

General Description

The MAX3370/MAX3371 logic-level translators are ideal for applications interfacing low-voltage devices to other logic levels. Externally applied voltages set the logic levels of the MAX3370/MAX3371. The devices accept V_{CC} from +2.5V to +5.5V and V_{I} from +1.6V to +5.5V, allowing data transfer between low-voltage ASICs and higher voltage devices. The MAX3371 features a shutdown mode that reduces supply current to < 1µA and puts the I/O pins in a high-impedance state.

The MAX3370/MAX3371 are bidirectional level shifters, allowing data transfer from the V_{CC} side to the V_L side and from the VL side to the VCC side. Both devices operate at speeds up to 2Mbps with an active driver and up to 500kbps with an open-drain driver.

The MAX3370/MAX3371 are available in space-saving μDFN (1mm x 1.5mm) and SC70 packages.

Applications

Cell Phone Cradles

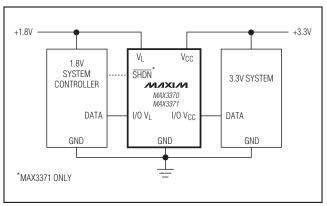
Cell Phone Hands-Free Kits

Portable POS Systems

Portable Communication Devices

Smart Card Readers

SPI™, MICROWIRE™, and I²C Level Translation


Low-Voltage ASIC Level Translation

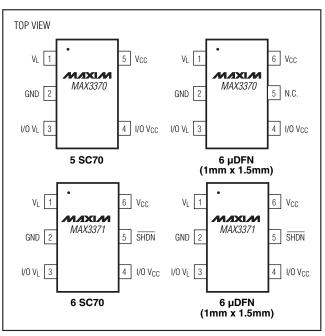
RS-232-Compatible Translation

SPI is a trademark of Motorola, Inc.

MICROWIRE is a trademark of National Semiconductor Corp.

Typical Operating Circuit

Features


- **Allow Bidirectional Level Translation**
- ♦ Miniature µDFN (1mm x 1.5mm) and SC70 **Packages**
- ♦ Operational Down to 1.6V
- ♦ Low Quiescent Current (< 100µA)</p>
- ♦ Ultra-Low (< 1µA) Shutdown Supply Current (MAX3371)
- **♦ Three-State Outputs in Shutdown (MAX3371)**
- ♦ 2Mbps (10pF Load) Push-Pull Driving
- ♦ 1Mbps (50pF Load) Push-Pull Driving
- ♦ 500kbps (30pF Load) Open-Drain Driving

Ordering Information

PART*	PIN-PACKAGE	SHDN	TOP MARK
MAX3370EXK+T	5 SC70	NO	ABV
MAX3370ELT+T	6 μDFN	NO	KX
MAX3371ELT+T	6 µDFN	YES	KY
MAX3371EXT+T	6 SC70	YES	AAO

^{*}All devices are specified over the -40°C to +85°C operating temperature range.

Pin Configurations

MIXIM

Maxim Integrated Products 1

⁺Denotes lead(Pb)-free/RoHS-compliant package.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +7V
SHDN to GND	
I/O V _L to GND	
V _L , I/O V _{CC} to GND	0.3V to (V _{CC} + 0.3V)
Short-Circuit Duration: I/O VL, I/O V	CC to GNDContinuous

