

SEMICONDUCTOR®

FSBB10CH120D Motion SPM[®] 3 Series

Features

- 1200 V 10 A 3-Phase IGBT Inverter with Integral Gate Drivers and Protection
- · Low-Loss, Short-Circuit Rated IGBTs
- Very Low Thermal Resistance Using Al_2O_3 DBC Substrate
- Dedicated Vs Pins Simplify PCB Layout
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- · Single-Grounded Power Supply
- Isolation Rating: 2500 V_{rms} / 1 min.

Applications

Motion Control - Industrial Motor (AC 400V Class)

Related Resources

• AN-9044 - Motion SPM® 3 Series Users Guide

April 2014

General Description

FSBB10CH120D is an advanced Motion SPM[®] 3 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, over-current shutdown, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the highvoltage, high-current drive signals required to properly drive the module's internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

Figure 1. Package Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FSBB10CH120D	FSBB10CH120D	SPMMC-027	Rail	10

Integrated Power Functions

• 1200 V - 10 A IGBT inverter for three-phase DC / AC power conversion (refer to Figure 3)

Integrated Drive, Protection and System Control Functions

· For inverter high-side IGBTs: gate drive circuit, high-voltage isolated high-speed level shifting control circuit, Under-Voltage Lock-Out Protection (UVLO), Available bootstrap circuit example is given in Figures 5 and 14.

- For inverter low-side IGBTs: gate drive circuit, Short-Circuit Protection (SCP) control circuit, • Under-Voltage Lock-Out Protection (UVLO)
- Fault signaling: corresponding to UVLO (low-side supply) and SC faults •
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input •

Pin Configuration

Figure 2. Top View

Pin Number	Pin Name	Pin Description	
1	V _{CC(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving	
2	COM	Common Supply Ground	
3	IN _(UL)	Signal Input for Low-Side U Phase	
4	IN _(VL)	Signal Input for Low-Side V Phase	
5	IN _(WL)	Signal Input for Low-Side W Phase	
6	V _{FO}	Fault Output	
7	C _{FOD}	Capacitor for Fault Output Duration Time Selection	
8	C _{SC}	Capacitor (Low-Pass Filter) for Short-Current Detection Input	
9	IN _(UH)	Signal Input for High-Side U Phase	
10	V _{CC(UH)}	High-Side Bias Voltage for U Phase IC	
11	V _{B(U)}	High-Side Bias Voltage for U Phase IGBT Driving	
12	V _{S(U)}	High-Side Bias Voltage Ground for U Phase IGBT Driving	
13	IN _(VH)	Signal Input for High-Side V Phase	
14	V _{CC(VH)}	High-Side Bias Voltage for V Phase IC	
15	V _{B(V)}	High-Side Bias Voltage for V Phase IGBT Driving	
16	V _{S(V)}	High-Side Bias Voltage Ground for V Phase IGBT Driving	
17	IN _(WH)	Signal Input for High-Side W Phase	
18	V _{CC(WH)}	High-Side Bias Voltage for W Phase IC	
19	V _{B(W)}	High-Side Bias Voltage for W Phase IGBT Driving	
20	V _{S(W)}	High-Side Bias Voltage Ground for W Phase IGBT Driving	
21	NU	Negative DC-Link Input for U Phase	
22	N _V	Negative DC-Link Input for V Phase	
23	N _W	Negative DC-Link Input for W Phase	
24	U	Output for U Phase	
25	V	Output for V Phase	
26	W	Output for W Phase	
27	Р	Positive DC-Link Input	

Figure 3. Internal Block Diagram

Notes:

1. Inverter low-side is composed of three IGBTs, freewheeling diodes for each IGBT, and one control IC. It has gate drive and protection functions.

2. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

3. Inverter high-side is composed of three IGBTs, freewheeling diodes, and three drive ICs for each IGBT.

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, unless otherwise specified)

Inverter Part

Symbol	Parameter	Conditions	Rating	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	900	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P - N_U , N_V , N_W	1000	V
V _{CES}	Collector - Emitter Voltage		1200	V
± I _C	Each IGBT Collector Current	T_C = 25°C, $T_J \leq 150^\circ C$ (Note 4)	10	А
± I _{CP}	Each IGBT Collector Current (Peak)	T_{C} = 25°C, T_{J} \leq 150°C, Under 1 ms Pulse Width (Note 4)	20	A
P _C	Collector Dissipation	T _C = 25°C per One Chip (Note 4)	69	W
TJ	Operating Junction Temperature		-40 ~ 150	°C

Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC(H)} , V _{CC(L)} - COM	20	V
V _{BS}	High-Side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-0.3 ~ V _{CC} +0.3	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3 ~ V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} pin	2	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	$-0.3 \sim V_{CC} + 0.3$	V

Total System

Symbol	Parameter	Conditions	Rating	Unit
V _{PN(PROT)}	Self Protection Supply Voltage Limit (Short Circuit Protection Capability)	V_{CC} = V_{BS} = 13.5 \sim 16.5 V, T_{J} = 150°C, Non-repetitive, < 2 μs	800	V
т _с	Module Case Operation Temperature	See Figure 2	-40 ~ 125	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat Sink Plate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction-to-Case Thermal Resistance	Inverter IGBT part (per 1 / 6 module)	-	-	1.80	°C / W
R _{th(j-c)F}	(Note 5)	Inverter FWD part (per 1 / 6 module)	-	-	2.75	°C / W

Notes:

4. These values had been made an acquisition by the calculation considered to design factor.

5. For the measurement point of case temperature (T_C), please refer to Figure 2.

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Inverter Part

S	ymbol	Parameter	Cond	itions	Min.	Тур.	Max.	Unit
V	CE(SAT)	Collector - Emitter Saturation Voltage	V _{CC} = V _{BS} = 15 V V _{IN} = 5 V	I _C = 10 A, T _J = 25°C	-	2.20	2.80	V
	V _F	FWDi Forward Voltage	V _{IN} = 0 V	I_{F} = 10 A, T_{J} = 25°C	-	2.20	2.80	V
HS	t _{ON}	Switching Times	$V_{PN} = 600 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 10 \text{ A}$		0.45	0.85	1.35	μS
	t _{C(ON)}		$T_J = 25^{\circ}C$ $V_{IN} = 0 V \leftrightarrow 5 V$, Induc	tive Load	-	0.25	0.60	μS
	t _{OFF}		See Figure 5		-	0.95	1.50	μS
	t _{C(OFF)}		(Note 6)		-	0.10	0.45	μS
	t _{rr}				-	0.25	-	μS
LS	t _{ON}		V _{PN} = 600 V, V _{CC} = 15	V, I _C = 10 A	0.35	0.75	1.25	μS
	t _{C(ON)}		$T_J = 25^{\circ}C$ $V_{IN} = 0 V \leftrightarrow 5 V$, Induc	tive Load	-	0.20	0.55	μS
	t _{OFF}		See Figure 5		-	0.95	1.50	μS
	t _{C(OFF)}		(Note 6)		-	0.10	0.45	μS
	t _{rr}				-	0.20	-	μS
	I _{CES}	Collector - Emitter Leakage Current	$V_{CE} = V_{CES}$		-	-	5	mA

Note:

6. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, *please see Figure 4*.

