

Low-Voltage, Low R_{ON}, Dual DPDT Analog Switch

DESCRIPTION

The DG2015 is a dual double-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2015 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2015 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup. Break-beforemake is guaranteed.

The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

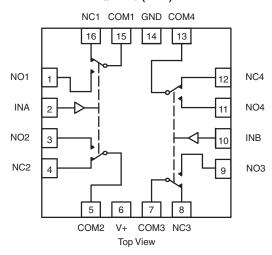
- Low Voltage Operation (2.7 V to 3.3 V)
- Low On-Resistance ${\rm R_{ON}}{:}~0.85~\Omega$
- 3 dB Loss at 100 MHz
- Fast Switching: $t_{ON} = 40 \text{ ns}$ $t_{OFF} = 35 \text{ ns}$

QFN-16 Package

Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

HALOGEN FREE

BENEFITS


- **Reduced Power Consumption**
- High Accuracy
- Reduced Board Space
- Reduce Board Space
- TTL/1.8 V Logic Compatible

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- **PCMCIA Cards**
- **Battery Operated Systems**

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE								
Logic	NC1, 2, 3 and 4	NO1, 2, 3 and 4						
0	ON	OFF						
1	OFF	ON						

ORDERING INFORMATION								
Temp Range	Package	Part Number						
	16-pin QFN							
- 40 °C to 85 °C	(4 mm x 4 mm)	DG2015DN-T1-E4						
	(Variation 1)							

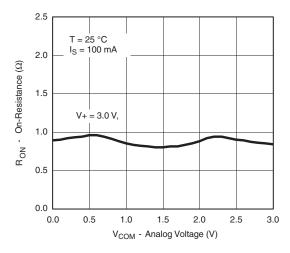
Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)								
Parameter	Limit	Unit						
Reference V+ to GND	- 0.3 to + 6	V						
IN, COM, NC, NO ^a	- 0.3 to (V+ + 0.3)	V						
Current (Any terminal except NO, NC or C	30							
Continuous Current (NO, NC, or COM)	± 150	mA						
Peak Current (Pulsed at 1 ms, 10 % duty	± 200							
Storage Temperature (D Suffix)	- 65 to 150	°C						
Package Solder Reflow Conditions ^d	16-pin QFN (4 mm x 4 mm)	240						
Power Dissipation (Packages) ^b	1880	mW						

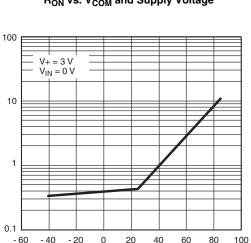
Notes:

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 23.5 mW/°C above 70 °C.
- d. Manual soldering with iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

