# **Power MOSFET**

# -20 V, -4.1 A, μCool™ Dual P-Channel, 2x2 mm WDFN Package

### **Features**

- WDFN Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- 2x2 mm Footprint Same as SC-88
- Lowest R<sub>DS(on)</sub> Solution in 2x2 mm Package
- 1.8 V R<sub>DS(on)</sub> Rating for Operation at Low Voltage Gate Drive Logic Level
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Bidirectional Current Flow with Common Source Configuration
- This is a Pb-Free Device

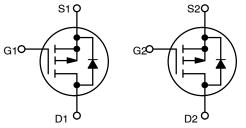
### **Applications**

- Optimized for Battery and Load Management Applications in Portable Equipment
- Li-Ion Battery Charging and Protection Circuits
- High Side Load Switch

### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Parameter                                                         |                  |                       | Symbol            | Value         | Unit |
|-------------------------------------------------------------------|------------------|-----------------------|-------------------|---------------|------|
| Drain-to-Source Voltage                                           |                  |                       | $V_{DSS}$         | -20           | V    |
| Gate-to-Source Voltage                                            | je               |                       | $V_{GS}$          | ±8.0          | V    |
| Continuous Drain                                                  | Steady           | $T_A = 25^{\circ}C$   | I <sub>D</sub>    | -3.3          | Α    |
| Current (Note 1)                                                  | State            | T <sub>A</sub> = 85°C |                   | -2.4          |      |
|                                                                   | t ≤ 5 s          | T <sub>A</sub> = 25°C |                   | -4.1          |      |
| Power Dissipation (Note 1)                                        | Steady<br>State  | T <sub>A</sub> = 25°C | $P_{D}$           | 1.5           | W    |
|                                                                   | t ≤ 5 s          |                       |                   | 2.3           |      |
| Continuous Drain                                                  |                  | T <sub>A</sub> = 25°C | I <sub>D</sub>    | -2.3          | Α    |
| Current (Note 2)                                                  | Steady           | T <sub>A</sub> = 85°C |                   | -1.6          |      |
| Power Dissipation (Note 2)                                        | State            | T <sub>A</sub> = 25°C | $P_{D}$           | 0.71          | W    |
| Pulsed Drain Current                                              | t <sub>p</sub> = | 10 μs                 | I <sub>DM</sub>   | -20           | Α    |
| Operating Junction and Storage Temperature                        |                  |                       | $T_J$ , $T_{STG}$ | –55 to<br>150 | °C   |
| Source Current (Body Diode) (Note 2)                              |                  |                       | IS                | -1.9          | Α    |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                  |                       | T <sub>L</sub>    | 260           | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm<sup>2</sup>, 2 oz Cu.



# ON Semiconductor®

### http://onsemi.com

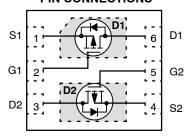
| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX (Note 1) |
|----------------------|-------------------------|-----------------------------|
|                      | 100 mΩ @ -4.5 V         |                             |
| –20 V                | 135 mΩ @ –2.5 V         | -4.1 A                      |
|                      | 200 mΩ @ -1.8 V         |                             |



P-CHANNEL MOSFET

P-CHANNEL MOSFET




JD = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

# **PIN CONNECTIONS**



(Top View)

### **ORDERING INFORMATION**

| Device        | Package            | Shipping <sup>†</sup> |
|---------------|--------------------|-----------------------|
| NTLJD3115PT1G | WDFN6<br>(Pb-Free) | 3000/Tape & Reel      |
| NTLJD3115PTAG | WDFN6<br>(Pb-Free) | 3000/Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