FSBB10CH120D
Motion
SPM®
3 Series

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
I _{QCCH}	Quiescent V _{CC} Supply Current	V _{CC(UH,VH,WH)} = 15 V, IN _(UH,VH,WH) = 0 V	$\begin{array}{l} V_{CC(UH)} \text{-} COM, \\ V_{CC(VH)} \text{-} COM, \\ V_{CC(WH)} \text{-} COM \end{array}$	-	-	0.15	mA
IQCCL		V _{CC(L)} = 15 V, IN _(UL,VL,WL) = 0 V	V _{CC(L)} - COM	-	-	5.00	mA
I _{PCCH}	Operating V _{CC} Supply	$V_{CC(UH,VH,WH)}$ = 15 V, f_{PWM} = 20 kHz, duty = 50%, applied to one PWM signal input for High-Side	$\label{eq:V_CC(UH)} \begin{array}{l} V_{CC(UH)} \text{-} \text{COM}, \\ V_{CC(VH)} \text{-} \text{COM}, \\ V_{CC(WH)} \text{-} \text{COM} \end{array}$	-	-	0.30	mA
I _{PCCL}	Current	$V_{CC(L)}$ = 15V, f _{PWM} = 20 kHz, duty = 50%, applied to one PWM signal input for Low-Side	V _{CC(L)} - COM	-	-	8.50	mA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{BS} = 15 V, IN _(UH, VH, WH) = 0 V	$V_{B(U)} - V_{S(U)},$ $V_{B(V)} - V_{S(V)},$ $V_{B(W)} - V_{S(W)}$	-	-	0.30	mA
I _{PBS}	Operating V _{BS} Supply Current	$V_{CC} = V_{BS} = 15 \text{ V}, f_{PWM} = 20 \text{ kHz},$ duty = 50%, applied to one PWM signal input for High-Side	$V_{B(U)} - V_{S(U)},$ $V_{B(V)} - V_{S(V)},$ $V_{B(W)} - V_{S(W)}$	-	-	4.50	mA
V _{FOH}	Fault Output Voltage	V_{CC} = 15 V, V_{SC} = 0 V, V_{FO} Circuit: 4.	7 k Ω to 5 V Pull-up	4.5	-	-	V
V _{FOL}		V_{CC} = 15 V, V_{SC} = 1 V, V_{FO} Circuit: 4.	7 k Ω to 5 V Pull-up	-	-	0.5	V
V _{SC(ref)}	Short Circuit Trip Level	V _{CC} = 15 V (Note 8)	C _{SC} - COM	0.43	0.50	0.57	V
UV _{CCD}	Supply Circuit Under-	Detection Level		10.3	-	12.8	V
UV _{CCR}	Voltage Protection	Reset Level		10.8	-	13.3	V
UV_BSD		Detection Level		9.5	-	12.0	V
UV_BSR		Reset Level		10.0	-	12.5	V
t _{FOD}	Fault-Out Pulse Width	C _{FOD} = open	(Note 9)	50	-	-	μS
		C _{FOD} = 2.2 nF		1.7	-	-	ms
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _(UH, VH, WH) - CC	DM, IN _(UL, VL, WL) -	-	-	2.6	V
V _{IN(OFF)}	OFF Threshold Voltage	COM		0.8	-	-	V

8. Short-circuit current protection is functioning only at the low-sides.

9. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : t_{FOD} = 0.8 x 10⁶ x C_{FOD} [s].

Recommended Operating Conditions

Symbol	Parameter	Conditions		Value	/alue	
Symbol I arameter		Conditions		Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	300	600	800	V
V _{CC}	Control Supply Voltage	Applied between V _{CC(UH, VH, WH)} - COM, V _{CC(L)} - COM		15.0	16.5	V
V _{BS}	High-Side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$		15.0	18.5	V
dV _{CC} / dt, dV _{BS} / dt	Control Supply Variation		-1	-	1	V / μs
t _{dead}	Blanking Time for Preventing Arm - Short	For Each Input Signal	2.0	-	-	μS
f _{PWM}	PWM Input Signal	$-40^{\circ}C \leq T_C \leq 125^{\circ}C, \ -40^{\circ}C \leq T_J \leq 150^{\circ}C$	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including Surge Voltage)	-5		5	V
PW _{IN(ON)}	Minimun Input Pulse	$I_C \leq 20$ A, Wiring Inductance between $N_{U,\ V,\ W}$ and DC Link	1.5	-	-	μS
PW _{IN(OFF)}	Width	N < 10nH (Note 10)		-	-	
Τ _J	Junction Temperature		-40	-	150	°C

Note:

10. This product might not make output response if input pulse width is less than the recommanded value.

Devenator	Conditions		Limits			11
Parameter		onations	Min.	Тур.	Max.	Unit
Device Flatness	See Figure 8	See Figure 8		-	+150	μm
Mounting Torque	Mounting Screw: M3	Recommended 0.7 N • m	0.6	0.7	0.8	N•m
	See Figure 9	Recommended 7.1 kg • cm	6.2	7.1	8.1	kg•cm
Terminal Pulling Strength	Load 19.6 N		10	-	-	S
Terminal Bending Strength	Load 9.8 N, 90 deg. bend	1	2	-	-	times
Weight			-	15	-	g

Figure 8. Flatness Measurement Position

Pre - Screwing : $1 \rightarrow 2$ Final Screwing : $2 \rightarrow 1$

Figure 9. Mounting Screws Torque Order

Note:

11. Do not make over torque when mounting screws. Much mounting torque may cause DBC cracks, as well as bolts and AI heat-sink destruction.

12. Avoid one-side tightening stress. Figure 9 shows the recommended torque order for mounting screws. Uneven mounting can cause the ceramic substrate of package to be damaged. The pre-screwing torque is set to 20 ~ 30% of maximum torque rating.

