

NTTFS4C06N

Power MOSFET

30 V, 67 A, Single N-Channel, μ 8FL

Features

- Low $R_{DS(on)}$ to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

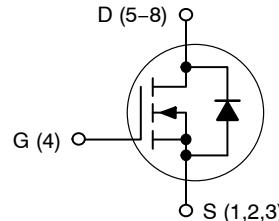
- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

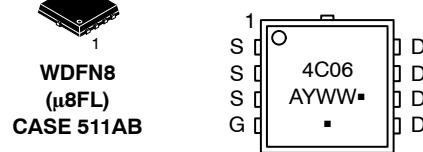
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	30	V
Gate-to-Source Voltage	V_{GS}	± 20	V
Continuous Drain Current $R_{\theta JA}$ (Note 1)	I_D	18	A
		13	
Power Dissipation $R_{\theta JA}$ (Note 1)	P_D	2.16	W
Continuous Drain Current $R_{\theta JA} \leq 10$ s (Note 1)	I_D	25.6	A
		18.5	
Power Dissipation $R_{\theta JA} \leq 10$ s (Note 1)	P_D	4.4	W
Continuous Drain Current $R_{\theta JA}$ (Note 2)	I_D	11	A
		8	
Power Dissipation $R_{\theta JA}$ (Note 2)	P_D	0.81	W
Continuous Drain Current $R_{\theta JC}$ (Note 1)	I_D	67	A
		49	
Power Dissipation $R_{\theta JC}$ (Note 1)	P_D	31	W
Pulsed Drain Current	I_{DM}	166	A
Operating Junction and Storage Temperature	T_J, T_{stg}	-55 to +150	$^\circ\text{C}$
Source Current (Body Diode)	I_S	28	A
Drain to Source dV/dt	dV/dt	7	V/ns
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25^\circ\text{C}$, $V_{DD} = 50$ V, $V_{GS} = 10$ V, $I_L = 37$ A _{pk} , $L = 0.1$ mH, $R_G = 25$ Ω) (Note 3)	E_{AS}	68	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T_L	260	$^\circ\text{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size.
3. This is the absolute maximum ratings. Parts are 100% tested at $T_J = 25^\circ\text{C}$, $V_{GS} = 10$ V, $I_L = 20$ A, $E_{AS} = 20$ mJ.



ON Semiconductor®


<http://onsemi.com>

$V_{(BR)DSS}$	$R_{DS(on)}$ MAX	I_D MAX
30 V	4.2 m Ω @ 10 V	
	6.1 m Ω @ 4.5 V	67 A

N-Channel MOSFET

MARKING DIAGRAM

4C06 = Specific Device Code
 A = Assembly Location
 Y = Year
 WW = Work Week
 □ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4C06NTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NTTFS4C06NTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTTFS4C06N

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.1	$^{\circ}\text{C}/\text{W}$
Junction-to-Ambient – Steady State (Note 4)	$R_{\theta JA}$	58	
Junction-to-Ambient – Steady State (Note 5)	$R_{\theta JA}$	154.3	
Junction-to-Ambient – (t ≤ 10 s) (Note 4)	$R_{\theta JA}$	28.3	

4. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 5. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
-----------	--------	----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}, I_{\text{D}} = 250 \mu\text{A}$	30			V
Drain-to-Source Breakdown Voltage (transient)	$V_{(\text{BR})\text{DSSt}}$	$V_{\text{GS}} = 0 \text{ V}, I_{\text{D}}(\text{aval}) = 12.6 \text{ A}, T_{\text{case}} = 25^{\circ}\text{C}, t_{\text{transient}} = 100 \text{ ns}$	34			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}}/T_J$			14.4		$\text{mV}/^{\circ}\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 24 \text{ V}$	$T_J = 25^{\circ}\text{C}$		1.0	μA
			$T_J = 125^{\circ}\text{C}$		10	
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}, V_{\text{GS}} = \pm 20 \text{ V}$			±100	nA

ON CHARACTERISTICS (Note 6)

Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_{\text{D}} = 250 \mu\text{A}$	1.3		2.2	V
Negative Threshold Temperature Coefficient	$V_{\text{GS}(\text{TH})}/T_J$			3.8		$\text{mV}/^{\circ}\text{C}$
Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}$	$I_{\text{D}} = 30 \text{ A}$	3.4	4.2	$\text{m}\Omega$
		$V_{\text{GS}} = 4.5 \text{ V}$	$I_{\text{D}} = 30 \text{ A}$	4.9	6.1	
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 1.5 \text{ V}, I_{\text{D}} = 15 \text{ A}$		58		S
Gate Resistance	R_{G}	$T_A = 25^{\circ}\text{C}$		1.0		Ω

CHARGES AND CAPACITANCES

Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0 \text{ V}, f = 1 \text{ MHz}, V_{\text{DS}} = 15 \text{ V}$		1683	3366	pF
Output Capacitance	C_{OSS}			841	1682	
Reverse Transfer Capacitance	C_{RSS}			40		
Capacitance Ratio	$C_{\text{RSS}}/C_{\text{ISS}}$	$V_{\text{GS}} = 0 \text{ V}, V_{\text{DS}} = 15 \text{ V}, f = 1 \text{ MHz}$		0.023		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 4.5 \text{ V}, V_{\text{DS}} = 15 \text{ V}; I_{\text{D}} = 30 \text{ A}$		11.6	16.2	nC
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			2.6	3.6	
Gate-to-Source Charge	Q_{GS}			4.7	6.6	
Gate-to-Drain Charge	Q_{GD}			4.0	5.6	
Gate Plateau Voltage	V_{GP}			3.1		V
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 10 \text{ V}, V_{\text{DS}} = 15 \text{ V}; I_{\text{D}} = 30 \text{ A}$		26	36	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width ≤ 300 μs , duty cycle ≤ 2%.
 7. Switching characteristics are independent of operating junction temperatures.

NTTFS4C06N

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
SWITCHING CHARACTERISTICS (Note 7)							
Turn-On Delay Time	$t_{d(\text{ON})}$	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 15 \text{ A}, R_G = 3.0 \Omega$		10		ns	
Rise Time	t_r			32			
Turn-Off Delay Time	$t_{d(\text{OFF})}$			18			
Fall Time	t_f			5.0			
Turn-On Delay Time	$t_{d(\text{ON})}$	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 15 \text{ A}, R_G = 3.0 \Omega$		8.0		ns	
Rise Time	t_r			28			
Turn-Off Delay Time	$t_{d(\text{OFF})}$			24			
Fall Time	t_f			3.0			
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_S = 10 \text{ A}$	$T_J = 25^\circ\text{C}$		0.8	1.1	V
			$T_J = 125^\circ\text{C}$		0.63		
Reverse Recovery Time	t_{RR}	$V_{GS} = 0 \text{ V}, dI_S/dt = 100 \text{ A}/\mu\text{s}, I_S = 30 \text{ A}$			34		ns
Charge Time	t_a				17		
Discharge Time	t_b				17		
Reverse Recovery Charge	Q_{RR}				22		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Pulse Test: pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.