Continuous Power Dissipation ($T_A = +70$ °C)	
SC70 (derate 3.1mW/°C above +70°C)	245mW
6-Pin µDFN (derate 2.1mW/°C above +70°C Operating Temperature Range)168mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.5V \text{ to } +5.5V, V_L = +1.6V \text{ to } +5.5V \text{ (Note 1)}, \text{ GND} = 0; \text{ I/O } V_L, \text{ I/O } V_{CC} \text{ unconnected}; T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES	•		•			
V _L Supply Range	VL	(Note 1)	1.6		5.5	V
V _{CC} Supply Range	Vcc		2.5		5.5	V
Supply Current from V _{CC}	Iqvcc			70	100	μΑ
Supply Current from V _L	IQVL			5	100	μΑ
V _{CC} Shutdown Supply Current		SHDN = GND, T _A = +25°C, MAX3371		0.03	1	μΑ
V _L Shutdown Supply Current		SHDN = GND, T _A = +25°C, MAX3371		0.03	1	μΑ
Three-State Output Leakage Current		I/O V _L , I/O V _{CC} ; SHDN = GND, T _A = +25°C, MAX3371		0.02	1	μА
LOGIC LEVEL THRESHOLDS						
I/O V _L Input-Voltage High Threshold	VIHL				V _L - 0.2	V
I/O V _L Input-Voltage Low Threshold	V _{ILL}		0.15			V
I/O V _{CC} Input-Voltage High Threshold	VIHC				V _{CC} - 0.4	V
I/O V _{CC} Input-Voltage Low Threshold	VILC		0.2			V
I/O V _L Output-Voltage High	Vohl	I/O V _L sink current = 20µA, I/O V _{CC} ≥ V _{CC} - 0.4V (Note 3)	2/3 × VL			V
I/O V _L Output-Voltage Low	V _{OLL}	I/O V _L sink current = 1mA, I/O V _{CC} ≤ 0.2V (Note 3)			0.4	V
I/O V _{CC} Output-Voltage High	VOHC	I/O V _{CC} source current = 20μ A, I/O V _L \geq V _L - 0.2 V (Note 3)	2/3 × V _{CC}			V
I/O V _{CC} Output-Voltage Low	Volc	I/O V _{CC} sink current = 1mA, I/O V _L ≤ 0.15V (Note 3)			0.4	V
SHDN Input-Voltage High	VIH-SHDN		2/3 × V _L			V
CLIDN Innut Voltage Levi	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _L ≥ +1.8V			0.4	.,
SHDN Input-Voltage Low	V _{IL-SHDN}	V _L ≥ +1.6V			0.2	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.5 \text{V to } +5.5 \text{V}, V_L = +1.6 \text{V to } +5.5 \text{V} \text{ (Note 1)}, \text{ GND} = 0; \text{ I/O } \text{V}_L, \text{ I/O } \text{V}_{CC} \text{ unconnected}; \text{T}_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at T_A = +25 ^{\circ}\text{C}.) (Note 2)

PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS		
TIMING CHARACTERISTICS (RLOAI	$_{0}=1M\Omega,V_{CO}$	$_{\rm C}$ = +2.5V, V _L = +1.6V, I/O test signal rail-to-rail, unle	ss other	wise noted	I, Figure 1) (Note 3)		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			100	_		
I/O V _{CC} Rise Time	trvcc	C _{LOAD} = 50pF, data rate = 1Mbps			200	ns		
(Note 4)	HVCC	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			400	113		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			50			
I/O V _{CC} Fall Time	tFVCC	C _{LOAD} = 50pF, data rate = 1Mbps			200	ns		
(Note 4)	iFVCC	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			400	113		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			100			
I/O V _L Rise Time	trvl	C _{LOAD} = 50pF, data rate = 1Mbps			200	ns		
(Note 4)	HVL	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			400	113		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			50			
I/O V _L Fall Time	t _{FVL}	C _{LOAD} = 50pF, data rate = 1Mbps			200]		
(Note 4)	ı-vL	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			400	ns		
LUQUI. LOWT		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			50			
HIGH-to-LOW Transition Propagation Delay	top voc u	C _{LOAD} = 50pF, data rate = 1Mbps			200	ns		
(Driving I/O V _L)	PD-VCC-ML	D-VCC-HL CLOAD = 30pF, data rate = 500kbps, open-drain drive			400	1115		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			200			
LOW-to-HIGH Transition Propagation Delay	tpd-vcc-lh	C _{LOAD} = 50pF, data rate = 1Mbps			400	ns		
(Driving I/O V _L)	PD-VCC-LN	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			800	113		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			50			
HIGH-to-LOW Transition Propagation Delay	too vi iii	C _{LOAD} = 50pF, data rate = 1Mbps			200	ne		
(Driving I/O V _{CC})	tPD-VL-HL	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			400	ns		
		C _{LOAD} = 10pF, data rate = 2Mbps (Note 5)			200			
LOW-to-HIGH Transition Propagation Delay (Driving I/O V _{CC})		C _{LOAD} = 50pF, data rate = 1Mbps			400]		
	tPD-VL-LH	C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive			800	ns		
HIGH-to-LOW Transition Propagation Delay		C _{LOAD} = 10pF, data rate = 2Mbps (Note 3)		2				
		C _{LOAD} = 50pF, data rate = 1Mbps		4		ns		
Device-to-Device Skew (Driving I/O V _L)		C _{LOAD} = 30pF, data rate = 500kbps, open-drain drive		5		. 110		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.5V \text{ to } +5.5V, V_L = +1.6V \text{ to } +5.5V \text{ (Note 1)}, \text{ GND} = 0; I/O V_L, I/O V_{CC} \text{ unconnected}; T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $T_A = +25^{\circ}\text{C}.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOW-to-HIGH Transition		C _{LOAD} = 10pF, data rate = 2Mbps (Note 3)		5		
Propagation Delay		C _{LOAD} = 50pF, data rate = 1Mbps		8		ns
Device-to-Device Skew (Driving I/O V _L)		CLOAD = 30pF, data rate = 500kbps, open-drain drive		80		
HIGH-to-LOW Transition		C _{LOAD} = 10pF, data rate = 2Mbps (Note 3)		2		
Propagation Delay Device-to-Device Skew (Driving I/O Vcc)		C _{LOAD} = 50pF, data rate = 1Mbps		4		ns
		CLOAD = 30pF, data rate = 500kbps, open-drain drive		5		
LOW-to-HIGH Transition		C _{LOAD} = 10pF, data rate = 2Mbps (Note 3)		7		
Propagation Delay		C _{LOAD} = 50pF, data rate = 1Mbps		8		ns
Device-to-Device Skew (Driving I/O V _{CC})		CLOAD = 30pF, data rate = 500kbps, open-drain drive		50		
		C _{LOAD} = 10pF (Note 5)	2	3		
Maximum Data Rate		C _{LOAD} = 50pF	1	2		Mbps
		C _{LOAD} = 30pF, open-drain drive	0.5	1		