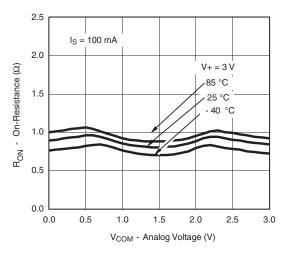
		Test Conditions Otherwise Unless Specified		Limits - 40 °C to 85 °C			Unit	
Parameter	Symbol	$V+ = 3 V$, $\pm 10 \%$, $V_{IN} = 0.4 V$ or $2 V^e$	Temp.a	Min.b	Typ. ^c	Max.b		
Analog Switch	•							
Analog Signal Range ^d	$V_{NO}, V_{NC} V_{COM}$		Full	0		V+	V	
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 0.2 \text{ V}/1.5 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room Full		0.85	1.6 1.7		
R _{ON} Flatness	R _{ON} Flatness	V+ = 2.7 V, V _{COM} = 0 V to V+, I _{NO} , I _{NC} = 100 mA			0.16		Ω	
R _{ON} Match	ΔR_{ON}		Room		0.15			
Switch Off	I _{NO(off)} I _{NC(off)}	V+ = 3.3 V	Room Full	- 1 - 10		1 10		
Leakage Current	I _{COM(off)}	V_{NO} , $V_{NC} = 1 \text{ V/3 V}$, $V_{COM} = 3 \text{ V/1 V}$		- 1 - 10		1 10	nA	
Channel-On Leakage Current	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 1 \text{ V/3 V}$	Room Full	- 1 - 10		1 10		
Digital Control	•						'	
Input High Voltage	V _{INH}		Full	2			V	
Input Low Voltage	V _{INL}		Full			0.4	V	
Input Capacitance	C _{in}		Full		4		pF	
Input Current	I _{INL} or I _{INH}	$V_{IN} = 0 \text{ V or V} +$	Full	- 1		1	μΑ	
Dynamic Characteristics								
Turn-On Time	t _{ON}		Room Full		40	65 67		
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 2 V, R_L = 300 Ω , C_L = 35 pF			35	60 62	ns	
Break-Before-Make Time t _d			Full	1	3			
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room		7		рC	
Off-Isolation ^d OIRR		$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$	Room		- 67		10	
Crosstalk ^d	X _{TALK}	$\frac{1}{1} = \frac{1}{2} $ $\frac{1}{2} $	Room		- 70		dB	
N. N. Off Conneitons ed	C _{NO(off)}		Room		63			
N _O , N _C Off Capacitance ^d	C _{NC(off)}	V _{IN} = 0 V or V+, f = 1 MHz			67		pF	
Channel On Canaditars and	C _{NO(on)}	V _{IN} = 0 v 01 v+, 1 = 1 WI112	Room		200		Pi	
Channel-On Capacitance ^d	C _{NC(on}		Room		196	_		

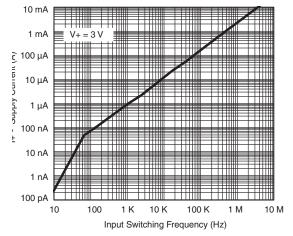


SPECIFICATIONS (V+ = 3 V)									
		Test Conditions Limits Otherwise Unless Specified - 40 °C to 85			o°C	Unit			
Parameter	Symbol	$V+ = 3 V$, $\pm 10 \%$, $V_{IN} = 0.4 V$ or $2 V^e$	Temp.a	Min.b	Typ. ^c	Max.b			
Power Supply									
Power Supply Range	V+			2.7		3.3	V		
Power Supply Current	I+	$V_{IN} = 0 \text{ V or V} +$	Full			1	μΑ		
Power Consumption	P _C	VIN = 0 V OI V+	Full			3.3	μW		


- a. Room = 25 °C, full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by 5 V leakage testing, not production tested.

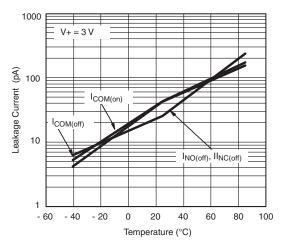
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

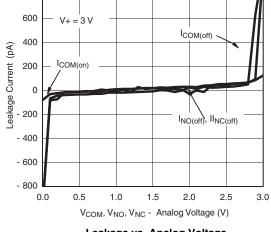

 R_{ON} vs. V_{COM} and Supply Voltage

Temperature (°C) Supply Current vs. Temperature

R_{ON} vs. Analog Voltage and Temperature

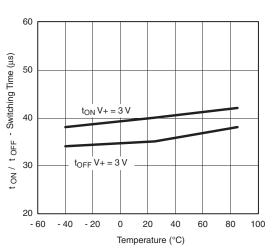


Supply Current vs. Input Switching Frequency

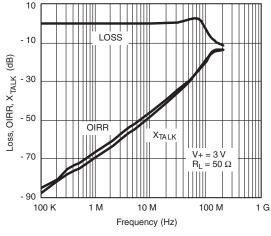

Supply Current (nA)

Vishay Siliconix

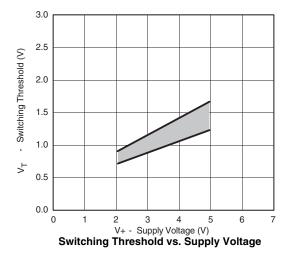
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

