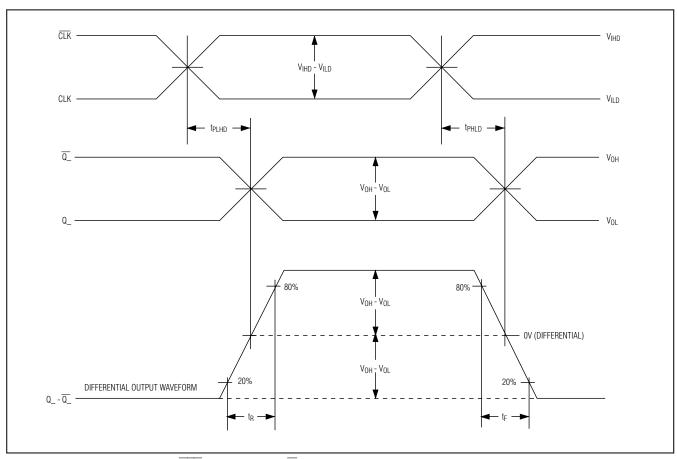


Figure 2. Differential Input (CLK_, $\overline{\text{CLK}}$ _) to Output (Q_, $\overline{\text{Q}}$ _) Delay Timing Diagram

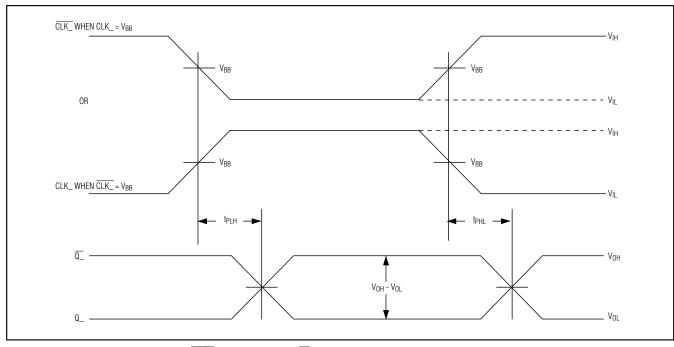


Figure 3. Single-Ended Input (CLK_, CLK_) to Output (Q_, Q_) Delay Timing Diagram

Detailed Description

The MAX9325 low-skew, 2:8 differential driver features extremely low output-to-output skew (50ps max) and part-to-part skew (225ps max). These features make the device ideal for clock and data distribution across a backplane or board. The device selects one of the two differential HSTL or LVECL/LVPECL inputs, and repeats them at eight differential outputs. Outputs are compatible with LVECL and LVPECL, and can directly drive 50Ω terminated transmission lines.

A 2:1 mux selects between the two differential inputs, CLK0, CLK0 and CLK1, CLK1. The 2:1 mux is switched by the single-ended CLK_SEL input. A logic low selects the CLK0, CLK0 input. A logic high selects the CLK1, CLK1 input. The logic threshold for CLK_SEL is set by an internal VBB voltage reference. The selected input is reproduced at eight differential outputs at speeds up to 700MHz.

The differential inputs can be configured to accept a single-ended signal when the unused complementary input is connected to the on-chip reference output voltage (VBB). A single-ended input of at least VBB ±95mV or a differential input of at least 95mV switches the outputs to the VOH and VOL levels specified in the *DC Electrical Characteristics*. The maximum magnitude of the differential input from CLK_ to CLK_ is ±3.0V or

 \pm (V_{CC} - V_{EE}), whichever is less. This limit also applies to the difference between a single-ended input and any reference voltage input.

The single-ended CLK_SEL input has a $75 \underline{k}\Omega$ pulldown to VEE that selects the default input, CLK0, $\overline{C}LK0$, when CLK_SEL is left open or at VEE. All the differential inputs have $105 k\Omega$ pulldowns to VEE. Internal pulldowns and a fail-safe circuit ensure differential low default outputs when the inputs are left open or at VEE.

Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.375V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.375V to -3.8V supply.

Single-Ended Operation

CLK_SEL is a single-ended input with the input threshold internally set to VBB, and can be driven to VCC or VEE or by a single-ended LVPECL/LVECL signal. The CLK_, CLK_ are differential inputs but can be configured to accept single-ended inputs when operating at supply voltages greater than 2.58V. The recommended supply voltage for single-ended operation is 3.0V to 3.8V. A dif-

ferential input is configured for single-ended operation by connecting the on-chip reference voltage, VBB, to an unused complementary input as a reference. For example, the differential CLKO, CLKO input is converted to a noninverting, single-ended input by connecting VBB to CLKO and connecting the single-ended input to CLKO. Similarly, an inverting input is obtained by connecting VBB to CLKO and connecting the single-ended input to CLKO. With a differential input configured as single-ended (using VBB), the single-ended input can be driven to VCC or VEE or with a single-ended LVPECL/LVECL signal.