- b4 : IGBT OFF in spite of control input condition, but there is no fault output signal.
- b5 : Under-voltage reset (UV $_{\mbox{\scriptsize BSR}}$).
- b6 : Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 12. Short-Circuit Current Protection (Low-Side Operation only)

(with the external sense resistance and RC filter connection)

- c1 : Normal operation: IGBT ON and carrying current.
- c2 : Short circuit current detection (SC trigger).
- c3 : All low-side IGBT's gate are hard interrupted.
- c4 : All low-side IGBTs turn OFF.
- c5 : Fault output operation starts with a fixed pulse width.
- c6 : Input HIGH: IGBT ON state, but during the active period of fault output the IGBT doesn't turn ON.
- c7 : Fault output operation finishes, but IGBT doesn't turn on until triggering next signal from LOW to HIGH.
- c8 : Normal operation: IGBT ON and carrying current.

Input/Output Interface Circuit

Note:

13. RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The input signal section of the Motion SPM 3 product integrates 5 kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

FSBB10CH120D Motion SPM® 3 Series

Figure 14. Typical Application Circuit

Notes:

- 14. To avoid malfunction, the wiring of each input should be as short as possible. (less than 2 3 cm)
- 15. V_{FO} output is open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes I_{FO} up to 2 mA. Please refer to Figure 14.
- 16. Fault out pulse width can be adjust by capacitor C_5 connected to the $\mathrm{C}_{\mathrm{FOD}}$ terminal.
- 17. Input signal is active-HIGH type. There is a 5 k Ω resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits should be adopted for the prevention of input signal oscillation. R₁C₁ time constant should be selected in the range 50 ~ 150 ns. (recommended R₁ = 100 Ω , C₁ = 1 nF)
- 18. Each wiring pattern inductance of point A should be minimized (recommend less than 10 nH). Use the shunt resistor R₄ of surface mounted (SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt resistor R₄ as close as possible.
- 19. To prevent errors of the protection function, the wiring of B, C, and D point should be as short as possible.
- 20. In the short-circuit protection circuit, select the R₆C₆ time constant in the range 1.0 ~ 1.5 μs. Do enough evaluaiton on the real system because short-circuit protection time may vary wiring pattern layout and value of the R₆C₆ time constant.
- 21. Each capacitor should be mounted as close to the pins of the Motion SPM[®] 3 product as possible.
 22. To prevent surge destruction, the wiring between the smoothing capacitor C₇ and the P & GND pins should be as short as possible. The use of a high-frequency non-inductive capacitor of around 0.1 ~ 0.22 μF between the P & GND pins is recommended.
- 23. Relays are used in most systems of electrical equipments in industrial application. In these cases, there should be sufficient distance between the MCU and the relays.
- 24. The Zener diode or transient voltage suppressor D₂ should be adapted for the protection of ICs from the surge destruction between each pair of control supply terminals (recommanded Zener diode is 22 V / 1 W, which has the lower Zener impedance characteristic than about 15 Ω).
- 25. Boostrap capacitor C_3 and Bootstrap resistor R_2 values depend on PWM control algorithm. And, C_2 of around seven times larger than bootstrap capacitor C_3 is recommended.
- 26. Please choose the electrolytic capacitor with good temperature characteristic in C₃. Choose 0.1 ~ 0.2 µF R-category ceramic capacitors with good temperature and frequency characteristics in C₄.
- 27. Use the bootstrap diode D₁ which has high voltage(V_{RRM} = 1200 V or more), soft, and fast recovery(t_{RR} = less than 100 ns) characteristics.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD27BA.pdf

FSBB10CH120D Motion SPM® 3 Series

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMax™ **ESBC**™ Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT FAST®

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ **GTO™** IntelliMAX[™] **ISOPLANAR**TM Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

PowerTrench[®] PowerXS™ Programmable Active Droop™ OFET OS™ Quiet Series™ RapidConfigure™ \bigcirc TM Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] **STEALTH™** SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

Sync-Lock[™] SYSTEM GENERAL[®] TinvBoost[®]

TinyBuck® TinyCalcTM TinyLogic® TINYOPTOTM TinyPowerTM TinyWMTM TinyWireTM TranSiCTM TriFault DetectTM TRUECURRENT®*

Ultra FRFETTM UniFETTM VCXTM VisualMaxTM VoltagePlusTM XSTM

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FastvCore™

FETBench™

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild's number for parts bought from Unauthorized Sources. Fairchild's combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com