Note 1: V_L must always be less than or equal to V_{CC}.

Note 2: All units are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and not production tested.

Note 3: Tested only at worst case: $V_{CC} = +2.5V$, $V_L = +1.6V$.

Note 4: 10% to 90%.

Note 5: Guaranteed by correlation to C_{LOAD} = 50pF.

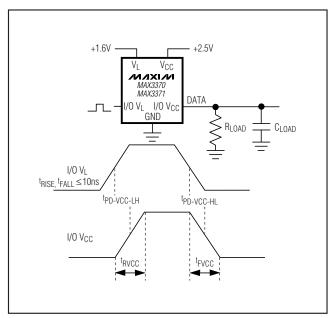


Figure 1a. Rail-to-Rail Driving I/O VL

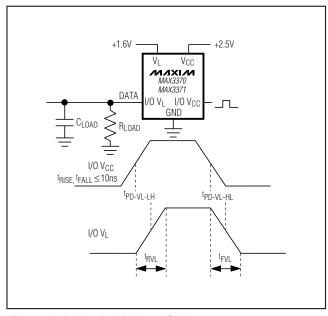


Figure 1b. Rail-to-Rail Driving I/O VCC

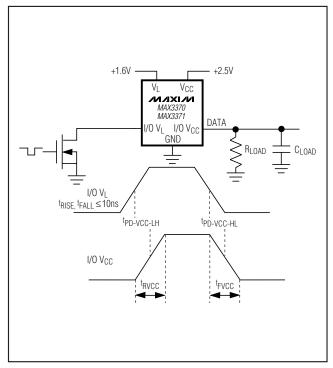


Figure 1c. Open-Drain Driving I/O VL

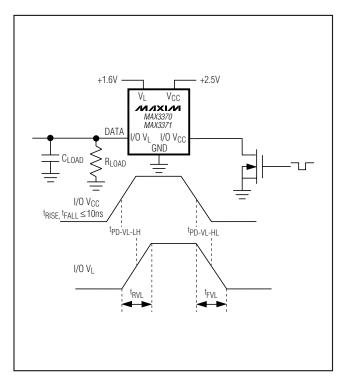
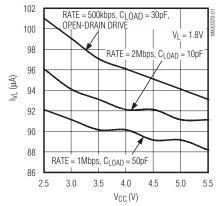
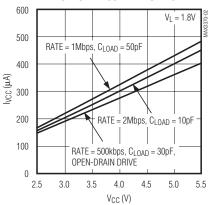
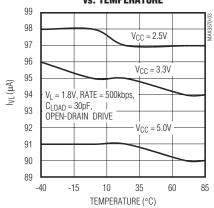
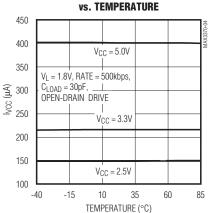