When configuring a differential input as a single-ended input, a user must ensure that the supply voltage (V_{CC}-V_{EE}) is greater than 2.58V. This is because the input high minimum level must be at (V_{EE} + 1.2V) or higher for proper operation. The reference voltage V_{BB} must be at least (V_{EE} + 1.2V) or higher for the same reason because it becomes the high-level input when the other single-ended input swings below it. The minimum V_{BB} output for the MAX9325 is (V_{CC} - 1.38V). Substituting the minimum V_{BB} output for (V_{BB} = V_{EE} + 1.2V) results in a minimum supply (V_{CC} - V_{EE}) of 2.58V. Rounding up to standard supplies gives the single-ended operating supply ranges (V_{CC} - V_{EE}) of 3.0V to 3.8V for the MAX9325.

When using the V_{BB} reference output, bypass it with a 0.01 μ F ceramic capacitor to V_{CC} . If not used, leave it open. The V_{BB} reference can source or sink 0.5mA, which is sufficient to drive two inputs.

_Applications Information

Output Termination

Terminate the outputs through 50Ω to (V_{CC} - 2V) or use equivalent Thevenin terminations. Terminate each Q and \overline{Q} output with identical termination on each for low output distortion. When a single-ended signal is taken from the differential output, terminate both Q_ and \overline{Q} .

Ensure that output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

Supply Bypassing

Bypass each V_{CC} to V_{EE} with high-frequency surface-mount ceramic $0.1\mu F$ and $0.01\mu F$ capacitors. Place the capacitors as close to the device as possible with the $0.01\mu F$ capacitor closest to the device pins.

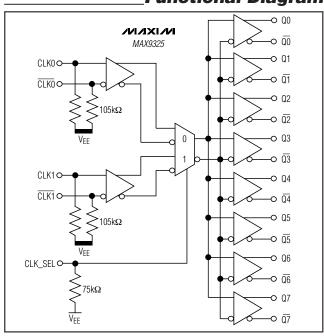
Use multiple vias when connecting the bypass capacitors to ground. When using the V_{BB} reference output, bypass it with a $0.01\mu F$ ceramic capacitor to V_{CC} . If the V_{BB} reference is not used, it can be left open.

Traces

Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity.

Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Exposed-Pad Package

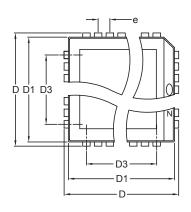

The 28-lead QFN package (MAX9325EGI) has the exposed paddle on the bottom of the package that provides the primary heat removal path from the IC to the PC board, as well as excellent electrical grounding to the PC board. The MAX9325EGI's exposed pad is internally connected to VEE. Do not connect the exposed pad to a separate circuit ground plane unless VEE and the circuit ground are the same.

Chip Information

TRANSISTOR COUNT: 1030

PROCESS: Bipolar

Functional Diagram



PLCC.EPS

2:8 Differential LVPECL/LVECL/HSTL Clock and Data Driver

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

	INC	HES	MILLIM	ETERS	
	MIN	MAX	MIN	MAX	
Α	0.165	0.180	4.20	4.57	
A1	0.090	0.120	2.29	3.04	
A2	0.145	0.156	3.69	3.96	
A3	0.020		0.51		
В	0.013	0.021	0.33	0.53	
B1	0.026	0.032	0.66	0.81	
С	0.009	0.011	0.23	0.28	
е	0.0	50	1.27		

D	0.485	0.495	12.32	12.57	28	AB
D1	0.450	0.456	11.43	11.58		
D2	0.390	0.430	9.91	10.92		
D3	0.300	REF	7.62	REF		

D	0.685	0.695	17.40	17.65	44	AC
D1	0.650	0.656	16.51	16.66		
D2	0.590	0.630	14.99	16.00		
D3	0.500	REF	12.70	REF		

D	0.785	0.795	19.94	20.19	52	AD
D1	0.750	0.756	19.05	19.20		
D2	0.690	0.730	17.53	18.54		
D3	0.600	REF	15.24	REF		

D	0.985	0.995	25.02	25.27	68	ΑE
D1	0.950	0.958	24.13	24.33		
D2	0.890	0.930	22.61	23.62		
D3	0.800	REF	20.32	REF		

NOTES:

A3-

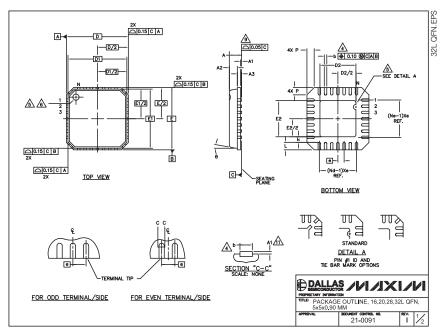
- 1. D1 DOES NOT INCLUDE MOLD FLASH.
- 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .20mm (.008") PER SIDE.

