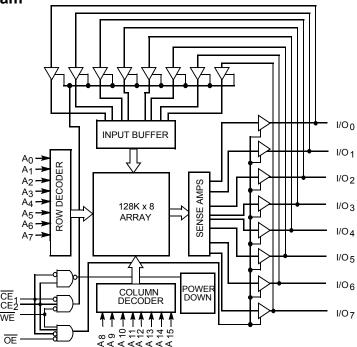


CY621282BN MoBL® Automotive 1-Mbit (128 K × 8) Static RAM

Features

- Temperature Ranges
 □ Automotive-E: -40 °C to 125 °C
- 4.5 V to 5.5 V operation
- Complementary metal oxide semiconductor (CMOS) for optimum speed/power
- Low active power 137.5 mW (max.) (25 mA)
- Low standby power 137.5 μW (max.) (25 μA)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options
- Available in Pb-free 32-pin (450 mil-wide) small outline integrated circuit (SOIC) package

Functional Description


The CY621282BN is a high-performance CMOS static RAM organized as 128K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}_1$), an active HIGH Chip Enable ($\overline{\text{CE}}_2$), and active LOW Output Enable ($\overline{\text{OE}}$). This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable One (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (\overline{CE}_2) input HIGH. Data on the eight I/O pins $(I/O_0$ through $I/O_7)$ is then written into the location specified on the address pins $(A_0$ through $A_{16})$.

Reading from the device is accomplished by taking Chip Enable One (\overline{CE}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable Two (\overline{CE}_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is <u>des</u>elected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH, and \overline{WE} LOW).

Logic Block Diagram

Cypress Semiconductor CorporationDocument Number: 001-65526 Rev. *C

198 Champion Court

San Jose, CA 95134-1709

408-943-2600

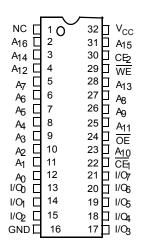
Revised March 27, 2015

CY621282BN MoBL® Automotive

Contents

Product Portfolio	3
Pin Configuration	
Pin Definitions	
Maximum Ratings	
Operating Range	
Electrical Characteristics	
Capacitance	
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Waveform	
Data Retention Characteristics	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering information	10
Ordering Code Definitions	10
Package Diagrams	11
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	14
Products	14
PSoC® Solutions	14
Cypress Developer Community	14
Technical Support	14



Product Portfolio

		V	_{CC} Range (ν)		Power Dissipation				
Pro	duct	•	CC Ivalige (•,	Speed (ns)	Operating, I _{CC} (mA)		Standby, I _{SB2} (μA)		
		Min	Typ ^[1]	Max		Typ ^[1]	Max	Typ ^[1]	Max	
CY621282BN	Automotive-E	4.5	5.0	5.5	70	6	25	2.5	25	

Pin Configuration

Figure 1. 32-pin SOIC (Top View)

Pin Definitions

I/O Type	Description
Input	A ₀ -A ₁₆ . Address inputs
Input/output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation.
Input/control	WE . Write Enable, Active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
Input/control	CE ₁ . Chip Enable 1, Active LOW.
Input/control	CE ₂ . Chip Enable 2, Active HIGH.
Input/control	OE . Output Enable, Active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
Ground	GND. Ground for the device.
Power supply	V _{CC} . Power supply for the device.

Note

^{1.} Typical values are included for reference only and are not tested or guaranteed. Typical values are measured at V_{CC} = 5.0 V, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Ambient temperature with Supply voltage on V_{CC} to relative $\mbox{GND}^{\mbox{\scriptsize [2]}}$ -0.5 V to +7.0 V

DC input voltage ^[2, 3]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (per MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Automotive-E	–40 °C to +125 °C	$5~V\pm10\%$

