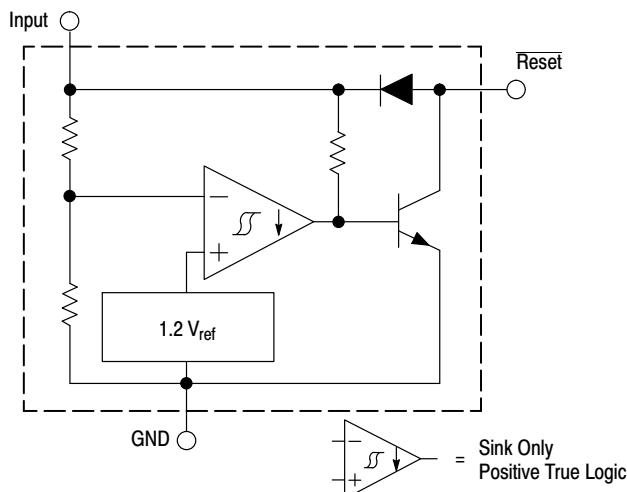


MC34064, MC33064, NCV33064


Undervoltage Sensing Circuit

The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA, and operation is guaranteed down to 1.0 V input with low standby current. The MC devices are packaged in 3-pin TO-92, micro size TSOP-5, 8-pin SOIC-8 and Micro8™ surface mount packages. The NCV device is packaged in SOIC-8 and TO-92.

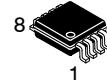
Applications include direct monitoring of the 5.0 V MPU/logic power supply used in appliance, automotive, consumer and industrial equipment.

Features

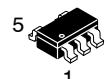
- Trimmed-In-Package Temperature Compensated Reference
- Comparator Threshold of 4.6 V at 25°C
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 10 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation with 1.0 V Input
- Low Standby Current
- Economical TO-92, TSOP-5, SOIC-8 and Micro8 Surface Mount Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- Pb-Free Packages are Available

This device contains 21 active transistors.

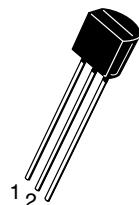
Figure 1. Representative Block Diagram



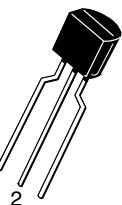
ON Semiconductor®


<http://onsemi.com>

SOIC-8
D SUFFIX
CASE 751



Micro8
DM SUFFIX
CASE 846A



TSOP-5
SN SUFFIX
CASE 483

Pin 1. Ground
2. Input
3. Reset
4. NC
5. NC

STRAIGHT LEAD
BULK PACK

BENT LEAD
TAPE & REEL
AMMO PACK

TO-92
P SUFFIX
CASE 29

Pin 1. Reset
2. Input
3. Ground

PIN CONNECTIONS

Reset	1	○	8	N.C.
Input	2		7	N.C.
N.C.	3		6	N.C.
Ground	4		5	N.C.

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

MC34064, MC33064, NCV33064

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Input Supply Voltage	V_{in}	-1.0 to 10	V
Reset Output Voltage	V_O	10	V
Reset Output Sink Current (Note 2)	I_{Sink}	Internally Limited	mA
Clamp Diode Forward Current, Reset to Input Pin (Note 2)	I_F	100	mA
Power Dissipation and Thermal Characteristics			
P Suffix, Plastic Package			
Maximum Power Dissipation @ $T_A = 25^\circ\text{C}$	P_D	625	mW
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	200	°C/W
D Suffix, Plastic Package			
Maximum Power Dissipation @ $T_A = 25^\circ\text{C}$	P_D	625	mW
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	200	°C/W
DM Suffix, Plastic Package			
Maximum Power Dissipation @ $T_A = 25^\circ\text{C}$	P_D	520	mW
Thermal Resistance, Junction-to-Air	$R_{\theta JA}$	240	°C/W
Operating Junction Temperature	T_J	+150	°C
Operating Ambient Temperature	T_A		°C
MC34064		0 to +70	
MC33064		-40 to +85	
NCV33064		-40 to +125	
Storage Temperature Range	T_{stg}	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. ESD data available upon request.