D2

В1 -В

С

- 3. LEADS TO BE COPLANAR WITHIN .10mm.
- 4. CONTROLLING DIMENSION: MILLIMETER
- 5. MEETS JEDEC MO047-XX AS SHOWN IN TABLE.
- 6. N = NUMBER OF PINS.


FAMILY PACKAGE OUTLINE: 20L, 28L, 44L, 52L, 68L PLCC

roval document control no. 21-0049

D 1

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

					COMM	ON DIME	NSIONS													
PKG		16L 5x5			20L 5x5		28L 5x5			32L 5x5										
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.								
Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00								
A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05								
A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00								
A3	0.20 REF 0.20 REF			0.20 REF				0.20 REF												
b	0.28	0.33	0.40	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30		EXPO	er n	DAD	1//	DIATI	LUNG	
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10		EXF	257		VHI	THI	ES	
D1		4.75 BS			4.75 BSC			4.75 BS	c		4.75 BSC	;		PKG.			NOM.	HA		
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10		G1655-3	2.95	3.10	3.25	2.95	3.10	3.2
E1		4.75 BSC 4.75 BSC		;	4.75 BSC			4.75 BSC				G2055-1	2.55	2.70	2.85	2.55	2.70	2.8		
e	0.80 BSC		С	0.65 BSC		0.50 BSC		0.50 BSC		;		G2055-2	2.95	3.10	3.25	2.95	3.10	3.2		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		G2855-1	2.55	2.70	2.85	2.55	2.70	2.8
٦	0.35	0.55	0.75	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.50		G2855-2	2.95	3.10	3.25	2.95	3.10	3.2
N		16			20			28			32			G3255-1	2.95	3.10	3.25	2.95	3.10	3.2
ND	4 5					7 8														
NE		4			5			7			8									
P	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60								
9	0.																			
			12*	0.		12*	0.		12*	0.		12*								
2. 3. 5. 6. 7.	DIE TI DIMEN N IS Nd IS DIMEN THE F DETAIL EXACT	SIONING THE NU THE NU SION B YIN #1 LS OF F SHAPE	S ALLO & TOI MBER C JMBER APPLIE DENTIFI IN #1 AND S	DWABLE LERANCI OF TER OF TER S TO F IER MU: IDENTIF SIZE OF	MINALS LATED 1 ST BE E TER IS (THIS F LLIMETEI	5mm M. ORM TO IN X-DI ERMINAL XISTED DPTIONAL	AXIMUM ASME IRECTIO AND ON TH	Y14.50 ON & NO IS MEA: E TOP S MUST	INCHE	S MAXIII 994. HE NUM BETWEE E OF T	BER OF IN 0.20 HE PACI	TERMINA AND O.	25mm FR	DIRECTION. DM TERMIN. IDENTATION			INK/L	ASER	MARKI	ED.
1. 2. 3. 4. 5. 7. 8.	DIE TI DIMEN N IS Nd IS DIMEN THE F DETAIL EXACT ALL D PACKA APPLII EXCLU	SIONING THE NU THE NU SION B S	S ALLO & TOI MBER C JMBER APPLIE DENTIFI IN #1 AND S NS ARI IPAGE EXPOS	WABLE LERANCE OF TERM OF TERM S TO F IER MUS IDENTIF SIZE OF E IN MI MAX O. PART (ES CONFINALS. IMINALS LATED 1 ST BE E TER IS (THIS F LLIMETEI	5mm M. FORM TO IN X-DI ERMINAL XISTED OPTIONAL EATURE IS. ERMINAL SED PAI	AXIMUM ASME IRECTIC AND ON THE	Y14.50 ON & NO IS MEAS E TOP S MUST	INCHE:	S MAXIII 994. HE NUM BETWEE E OF T	BER OF IN 0.20 HE PACI	TERMINA AND O.	USING INICATED.	OM TERMIN	MARK	OR				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com