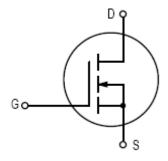
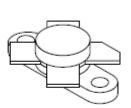
MRF148A

Linear RF Power FET 30W, to 175MHz, 50V

M/A-COM Products Released - Rev. 062907


Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 175MHz.

Superior high order IMD
 IMD(d3) (30W PEP): -35 dB (Typ.)
 IMD(d11) (30W PEP): -60 dB (Typ.)


Specified 50V, 30MHz characteristics:

Output power: 30W Gain: 18dB (Typ.) Efficiency: 40% (Typ.)

- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Lower reverse transfer capacitance (3.0 pF typ.)

Product Image

CASE 211-07, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Drain-Source Voltage	VDSS	120	Vdc	
Drain-Gate Voltage	VDGO	V _{DGO} 120		
Gate-Source Voltage	VGS	±40	Vdc	
Drain Current — Continuous	ID	6.0	Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	115 0.66	Watts W/°C	
Storage Temperature Range	T _{stg}	T _{stg} −65 to +150		
Operating Junction Temperature	TJ	200	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.52	°C/W

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MRF148A

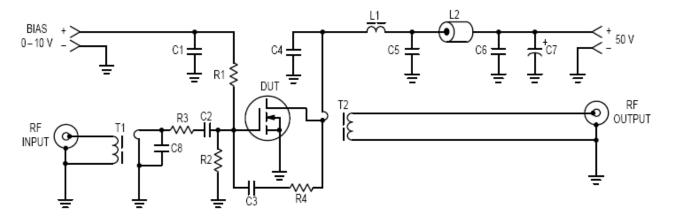
Linear RF Power FET 30W, to 175MHz, 50V

M/A-COM Products Released - Rev. 062907

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 10 mA)	V(BR)DSS	125	_	_	Vdc
Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0)	IDSS	_	_	1.0	mAdc
Gate-Body Leakage Current (VGS = 20 V, VDS = 0)	IGSS	_	_	100	nAdc
ON CHARACTERISTICS					•
Gate Threshold Voltage (VDS = 10 V, ID = 10 mA)	VGS(th)	1.0	2.5	5.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 V, I _D = 2.5 A)	VDS(on)	1.0	3.0	5.0	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 2.5 A)	9fs	0.8	1.2	_	mhos
DYNAMIC CHARACTERISTICS					
Input Capacitance (V _{DS} = 50 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	62	_	pF
Output Capacitance (V _{DS} = 50 V, V _{GS} = 0, f = 1.0 MHz)	Coss	_	35	_	pF
Reverse Transfer Capacitance ($V_{DS} = 50 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	C _{rss}	_	3.0	_	pF
FUNCTIONAL TESTS (SSB)					
Common Source Amplifier Power Gain (30 MHz) (VDD = 50 V, Pout = 30 W (PEP), IDQ = 100 mA) (175 MHz)	Gps	_ _	18 15	_	dB
Drain Efficiency (30 W PEP) (V _{DD} = 50 V, f = 30 MHz, I _{DQ} = 100 mA) (30 W CW)	η		40 50	_ _	%
Intermodulation Distortion (V _{DD} = 50 V, P _{out} = 30 W (PEP), f = 30; 30.001 MHz, I _{DQ} = 100 mA)	IMD(d3) IMD(d11)		-35 -60	_ _	dB
Load Mismatch (V _{DD} = 50 V, P _{out} = 30 W (PEP), f = 30; 30.001 MHz, I _{DQ} = 100 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power			
CLASS A PERFORMANCE					
Intermodulation Distortion (1) and Power Gain (V _{DD} = 50 V, P _{out} = 10 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I _{DQ} = 1.0 A)	GPS IMD(d3) IMD(d9-13)	_ _ _	20 -50 -70	_ _ _	dB

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

• North America Tel: 800.366.2266 / Fax: 978.366.2266 • Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 062907

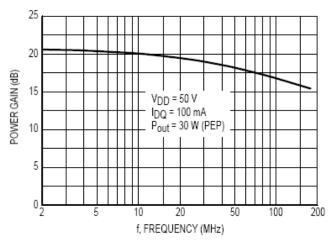
C1, C2, C3, C4, C5, C6 - 0.1 µF Ceramic Chip or Equivalent

C7 — 10 µF, 100 V Electrolytic

C8 — 100 pF Dipped Mica L1 — VK200 20/4B Ferrite Choke or Equivalent (3.0 μH)