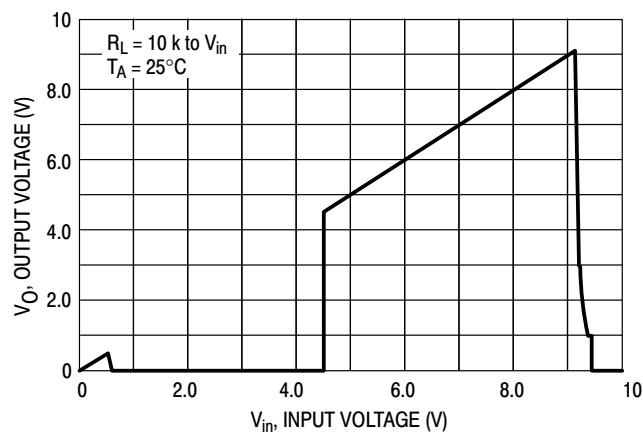
ELECTRICAL CHARACTERISTICS (For typical values $T_A = 25^\circ\text{C}$, for min/max values T_A is the operating ambient temperature range that applies [Notes 3 and 4] unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
-----------------	--------	-----	-----	-----	------

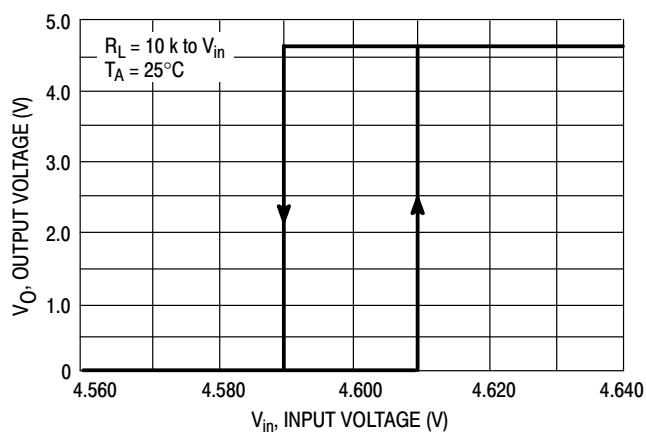
COMPARATOR

Threshold Voltage					
High State Output (V_{in} Increasing)	V_{IH}	4.5	4.61	4.7	V
Low State Output (V_{in} Decreasing)	V_{IL}	4.5	4.59	4.7	
Hysteresis	V_H	0.01	0.02	0.05	

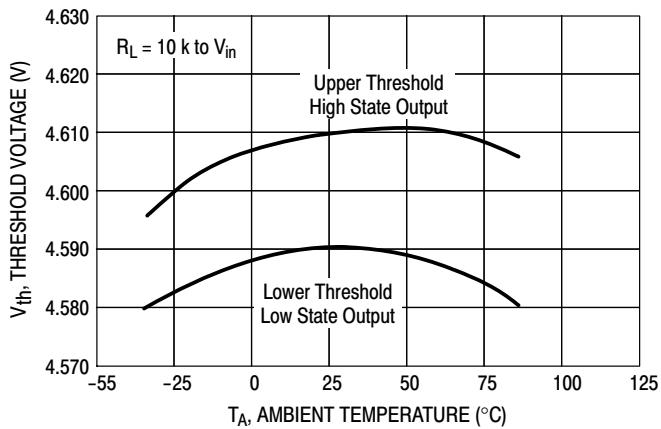
RESET OUTPUT

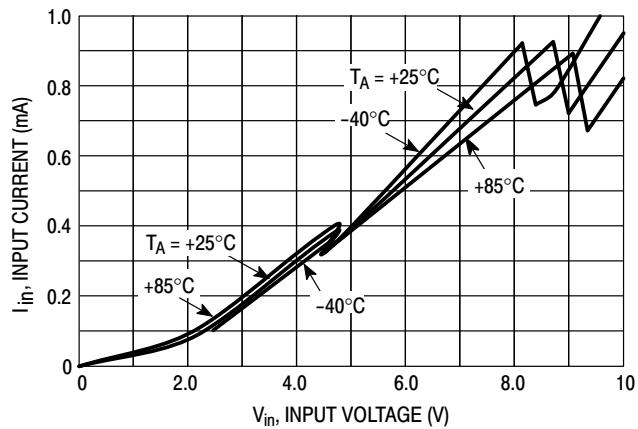

Output Sink Saturation ($V_{in} = 4.0\text{ V}$, $I_{Sink} = 8.0\text{ mA}$) ($V_{in} = 4.0\text{ V}$, $I_{Sink} = 2.0\text{ mA}$) ($V_{in} = 1.0\text{ V}$, $I_{Sink} = 0.1\text{ mA}$)	V_{OL}	-	0.46	1.0	V
Output Sink Current (V_{in} , Reset = 4.0 V)	I_{Sink}	10	27	60	mA
Output Off-State Leakage (V_{in} , Reset = 5.0 V)	I_{OH}	-	0.02	0.5	μA
Clamp Diode Forward Voltage, Reset to Input Pin ($I_F = 10\text{ mA}$)	V_F	0.6	0.9	1.2	V