7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

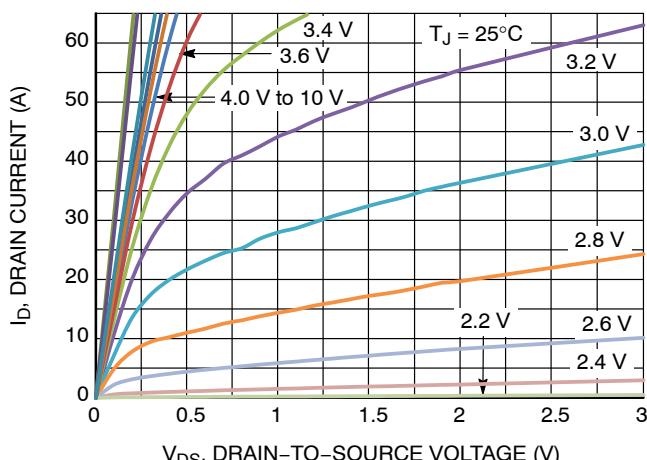


Figure 1. On-Region Characteristics

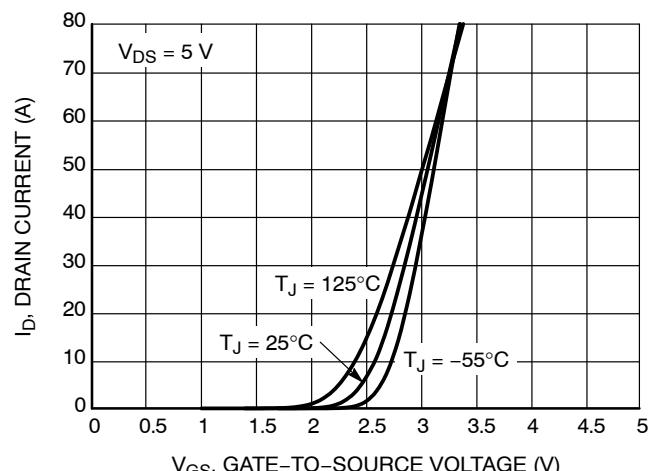


Figure 2. Transfer Characteristics

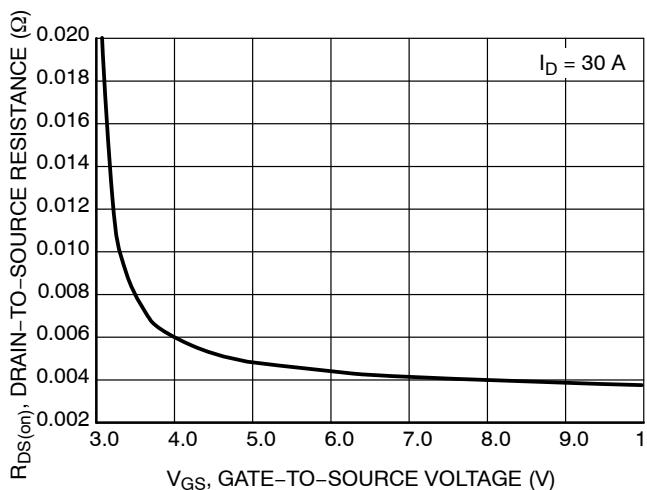
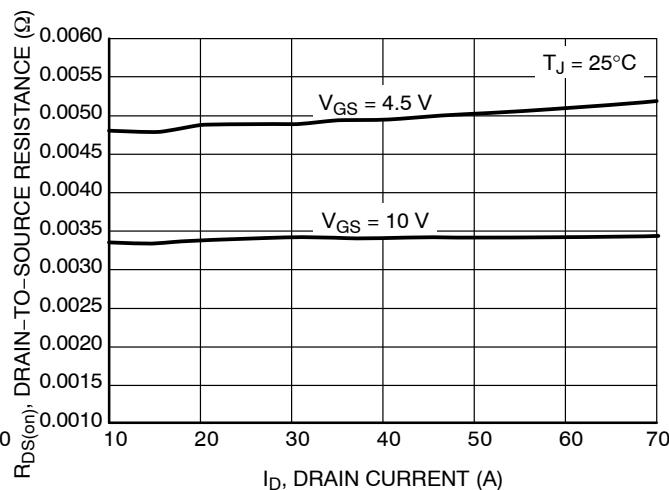