### THERMAL RESISTANCE RATINGS

| Parameter                                           | Symbol         | Max | Unit |
|-----------------------------------------------------|----------------|-----|------|
| SINGLE OPERATION (SELF-HEATED)                      |                |     |      |
| Junction-to-Ambient - Steady State (Note 3)         | $R_{	hetaJA}$  | 83  |      |
| Junction-to-Ambient - Steady State Min Pad (Note 4) | $R_{	heta JA}$ | 177 | °C/W |
| Junction-to-Ambient - t ≤ 5 s (Note 3)              | $R_{	heta JA}$ | 54  |      |
| DUAL OPERATION (EQUALLY HEATED)                     |                |     |      |
| Junction-to-Ambient - Steady State (Note 3)         | $R_{	heta JA}$ | 58  |      |
| Junction-to-Ambient - Steady State Min Pad (Note 4) | $R_{	heta JA}$ | 133 | °C/W |
| Junction-to-Ambient - t ≤ 5 s (Note 3)              | $R_{	hetaJA}$  | 40  |      |

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

# $\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

| OFF CHARACTERISTICS           Drain-to-Source Breakdown Voltage Temperature Coefficient         V(gR)pSS/T <sub>J</sub> V <sub>OS</sub> = 0 V, I <sub>D</sub> = -250 µA         -20         N         V           Drain-to-Source Breakdown Voltage Temperature Coefficient         V <sub>OS</sub> = 0 V, I <sub>D</sub> = -250 µA, Ref to 25°C         9,95         mV/°C           Gate To-Source Leakage Current         I <sub>DSS</sub> V <sub>DS</sub> = 16 V, V <sub>OS</sub> = 0 V         T <sub>J</sub> = 25°C         1 - 1.0         µA           Gate Threshold Voltage         V <sub>OS</sub> = 16 V, V <sub>OS</sub> = 0 V         T <sub>J</sub> = 85°C         1 - 1.0         µA           ON CHARACTERISTICS (Note 5)           Gate Threshold Voltage         V <sub>OS</sub> (TH)         V <sub>OS</sub> = V <sub>OS</sub> , I <sub>D</sub> = -2.50 µA         -0.4         -0.7         -1.0         V           Mogative Gate Threshold         V <sub>OS</sub> (TH)         V <sub>OS</sub> = -4.5, I <sub>D</sub> = -2.0 A         7.5         100         mV/°C           Drain-to-Source On-Resistance         R <sub>DS</sub> (m)         V <sub>OS</sub> = -4.5, I <sub>D</sub> = -2.0 A         7.5         100         mC           Forward Transconductance         R <sub>S</sub> (S)         V <sub>OS</sub> = -4.5, I <sub>D</sub> = -2.0 A         6.0         1.50         2.00           CHARGES, CAPACITANCES AND GATE RESISTANCE         V <sub>OS</sub> = -4.5, I <sub>D</sub> = -2.0 A         6.0         8.0         S           CHARGES, CAPACITANCES AND GATE RESISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter                         | Symbol                              | Test Conditions                                                                          |                        | Min  | Тур   | Max      | Unit     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|------------------------|------|-------|----------|----------|
| District - Source Breakdown Voltage   Viginjoss/Tij   In = -250 μA, Rief to 25°C   9.95   m//°C   morperature Coefficient   1.05   Viginios   Viginjos   Viginios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OFF CHARACTERISTICS               | 1 -                                 |                                                                                          |                        |      |       | <u> </u> | <u>I</u> |
| Drain-to-Source Breakdown Voltage Temperature Coefficient         V(BR)DSS/TJ         ID = -250 μA. Ref to ≥5°C         9.95         IM         mV/C           Zero Gate Voltage Drain Current         IDSS         VDS = -16 V, VGS = 0 V         TJ = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub>                | V <sub>GS</sub> = 0 V, I <sub>D</sub> = -250 μA                                          |                        | -20  |       |          | V        |
| Zero Gate Voltage Drain Current   IDSS   VDS = −16 V, VGS = 0 V   TJ = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                     |                                                                                          |                        |      | 9.95  |          | mV/°C    |
| No contact   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zero Gate Voltage Drain Current   | I <sub>DSS</sub>                    |                                                                                          | T <sub>J</sub> = 25°C  |      |       | -1.0     | μΑ       |
| On Characteristics (Note 5)   Oracle Threshold Voltage   VGS(TH)  VGS = VDS, ID = −250 μA   −0.4   −0.7   −1.0   V     Negative Gate Threshold Temperature Coefficient   VGS(TH)  VGS = VDS, ID = −2.0 A   −0.4   −0.7   −1.0   V     Negative Gate Threshold Temperature Coefficient   VGS(TH)  VGS = −4.5, ID = −2.0 A   −0.4   −0.7   −1.0   V     VGS = −2.5, ID = −2.0 A   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −0.1   −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                     | $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$                                           |                        |      |       | -10      | _        |
| A contact   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gate-to-Source Leakage Current    | I <sub>GSS</sub>                    | $V_{DS} = 0 \text{ V, } V_{GS} = \pm$                                                    | 8.0 V                  |      |       | ±100     | nA       |
| Negative Gate Threshold Temperature Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON CHARACTERISTICS (Note 5)       |                                     |                                                                                          |                        |      |       |          |          |