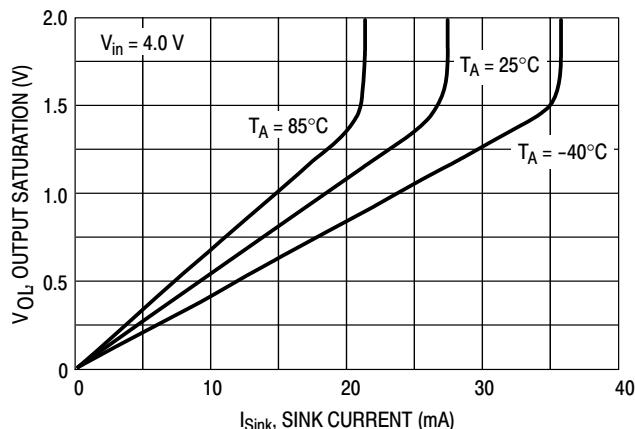
TOTAL DEVICE


Operating Input Voltage Range	V_{in}	1.0 to 6.5	-	-	V
Quiescent Input Current ($V_{in} = 5.0\text{ V}$)	I_{in}	-	390	500	μA

- Maximum package power dissipation limits must be observed.
- Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
- $T_{low} = 0^\circ\text{C}$ for MC34064 $T_{high} = +70^\circ\text{C}$ for MC34064
 -40°C for MC33064 $+85^\circ\text{C}$ for MC33064
 -40°C for NCV33064 $+125^\circ\text{C}$ for NCV33064
- NCV prefix is for automotive and other applications requiring site and change control.