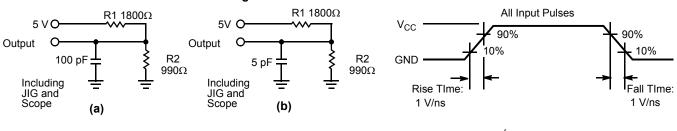
Electrical Characteristics

Over the Operating Range

Downwoodow	Description	Took Conditions	-70				
Parameter	Description	Test Conditions	Min	Typ ^[4]	Max	Unit	
V _{OH}	Output HIGH voltage	V _{CC} = 4.5 V, I _{OH} = -1.0 mA	2.4	_	_	V	
		$V_{CC} = 5.5 \text{ V}, I_{OH} = -0.1 \text{ mA}$	3.95	_	_		
		$V_{CC} = 5 \text{ V}, I_{OH} = -0.1 \text{ mA}$	3.6	_	_		
		V_{CC} = 4.5 V, I_{OH} = -0.1 mA	3.25	_	_		
V_{OL}	Output LOW voltage	V _{CC} = 4.5 V, I _{OL} = 2.1 mA	-	_	0.4	V	
V _{IH}	Input HIGH voltage		2.2	_	V _{CC} + 0.3	V	
V_{IL}	Input LOW voltage ^[2]		-0.3	_	0.8	V	
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	-10	_	+10	μΑ	
I _{OZ}	Output leakage current	$GND \le V_{IN} \le V_{CC}$, Output Disabled	-10	_	+10	μΑ	
I _{CC}	V _{CC} operating supply current	$f = f_{MAX} = 1/t_{RC}$ $V_{CC} = 5.5 V$,	-	6	25	mA	
		$f = 1 \text{ MHz}$ $I_{OUT} = 0 \text{ mA}$		2	12		
I _{SB1}	Automatic CE power-down current – TTL inputs	$V_{CC} = 5.5 \text{ V}, \overline{CE}_1 \ge V_{IH} \text{ or } CE_2 \le V_{IL}, V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$	_	0.1	2	mA	
I _{SB2}	Automatic CE power-down current – CMOS inputs	$\begin{array}{c} V_{CC} = 5.5 \text{ V}, \ \overline{CE}_1 \geq V_{CC} - 0.3 \text{ V}, \\ \text{or } CE_2 \leq 0.3 \text{ V}, \ V_{IN} \geq V_{CC} - 0.3 \text{ V}, \text{ or } \\ V_{IN} \leq 0.3 \text{ V}, \ f = 0 \end{array}$	-	2.5	25	μА	

- 2. V_{IL} (min.) = -2.0 V for pulse durations of less than 20 ns.
 3. No input may exceed V_{CC} + 0.5 V.
 4. Typical values are included for reference only and are not tested or guaranteed. Typical values are measured at V_{CC} = 5.0 V, T_A = 25 °C.

Capacitance

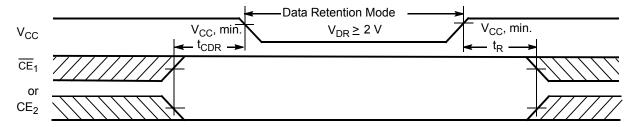

Parameter [5]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	9	pF
C _{OUT}	Output capacitance		9	pF

Thermal Resistance

Parameter [5]	Description	Test Conditions	32-pin SOIC	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA /	66.17	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	1JESD51.	30.87	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms



Note
5. Tested initially and after any design or process changes that may affect these parameters.

Data Retention Waveform

Figure 3. Data Retention Waveform

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Condition	ıs	Min	Тур	Max	Unit
V_{DR}	V _{CC} for data retention			2.0	_	_	V
I _{CCDR}	Data retention current	$\begin{array}{l} \frac{V_{CC}}{CE_1} = V_{DR} = 2.0 \text{ V,} \\ CE_1 \geq V_{CC} - 0.3 \text{ V, or} \\ CE_2 \leq 0.3 \text{ V,} \\ V_{IN} \geq V_{CC} - 0.3 \text{ V or,} \\ V_{IN} \leq 0.3 \text{ V} \end{array}$	Automotive-E	-	1.5	25	μА
t _{CDR}	Chip deselect to data retention time			0	-	-	ns
t _R	Operation recovery time			70	_	_	ns