| $ \begin{array}{ c c c c c } \hline \text{Temperature Coefficient} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gate Threshold Voltage            | V <sub>GS(TH)</sub>                 | $V_{GS} = V_{DS}$ , $I_D = -2$                                                           | 50 μΑ                  | -0.4 | -0.7  | -1.0     | V        |
| V <sub>SS</sub> = −2.5, l <sub>D</sub> = −2.0 A   101   135     V <sub>SS</sub> = −1.8, l <sub>D</sub> = −1.6 A   150   200     Forward Transconductance   g <sub>FS</sub>   V <sub>DS</sub> = −5.0 V, l <sub>D</sub> = −2.0 A   6.0   S     CHARGES, CAPACITANCES AND GATE RESISTANCE     Input Capacitance   C <sub>ISS</sub>   Output Capacitance   C <sub>OSS</sub>     Reverse Transfer Capacitance   C <sub>OSS</sub>     Reverse Transfer Capacitance   C <sub>OSS</sub>   V <sub>SS</sub> = −10 V     Total Gate Charge   Q <sub>G</sub> (TOT)     Total Gate Charge   Q <sub>G</sub> (TOT)     Cate-to-Dource Charge   Q <sub>GS</sub>     Gate-to-Drain Charge   Q <sub>GD</sub>     Gate-to-Drain C |                                   | V <sub>GS(TH)</sub> /T <sub>J</sub> |                                                                                          |                        |      | 2.44  |          | mV/°C    |
| $   V_{GS} = -1.8, \  _D = -1.6 \ A \\ V_{GS} = -1.8, \  _D = -1.6 \ A \\ V_{DS} = -5.0 \ V, \  _D = -2.0 \ A \\   A = 0.0 \   B = 0.0 \   B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drain-to-Source On-Resistance     | R <sub>DS(on)</sub>                 | $V_{GS} = -4.5, I_D = -4.5$                                                              | 2.0 A                  |      | 75    | 100      | mΩ       |
| Forward Transconductance         g <sub>FS</sub> V <sub>DS</sub> = -5.0 V, I <sub>D</sub> = -2.0 A         6.0         S           CHARGES, CAPACITANCES AND GATE RESISTANCE           Input Capacitance         C <sub>ISS</sub> V <sub>GS</sub> = -5.0 V, I <sub>D</sub> = -2.0 A         6.0         S           Output Capacitance         C <sub>ISS</sub> V <sub>GS</sub> = -0.0 V, I = 1.0 MHz, V <sub>DS</sub> = -1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, V <sub>DS</sub> = -10 V, I = 1.0 MHz, I =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                     | V <sub>GS</sub> = -2.5, I <sub>D</sub> = -                                               | 2.0 A                  |      | 101   | 135      |          |
| CHARGES, CAPACITANCES AND GATE RESISTANCE           Input Capacitance         C <sub>ISS</sub> Output Capacitance         C <sub>OSS</sub> Reverse Transfer Capacitance         C <sub>RSS</sub> Total Gate Charge         Q <sub>G(TOT)</sub> Threshold Gate Charge         Q <sub>G(TH)</sub> Gate-to-Source Charge         Q <sub>GS</sub> Gate-to-Drain Charge         Q <sub>GD</sub> Gate Resistance         R <sub>G</sub> SWITCHING CHARACTERISTICS (Note 6)           Turn-On Delay Time         t <sub>d</sub> (ON)           Rise Time         t <sub>f</sub> Turn-Off Delay Time         t <sub>d</sub> (ON)           Rise Time         t <sub>f</sub> Turn-Off Delay Time         t <sub>d</sub> (ON)           Rise Time         t <sub>f</sub> V <sub>GS</sub> = -4.5 V, V <sub>DD</sub> = -5.0 V, I <sub>D</sub> = -5.0 V, I <sub>D</sub> = -1.0 A, R <sub>G</sub> = 0.0 Ω           Rise Time         t <sub>f</sub> Turn-Off Delay Time         t <sub>f</sub> V <sub>GS</sub> = -4.5 V, V <sub>DD</sub> = -1.0 V, I <sub>D</sub> = -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                     | V <sub>GS</sub> = -1.8, I <sub>D</sub> = -                                               | 1.6 A                  |      | 150   | 200      |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Forward Transconductance          | 9 <sub>FS</sub>                     | V <sub>DS</sub> = -5.0 V, I <sub>D</sub> = -2.0 A                                        |                        |      | 6.0   |          | S        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHARGES, CAPACITANCES AND GA      | TE RESISTAN                         | CE                                                                                       |                        |      | •     |          | •        |
| Reverse Transfer Capacitance   Cass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input Capacitance                 | C <sub>ISS</sub>                    |                                                                                          |                        |      | 531   |          | pF       |
| Reverse Transfer Capacitance   Cass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output Capacitance                | C <sub>OSS</sub>                    | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ I}$                                                | MHz,                   |      | 91    |          | 1        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reverse Transfer Capacitance      | C <sub>RSS</sub>                    | VDS = -10 V                                                                              |                        |      | 56    |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Gate Charge                 | Q <sub>G(TOT)</sub>                 |                                                                                          |                        |      | 5.5   | 6.2      | nC       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Threshold Gate Charge             | Q <sub>G(TH)</sub>                  | $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_D = -2.0 \text{ A}$                |                        |      | 0.7   |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gate-to-Source Charge             | $Q_{GS}$                            |                                                                                          |                        |      | 1.0   |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gate-to-Drain Charge              | $Q_{GD}$                            |                                                                                          |                        |      | 1.4   |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gate Resistance                   | $R_{G}$                             |                                                                                          |                        |      | 8.8   |          | Ω        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SWITCHING CHARACTERISTICS (No     | te 6)                               |                                                                                          |                        |      |       |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn-On Delay Time                | t <sub>d(ON)</sub>                  |                                                                                          |                        |      | 6.0   |          | ns       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rise Time                         | t <sub>r</sub>                      | V <sub>GS</sub> = -4.5 V, V <sub>DD</sub> =                                              | –5.0 V,                |      | 11    |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn-Off Delay Time               | t <sub>d(OFF)</sub>                 | $I_D = -1.0 \text{ A}, R_G = 0$                                                          | 6.0 Ω                  |      | 21    |          | <b>]</b> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fall Time                         | t <sub>f</sub>                      |                                                                                          |                        |      | 8.0   |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn-On Delay Time                | t <sub>d(ON)</sub>                  |                                                                                          |                        |      | 6.0   |          | ns       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rise Time                         | t <sub>r</sub>                      | V <sub>GS</sub> = -4.5 V, V <sub>DD</sub> =                                              | –10 V,                 |      | 12    |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn-Off Delay Time               | t <sub>d(OFF)</sub>                 | $I_D = -2.0 \text{ A}, R_G = 2.0 \Omega$                                                 |                        |      | 19    |          |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fall Time                         | t <sub>f</sub>                      |                                                                                          |                        |      | 6.0   |          |          |
| $V_{GS} = 0 \text{ V, } IS = -1.0 \text{ A} \\ \hline T_J = 125^{\circ}C \\ \hline Charge Time \\ \hline Discharge Time \\ \hline V_{GS} = 0 \text{ V, } d_{ SD}/d_t = 100 \text{ A}/\mu\text{s,} \\ I_S = -1.0 \text{ A} \\ \hline \end{bmatrix} 12.6 \\ \hline T_J = 125^{\circ}C \\ \hline 12.6 \\ \hline \end{bmatrix} 7.0 \\ \hline Discharge Time \\ \hline \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DRAIN-SOURCE DIODE CHARACTE       | RISTICS                             |                                                                                          |                        |      |       |          |          |
| Reverse Recovery Time $t_{RR}$ Charge Time $t_a$ $V_{GS} = 0 \text{ V, } d_{ISD}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -1.0 \text{ A}$ $12.6$ $7.0$ $18 = -1.0 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Forward Recovery Voltage          | V <sub>SD</sub>                     | V 0V 10 40A                                                                              | T <sub>J</sub> = 25°C  |      | -0.75 | -1.0     | \/       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                     | v <sub>GS</sub> = u v, lS = -1.0 A                                                       | T <sub>J</sub> = 125°C |      | -0.64 |          | ]        |
| Discharge Time $t_b$ $l_S = -1.0 \text{ A}$ $5.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reverse Recovery Time             | t <sub>RR</sub>                     | $V_{GS} = 0 \text{ V, } d_{ISD}/d_t = 100 \text{ A/}\mu\text{s,} \ I_S = -1.0 \text{ A}$ |                        |      | 12.6  |          |          |
| Discharge Time $t_b$ $I_S = -1.0  \text{A}$ 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Charge Time                       | t <sub>a</sub>                      |                                                                                          |                        |      | 7.0   |          | ns       |
| Reverse Recovery Time Q <sub>RR</sub> 5.0 nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Discharge Time                    | t <sub>b</sub>                      |                                                                                          |                        |      | 5.6   |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reverse Recovery Time             | Q <sub>RR</sub>                     |                                                                                          |                        |      | 5.0   |          | nC       |