MC34064, MC33064, NCV33064


Figure 2. Reset Output Voltage versus Input Voltage


Figure 3. Reset Output Voltage versus Input Voltage

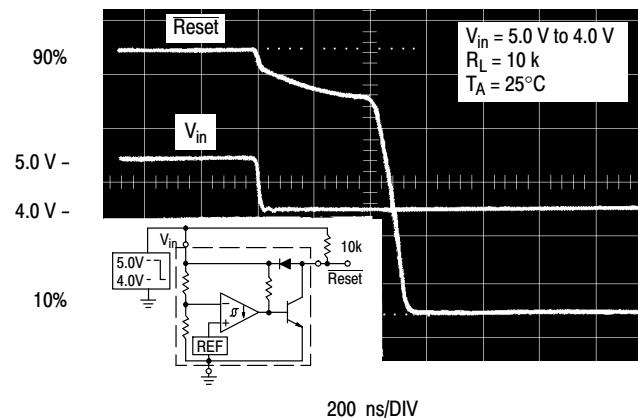

Figure 4. Comparator Threshold Voltage versus Temperature

Figure 5. Input Current versus Input Voltage

Figure 6. Reset Output Saturation versus Sink Current

Figure 7. Reset Delay Time

MC34064, MC33064, NCV33064

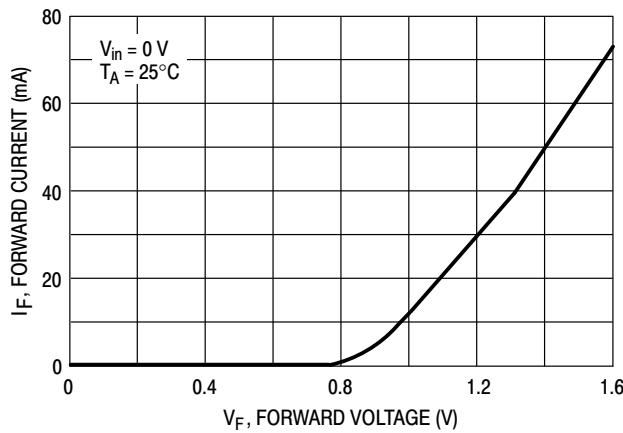


Figure 8. Clamp Diode Forward Current versus Voltage

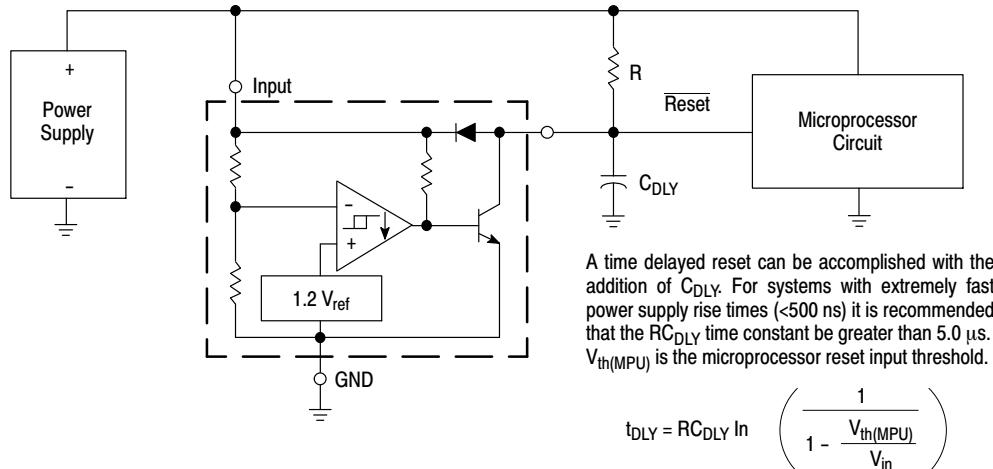
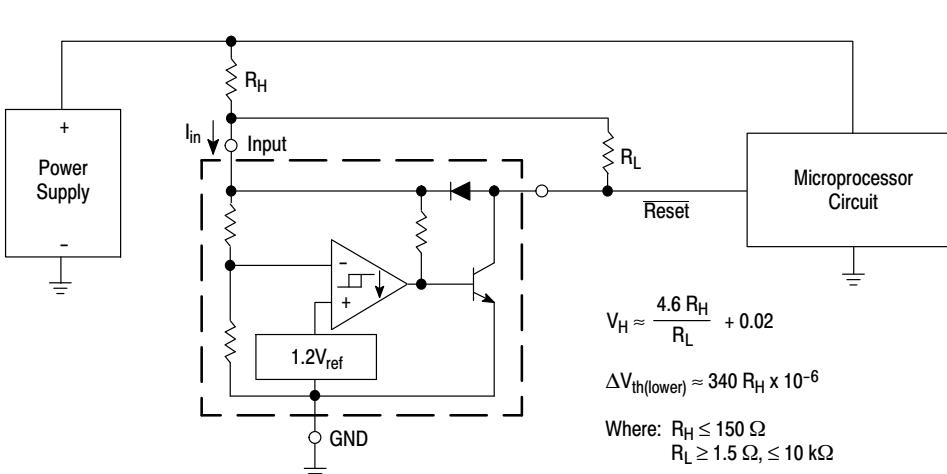



Figure 9. Low Voltage Microprocessor Reset

TEST DATA

V_H (mV)	ΔV_{th} (mV)	R_H (Ω)	R_L ($\text{k}\Omega$)
20	0	0	0
51	3.4	10	1.5
40	6.8	20	4.7
81	6.8	20	1.5
71	10	30	2.7
112	10	30	1.5
100	16	47	2.7
164	16	47	1.5
190	34	100	2.7
327	34	100	1.5
276	51	150	2.7
480	51	150	1.5

Comparator hysteresis can be increased with the addition of resistor R_H . The hysteresis equation has been simplified and does not account for the change of input current I_{in} as V_{CC} crosses the comparator threshold (Figure 4). An increase of the lower threshold $\Delta V_{th(lower)}$ will be observed due to I_{in} , which is typically $340\text{ }\mu\text{A}$ at 4.59 V . The equations are accurate to $\pm 10\%$ with R_H less than $150\text{ }\Omega$ and R_L between $1.5\text{ k}\Omega$ and $10\text{ k}\Omega$.