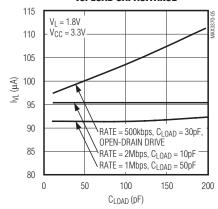
Figure 1d. Open-Drain Driving I/O VCC

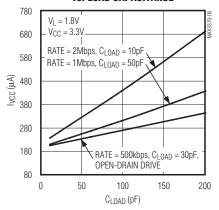

Typical Operating Characteristics

(Driving I/O V_L rail-to-rail, $R_L = 1M\Omega$, $T_A = +25^{\circ}C$, unless otherwise noted.)



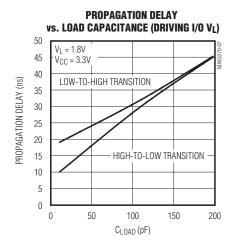

V_{CC} Supply Current vs. Power-Supply Voltage

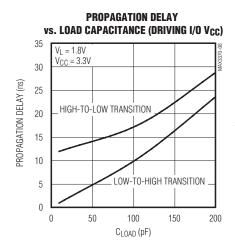

V_L SUPPLY CURRENT vs. TEMPERATURE

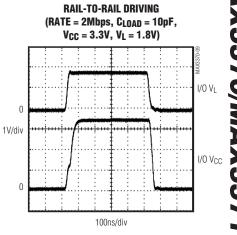

VCC SUPPLY CURRENT

V_L SUPPLY CURRENT vs. LOAD CAPACITANCE

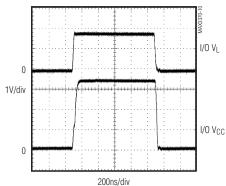
V_{CC} SUPPLY CURRENT vs. LOAD CAPACITANCE

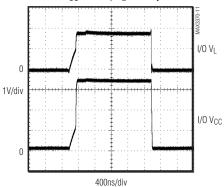


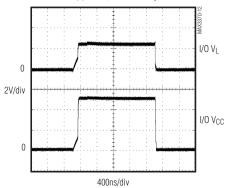

МАХЗЗ70/МАХЗЗ

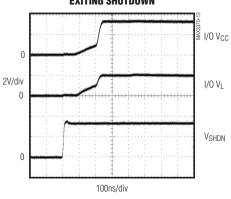

1μA, 2Mbps, Low-Voltage Level Translators in SC70 and μDFN

Typical Operating Characteristics (continued)


(Driving I/O V_L rail-to-rail, $R_L = 1M\Omega$, $T_A = +25$ °C, unless otherwise noted.)




 $\begin{array}{l} \text{RAIL-TO-RAIL DRIVING} \\ \text{(RATE = 1Mbps, $C_{LOAD} = 50pF,} \\ \text{$V_{CC} = 3.3V, $V_{L} = 1.8V)} \end{array}$



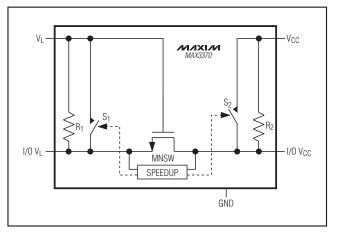
 $\begin{aligned} & \text{OPEN-DRAIN DRIVING} \\ & \text{(RATE = 500kbps, $C_{LOAD} = 30pF,} \\ & \text{$V_{CC} = 5V$, $V_L = 2.5V$)} \end{aligned}$

Pin Description

	PIN			FUNCTION	
MAX	K3370	MAX3371	NAME		
(SC70-5)	(µDFN-6)	- (SC70-6 AND μDFN-6)			
1	1	1	VL	Logic Supply Voltage	
2	2	2	GND	Ground	
3	3	3	I/O VL	Input/Output Referred to V _L	
4	4	4	I/O Vcc	Input/Output Referred to V _{CC}	
5	6	6	Vcc	Power-Supply Voltage	
_	_	5	SHDN	Shutdown. A high turns on the device. A low shuts down the device. I/O V _{CC} and I/O V _L are high impedant in shutdown.	
_	5	_	N.C.	No Connection	

Detailed Description

The MAX3370/MAX3371 provide the necessary level translation to allow data transfer in a multivoltage system. These devices transmit data between an I/O pin referenced to V_CC and an I/O pin referenced to V_L. The V_CC supply voltage range is from +2.5V to +5.5V, and the V_L supply voltage range is between +1.6V and +5.5V. The MAX3371 features a shutdown mode in which I/O V_CC and I/O V_L are placed in a high-impedance state and supply current drops to 1 μ A.