<sup>5.</sup> Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

# TYPICAL PERFORMANCE CURVES ( $T_J = 25^{\circ}C$ unless otherwise noted)

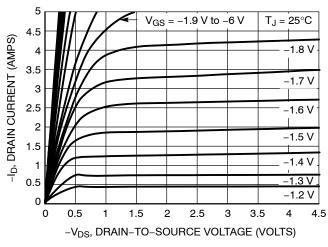
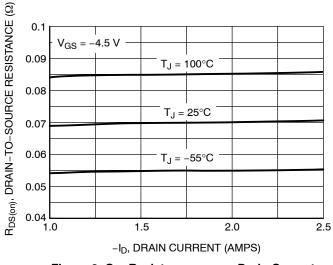




Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics



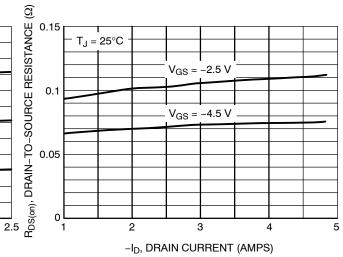
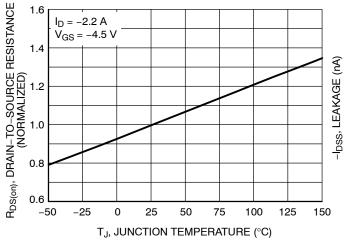