Switching Characteristics

Over the Operating Range

Parameter [6]	Dog animation	CY6212	CY621282BN-70		
Parameter [9]	Description	Min	Max	Unit	
Read Cycle			•	•	
t _{RC}	Read cycle time	70	_	ns	
t _{AA}	Address to data valid	_	70	ns	
t _{OHA}	Data hold from address change	5	_	ns	
t _{ACE}	CE ₁ LOW to data valid, CE ₂ HIGH to data valid	_	70	ns	
t _{DOE}	OE LOW to data valid	_	35	ns	
t _{LZOE}	OE LOW to Low Z [7]	0	_	ns	
t _{HZOE}	OE HIGH to High Z [7, 8]	_	25	ns	
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[7]	5	_	ns	
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z [7, 8]	_	25	ns	
t _{PU}	CE ₁ LOW to Power-up, CE ₂ HIGH to power-up	0	_	ns	
t _{PD}	CE ₁ HIGH to Power-down, CE ₂ LOW to power-down	_	70	ns	
Write Cycle [9,	10]	<u>.</u>			
t _{WC}	Write cycle time	70	_	ns	
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to write end	60	_	ns	
t _{AW}	Address set-up to write end	60	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address set-up to write start	0	_	ns	
t _{PWE}	WE pulse width	50	_	ns	
t _{SD}	Data set-up to write end	30	_	ns	
t _{HD}	Data Hold from write end	0	_	ns	
t _{LZWE}	WE HIGH to Low Z [7]	5	_	ns	
t _{HZWE}	WE LOW to High Z [7, 8]	_	25	ns	

Notes

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of <u>5 p</u>F as in (b) of Figure 2 on page 5. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

^{10.} The minimum write cycle pulse width for Write Cycle No. 3 (WE controlled, OE LOW) should be equal to the sum of tsD and tHZWE.

Switching Waveforms

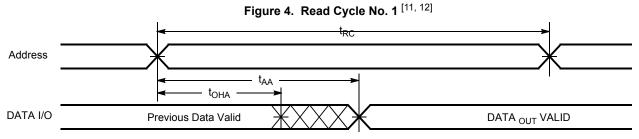


Figure 5. Read Cycle No. 2 (OE Controlled) [12, 13]

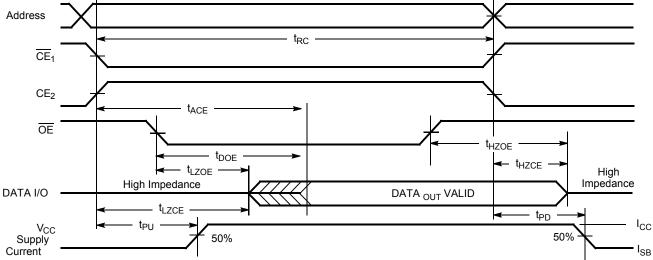
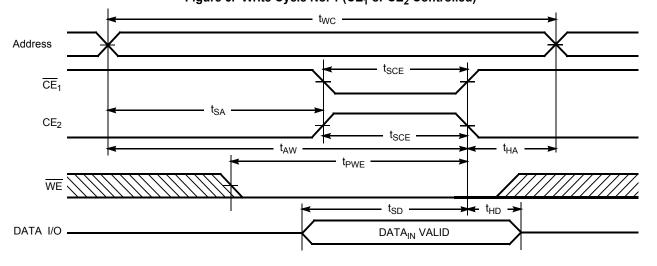



Figure 6. Write Cycle No. 1 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [14, 15]

- 11. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

 12. WE is HIGH for read cycle.
- 13. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.
- 14. Data I/O is high impedance if \overline{OE} = V_{IH}.

 15. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 2 (WE Controlled, OE HIGH during Write) [16, 17]