The MAX3370/MAX3371 are bidirectional level shifters allowing data transfer from the V_{CC} side to the V_L side, and from the V_L side to the V_{CC} side. Both devices operate at speeds up to 2Mbps with an active driver and up to 500kbps with an open-drain driver.

Level Translation

The MAX3370/MAX3371 provide bidirectional level translation between I/O pins referred to V_{CC} and V_L. I/O V_{CC} and I/O V_L are internally pulled up to their respective power-supply rails through 10k Ω resistors. V_{CC} must be between +2.5V and +5.5V, and V_L must be between +1.6V and +5.5V. For proper operation, V_L can not exceed V_{CC}.

The MAX3370/MAX3371 can operate at data rates up to 2Mbps when driven by an active (push-pull) driver with a 10pF load, 1Mbps when driven by an active driver with a 50pF load, or 500kbps when driven by an open-drain driver with a 30pF load. The internal pullups allow these devices to be driven by open-drain drivers.

Functional Diagram

MAX3371 Shutdown Mode

The MAX3371 enters a low-power shutdown mode when \overline{SHDN} is driven low. Connect \overline{SHDN} to V_L or drive high for normal operation. Activating shutdown mode disconnects the internal $10k\Omega$ pullup resistors on I/O V_{CC} and I/O V_{L} . As a result, the supply current decreases to < $1\mu A$, and the I/O lines are high impedance. The high impedance I/O lines in shutdown allow use in a multidrop network. When in shutdown, I/O V_{LC} can be driven to V_{LC} .

8 ______ /N/XI/M

Speed-Up

The speed-up circuit is a one-shot generator that helps the rise time of the output waveform in the low-to-high transition. When triggered, switches S₁ and S₂ turn on for 320ns to pull up I/O V_L and I/O V_{CC}. This greatly reduces the rise time and propagation delay for the low-to-high transition as well as improves the duty cycle (closer to 50% for an ideal square-wave input). See the scope plots in the *Typical Operating Characteristics* for the speed-up circuitry in operation.

Applications Information

Power-Supply Decoupling

To reduce ripple and the chance of transmitting incorrect data, decouple V_{CC} and V_L to ground with a $0.1\mu F$ capacitor as close to the device as possible.

I²C Level Translation

The MAX3370/MAX3371 are ideal for level translation between a low-voltage ASIC and an I²C device. The devices' bidirectional natures allow their use in the data line of I²C communications. A typical application is interfacing a low-voltage microprocessor to a 3V or 5V D/A converter, such as the MAX517.

The I/O lines on the MAX3370/MAX3371 are bidirectional, can be level-shifted up to +5.5V, and contain internal $10k\Omega$ pullup resistors to allow open-drain driving (see the *Typical Operating Circuit*).

Push-Pull vs. Open-Drain Driving

The MAX3370/MAX3371 I/O pins can be driven by a push-pull or open-drain device. When using a push-pull driver, the MAX3370/MAX3371 operate up to 2Mbps with a 10pF load or 1Mbps with a 50pF load. The internal pullup resistors on the I/O pins allow use with opendrain devices. The MAX3370/MAX3371 operate up to 500kbps with a 30pF load when driven by an opendrain device.

Data rates higher than those listed in the *Electrical Characteristics* table can be achieved. The maximum data rate is limited to 3Mbps by the speed-up circuitry.

Unidirectional vs. Bidirectional Level Translator

The MAX3370/MAX3371 may also be used to translate unidirectional signals without signal inversion. The devices provide the smallest solution (SC70 package) for unidirectional level translation without inversion.

_Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
5 SC70	X5+1	<u>21-0076</u>
6 SC70	X6SN+1	<u>21-0077</u>
6 μDFN	L611+2	<u>21-0147</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/00	Initial release	_
3	5/09	Updated Ordering Information, style edits.	1, 5, 8, 9, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com