Figure 3. On-Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

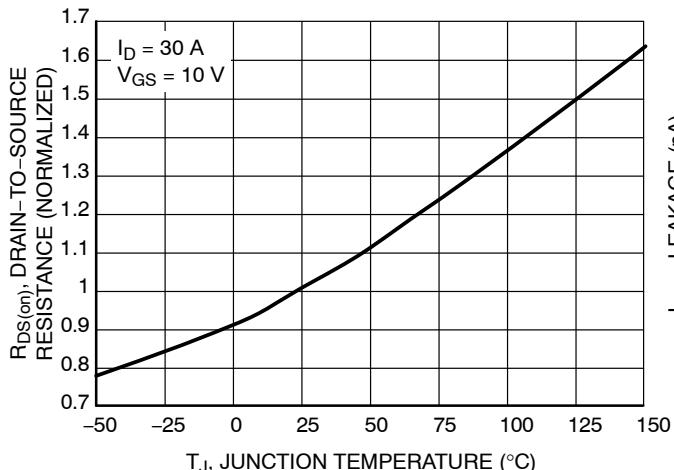


Figure 5. On-Resistance Variation with Temperature

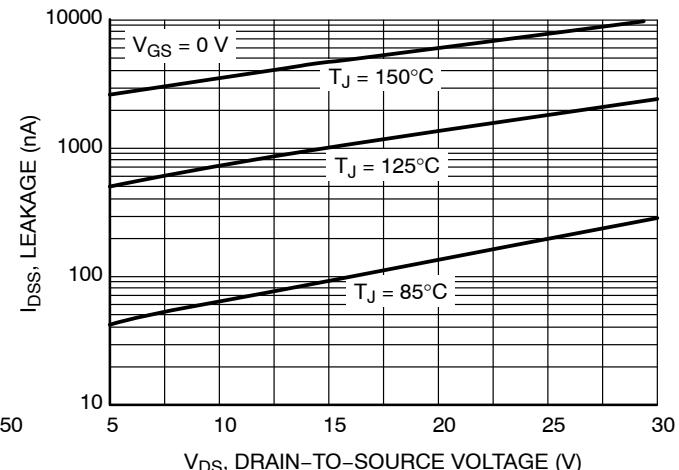


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

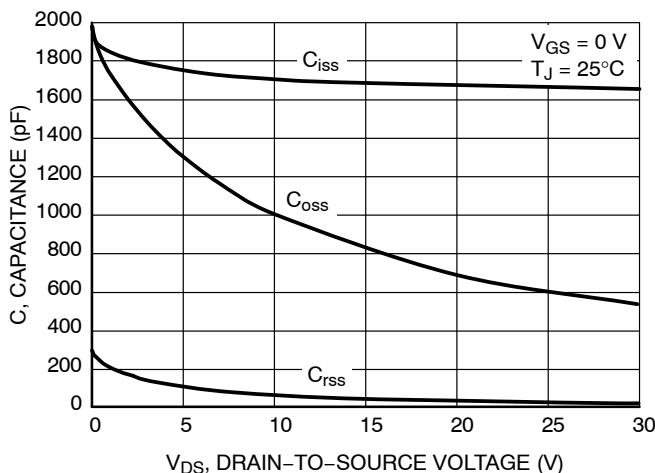


Figure 7. Capacitance Variation

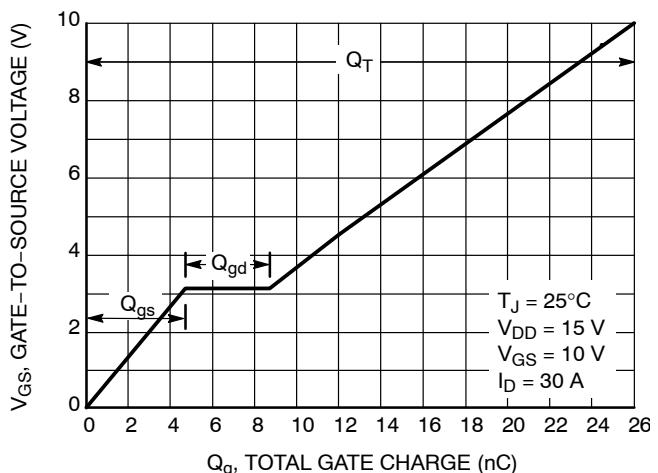


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

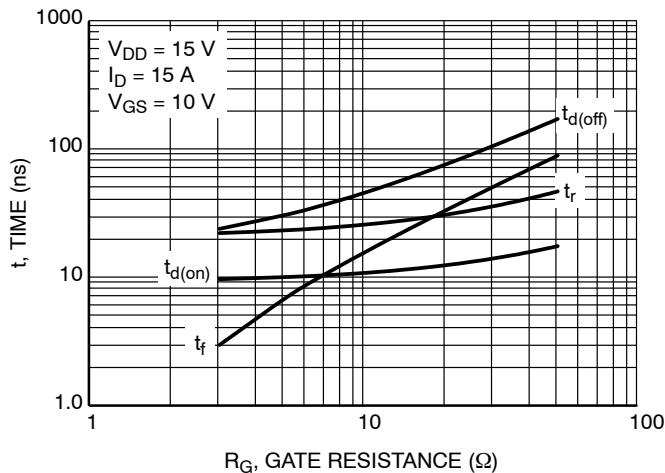


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

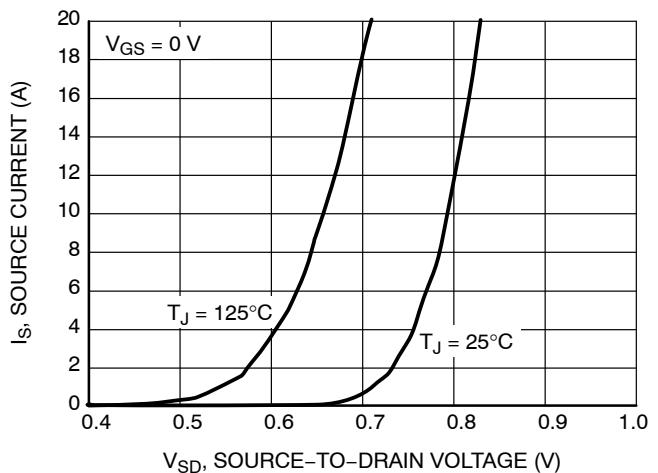


Figure 10. Diode Forward Voltage vs. Current