Figure 3. On-Resistance versus Drain Current

Figure 4. On-Resistance versus Drain Current and Gate Voltage



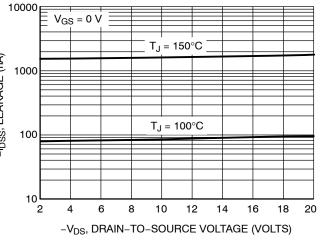
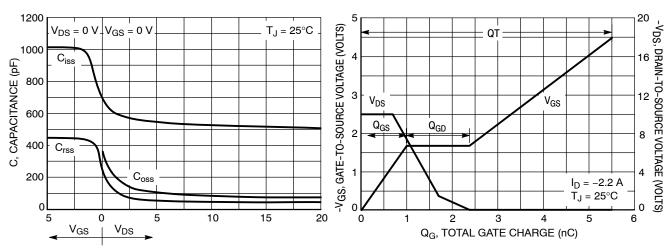




Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

# TYPICAL PERFORMANCE CURVES ( $T_J = 25^{\circ}$ C unless otherwise noted)



GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

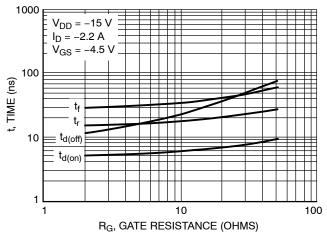



Figure 9. Resistive Switching Time Variation versus Gate Resistance

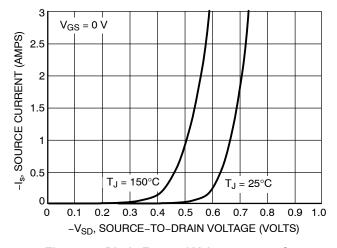



Figure 10. Diode Forward Voltage versus Current

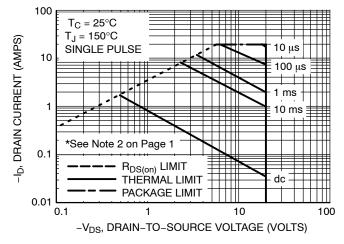



Figure 11. Maximum Rated Forward Biased Safe Operating Area

# TYPICAL PERFORMANCE CURVES (T $_{J}$ = 25°C unless otherwise noted)

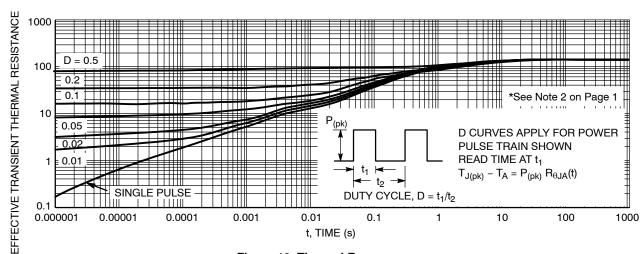
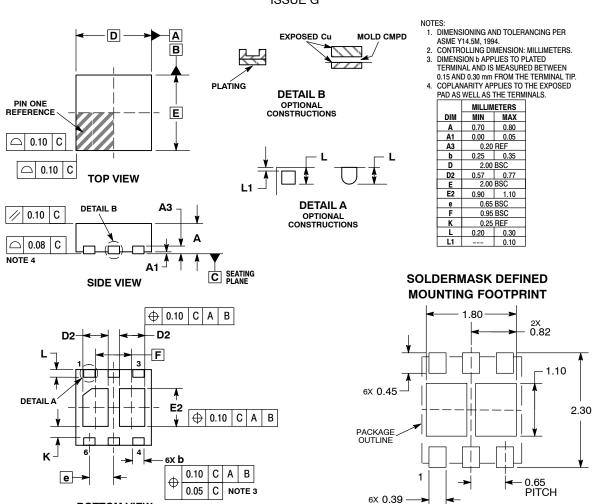




Figure 12. Thermal Response

### PACKAGE DIMENSIONS

### WDFN6, 2x2 CASE 506AN ISSUE G



μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

**BOTTOM VIEW** 

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

### **PUBLICATION ORDERING INFORMATION**

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

DIMENSIONS: MILLIMETERS

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# AMEYA360 Components Supply Platform

# **Authorized Distribution Brand:**

























# Website:

Welcome to visit www.ameya360.com

# Contact Us:

# > Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

# > Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

# Customer Service :

Email service@ameya360.com

# Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com