L2 - Ferrite Bead(s), 2.0 μH

R1, R2 — 200 Ω, 1/2 W Carbon


R3 — 4.7 Ω, 1/2 W Carbon

R4 — 470 Ω, 1.0 W Carbon

T1 — 4:1 Impedance Transformer

T2 — 1:2 Impedance Transformer

Figure 1. 2.0 to 50 MHz Broadband Test Circuit

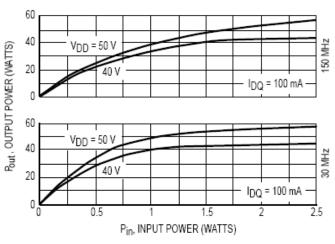


Figure 3. Output Power versus Input Power

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 062907

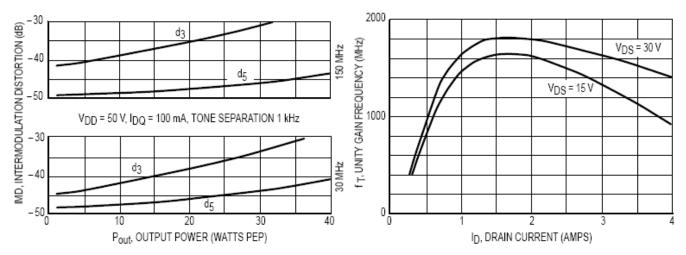


Figure 4. IMD versus Pout

Figure 5. Common Source Unity Gain Frequency versus Drain Current

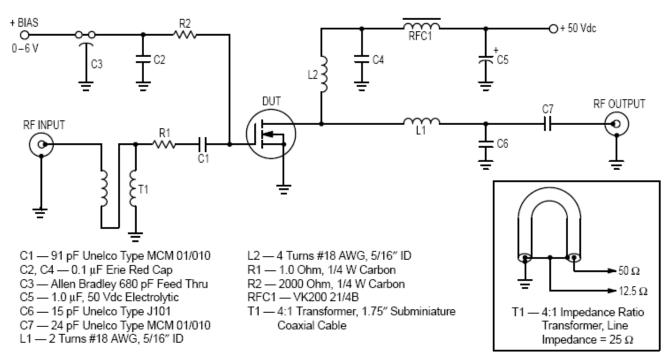


Figure 6. 150 MHz Test Circuit

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

• **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 062907

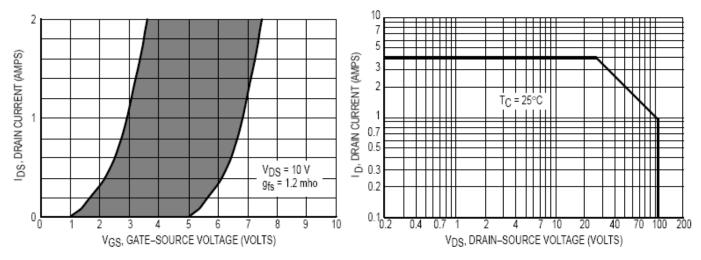


Figure 7. Gate Voltage versus Drain Current

Figure 8. DC Safe Operating Area (SOA)

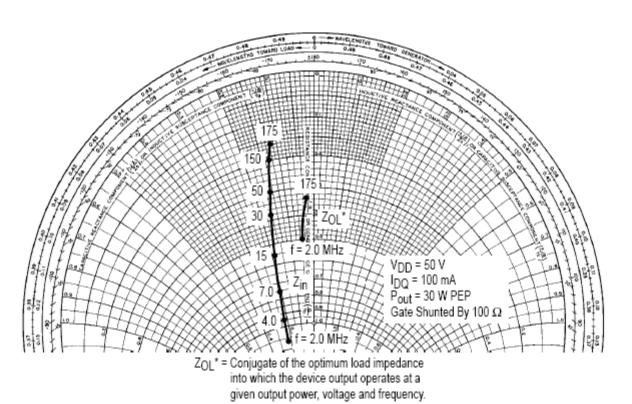
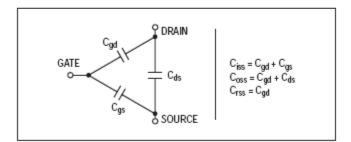


Figure 9. Impedance Coordinates — 50 Ohm Characteristic Impedance

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 062907


RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain ($C_{\rm gd}$), and gate–to–source ($C_{\rm gs}$). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain–to–source ($C_{\rm ds}$).

These capacitances are characterized as input (C_{iss}) , output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

- Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full—on condition. This on—resistance, $V_{DS(on)}$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate—source voltage and drain current. For MOSFETs, $V_{DS(on)}$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

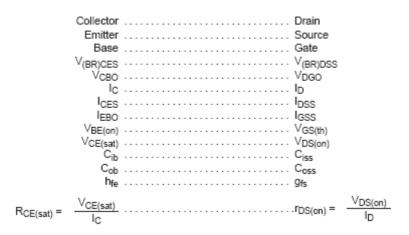
The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10⁹ ohms — resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $V_{\text{GS(th)}}$.

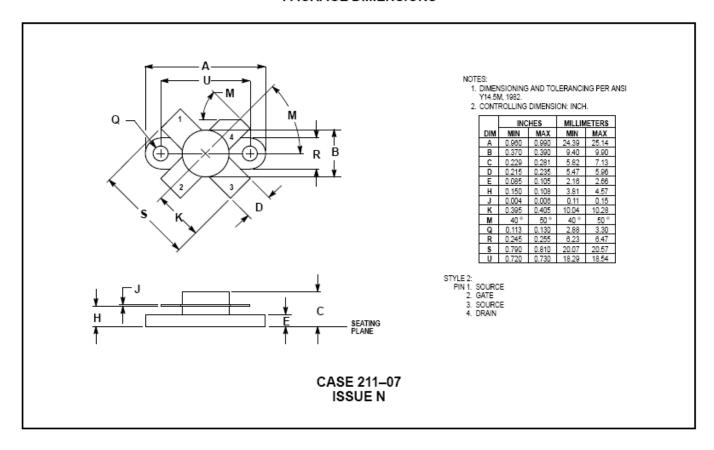
Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate—to—source. If gate protection is required, an external zener diode is recommended.


• **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
Visit www.macomtech.com for additional data sheets and product information.



M/A-COM Products Released - Rev. 062907

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

PACKAGE DIMENSIONS

and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com