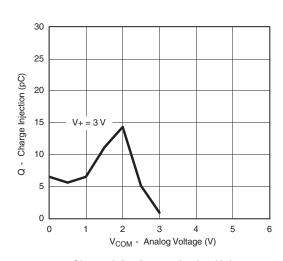


Leakage Current vs. Temperature



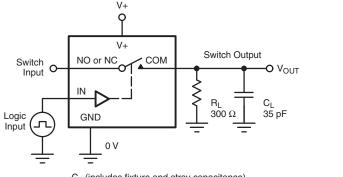
800


Leakage vs. Analog Voltage

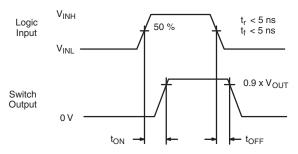


Switching Time vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency



Charge Injection vs. Analog Voltage



TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

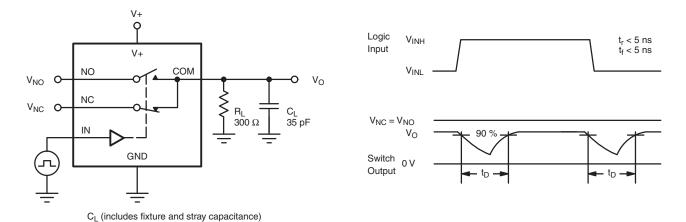


Figure 2. Break-Before-Make Interval

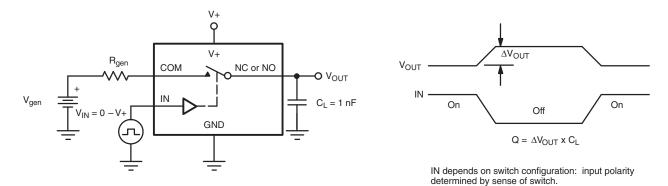


Figure 3. Charge Injection

Vishay Siliconix

TEST CIRCUITS

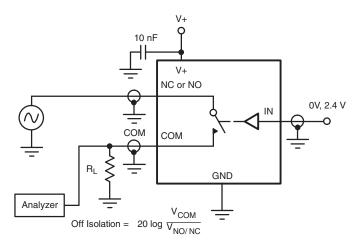
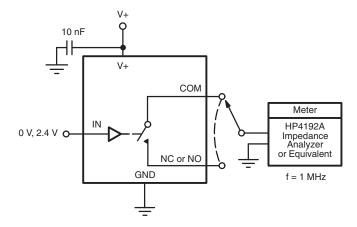
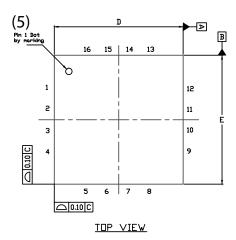
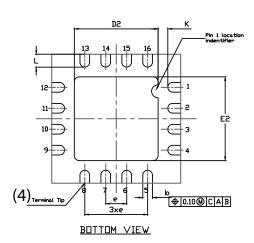


Figure 4. Off-Isolation


Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71971.

QFN 4x4-16L Case Outline

	VARIATION 1					VARIATION 2							
DIM	MILLIMETERS ⁽¹⁾		INCHES		MILLIMETERS ⁽¹⁾			INCHES					
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037	
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
A3		0.20 ref.			0.008 ref.			0.20 ref.			0.008 ref.	•	
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014	
D		4.00 BS0	0		0.157 BSC			4.00 BSC		0.157 BSC			
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106	
е		0.65 BSC		0.026 BSC			0.65 BSC			0.026 BSC			
Е		4.00 BS0	<u> </u>		0.157 BSC	7 BSC 4.00 BSC		0.157 BSC					
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106	
K		0.20 min		0.008 min.		0.20 min.		0.008 min.					
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020	
N ⁽³⁾		16		16		16		16					
Nd ⁽³⁾		4		4			4			4			
Ne ⁽³⁾		4			4		4 4			4			

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: S13-0893-Rev. B, 22-Apr-13

DWG: 5890

Revision: 22-Apr-13

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com