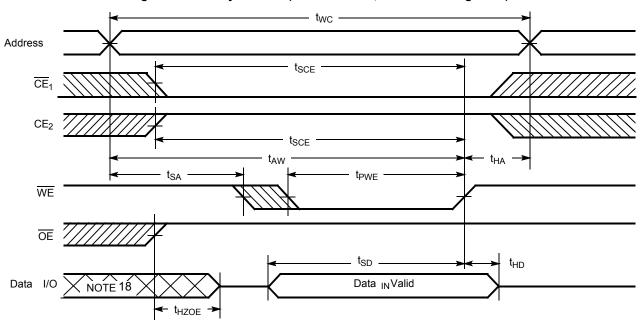
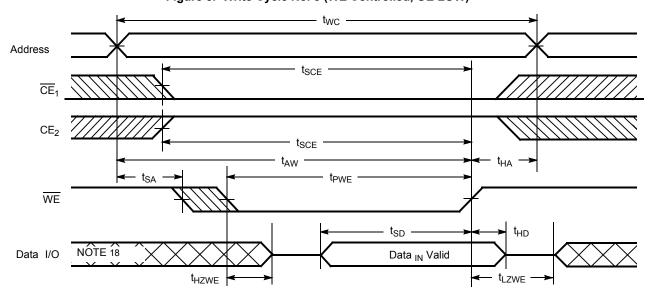
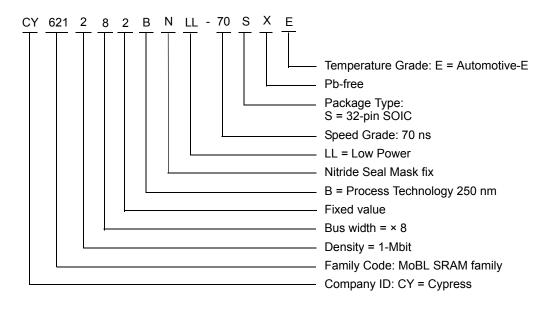



Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [16, 17, 19]

- And the second s

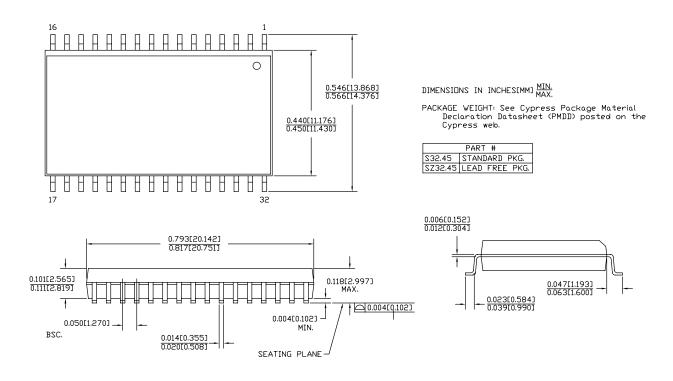
Truth Table


CE ₁	CE ₂	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-down	Standby (I _{SB})
L	Н	L	Н	Data out	Read	Active (I _{CC})
L	Н	Х	L	Data in	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs disabled	Active (I _{CC})

Ordering Information

į	Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
	70	CY621282BNLL-70SXE 51-850		32-pin 450-Mil SOIC (Pb-free)	Automotive-E

Please contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagrams

Figure 9. 32-pin Molded SOIC (450 Mils) S32.45/SZ32.45, 51-85081

51-85081 *E

Acronyms

Acronym	Description			
CE	Chip Enable			
CMOS	Complementary Metal Oxide Semiconductor			
I/O	Input/Output			
ŌĒ	Output Enable			
SOIC	Small Outline Integrated Circuit			
SRAM	Static Random Access Memory			
TTL	Transistor-Transistor Logic			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μS	microsecond			
mA	milliampere			
mV	millivolt			
mW	milliwatt			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

ocument Title: CY621282BN MoBL [®] Automotive, 1-Mbit (128 K × 8) Static RAM ocument Number: 001-65526						
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	3115909	01/06/2011	RAME	New data sheet.		
*A	3288690	06/21/2011	RAME	Updated Functional Description: Removed the Note "For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com." and its reference. Updated to new template.		
*B	3538379	03/05/2012	TAVA	Updated Electrical Characteristics. Updated Switching Waveforms. Updated Package Diagrams.		
*C	4703739	03/27/2015	MEMJ	Updated Switching Characteristics: Added Note 10 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 19 and referred the same note in Figure 8. Updated Package Diagrams: spec 51-85081 – Changed revision from *D to *E. Updated to new template. Completing Sunset Review.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers

Interface **Lighting & Power Control**

Memory **PSoC**

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-65526 Rev. *C

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com