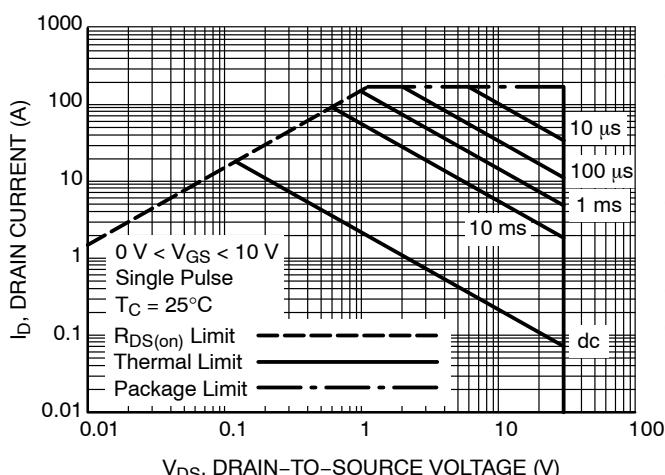


Figure 11. Maximum Rated Forward Biased Safe Operating Area

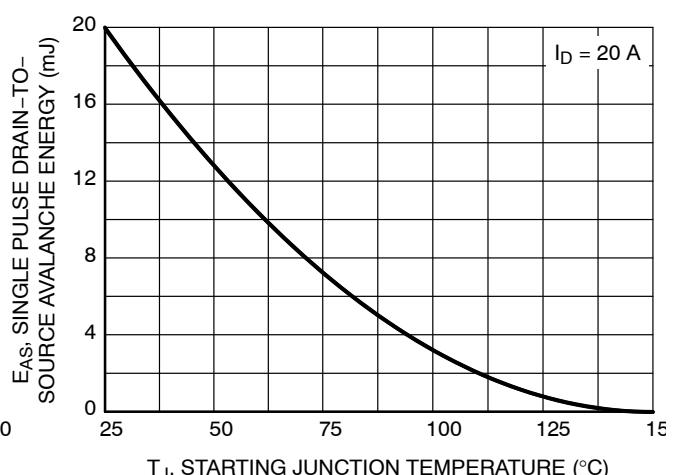


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL CHARACTERISTICS

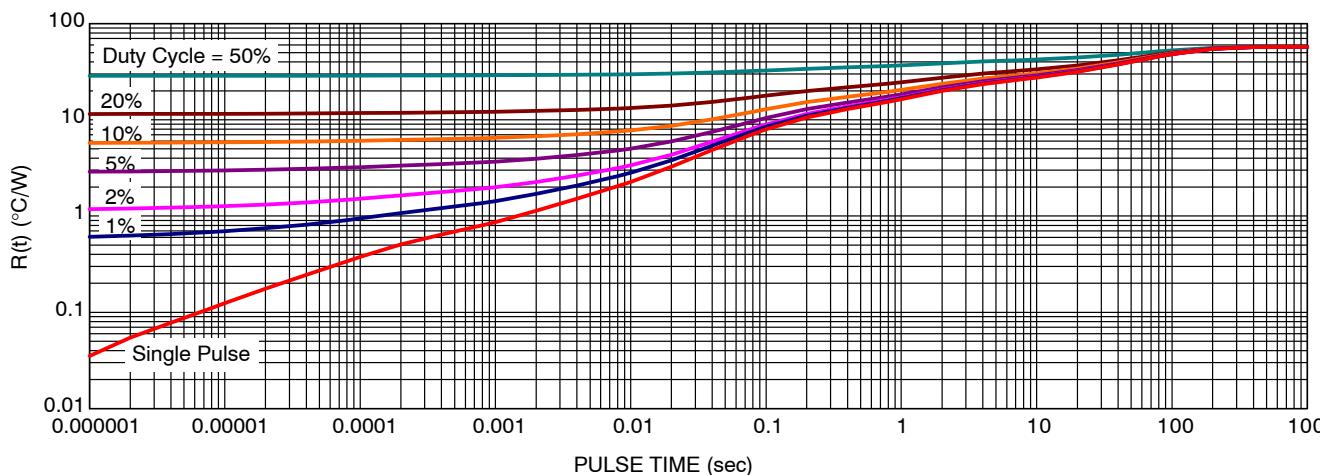


Figure 13. Thermal Response

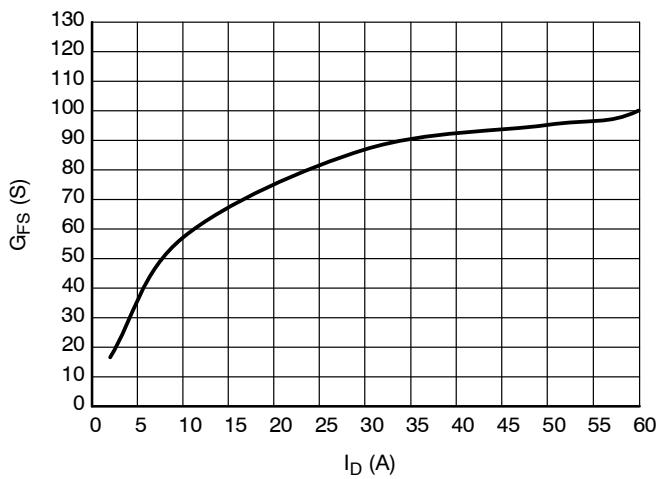
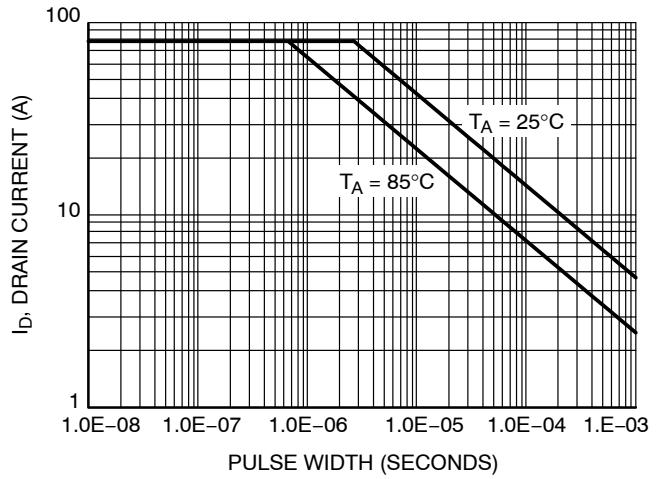
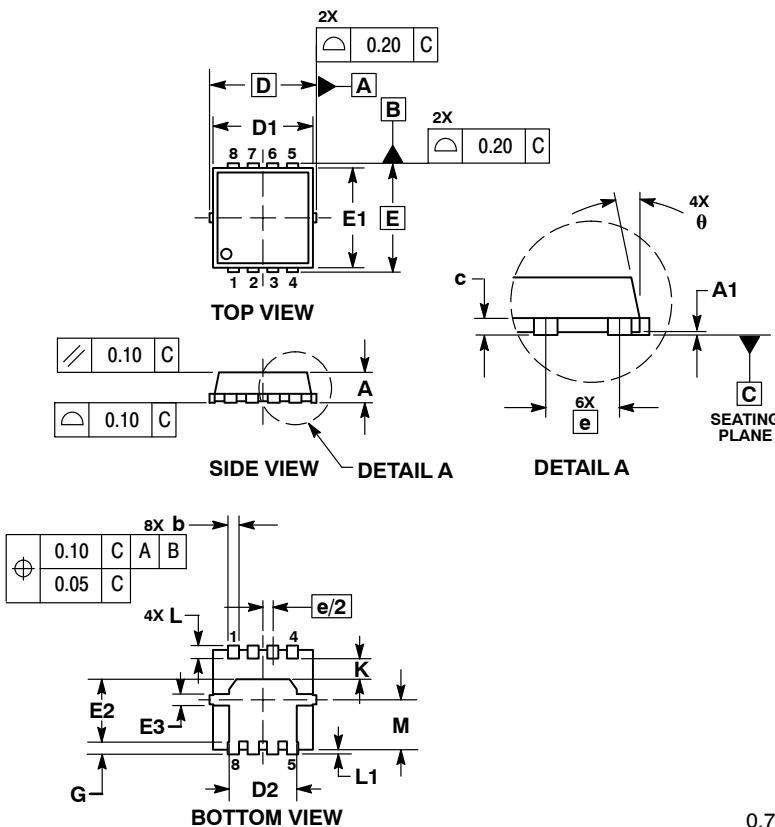


Figure 14. G_{FS} vs. I_D



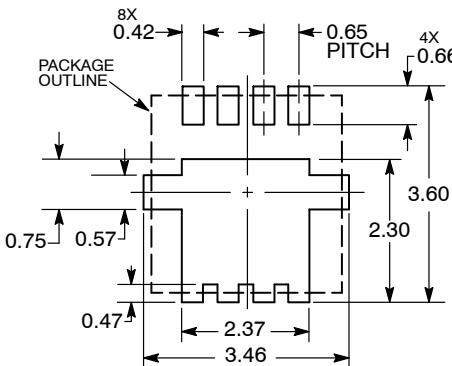

Figure 15. Avalanche Characteristics

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P

CASE 511AB

ISSUE D



NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	---	0.05	0.000	---	0.002
b	0.23	0.30	0.40	0.009	0.012	0.016
c	0.15	0.20	0.25	0.006	0.008	0.010
D	3.30 BSC			0.130 BSC		
D1	2.95	3.05	3.15	0.116	0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
E	3.30 BSC			0.130 BSC		
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	0.23	0.30	0.40	0.009	0.012	0.016
e	0.65 BSC			0.026 BSC		
G	0.30	0.41	0.51	0.012	0.016	0.020
K	0.65	0.80	0.95	0.026	0.032	0.037
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
M	1.40	1.50	1.60	0.055	0.059	0.063
o	0.00	0.00	0.00	0.00	0.00	0.00

SOLDERING FOOTPRINT*

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

Literature Distribution Center for CEN Commissions
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

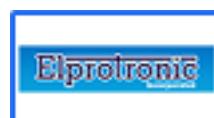
Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com


Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

AMEYA360

Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd
Minhang District, Shanghai , China

➤ Sales :

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

➤ Customer Service :

Email service@ameya360.com

➤ Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com