Figure 10. Low Voltage Microprocessor Reset with Additional Hysteresis

MC34064, MC33064, NCV33064

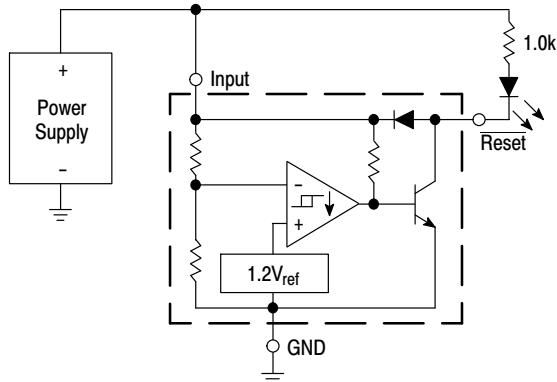


Figure 11. Voltage Monitor

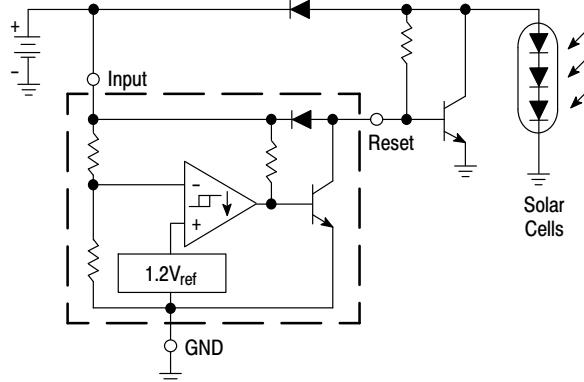
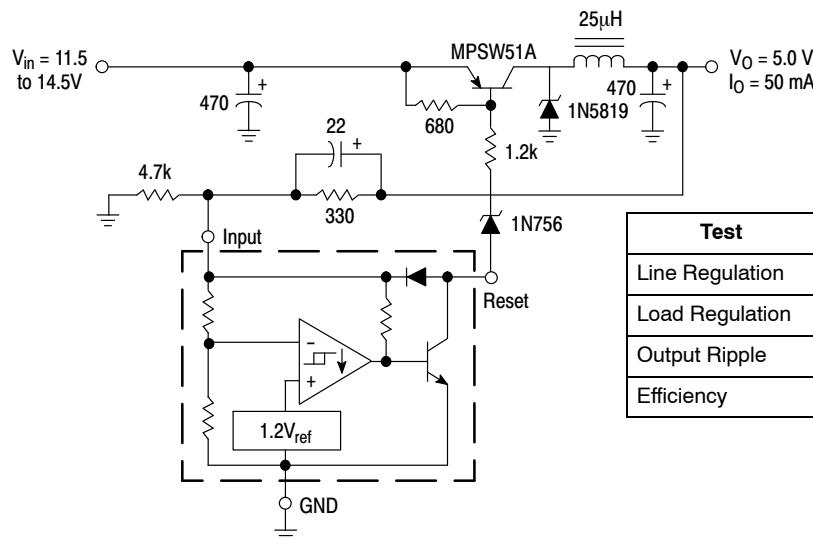
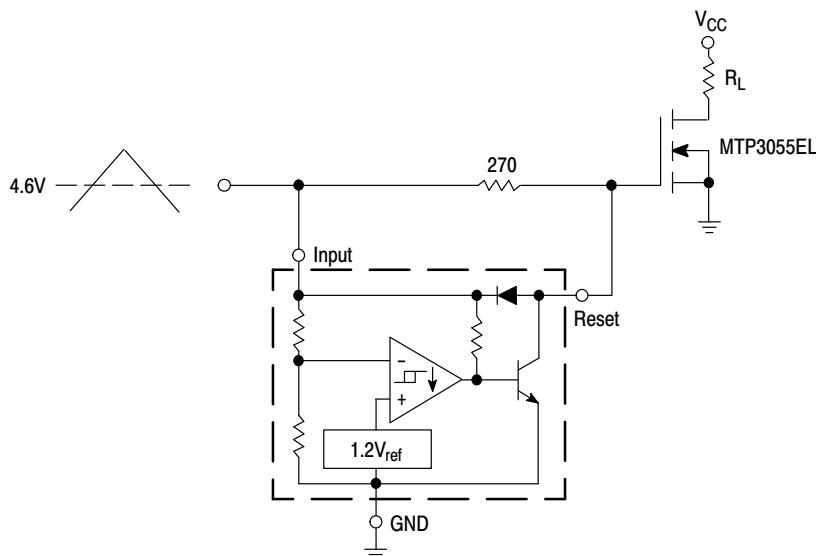




Figure 12. Solar Powered Battery Charger

Test	Conditions	Results
Line Regulation	$V_{in} = 11.5 \text{ V to } 14.5 \text{ V}, I_O = 50 \text{ mA}$	35 mV
Load Regulation	$V_{in} = 12.6 \text{ V}, I_O = 0 \text{ mA to } 50 \text{ mA}$	12 mV
Output Ripple	$V_{in} = 12.6 \text{ V}, I_O = 50 \text{ mA}$	60 mVpp
Efficiency	$V_{in} = 12.6 \text{ V}, I_O = 50 \text{ mA}$	77%

Figure 13. Low Power Switching Regulator

Overheating of the logic level power MOSFET due to insufficient gate voltage can be prevented with the above circuit. When the input signal is below the 4.6 V threshold of the MC34064, its output grounds the gate of the L² MOSFET.

Figure 14. MOSFET Low Voltage Gate Drive Protection

MC34064, MC33064, NCV33064

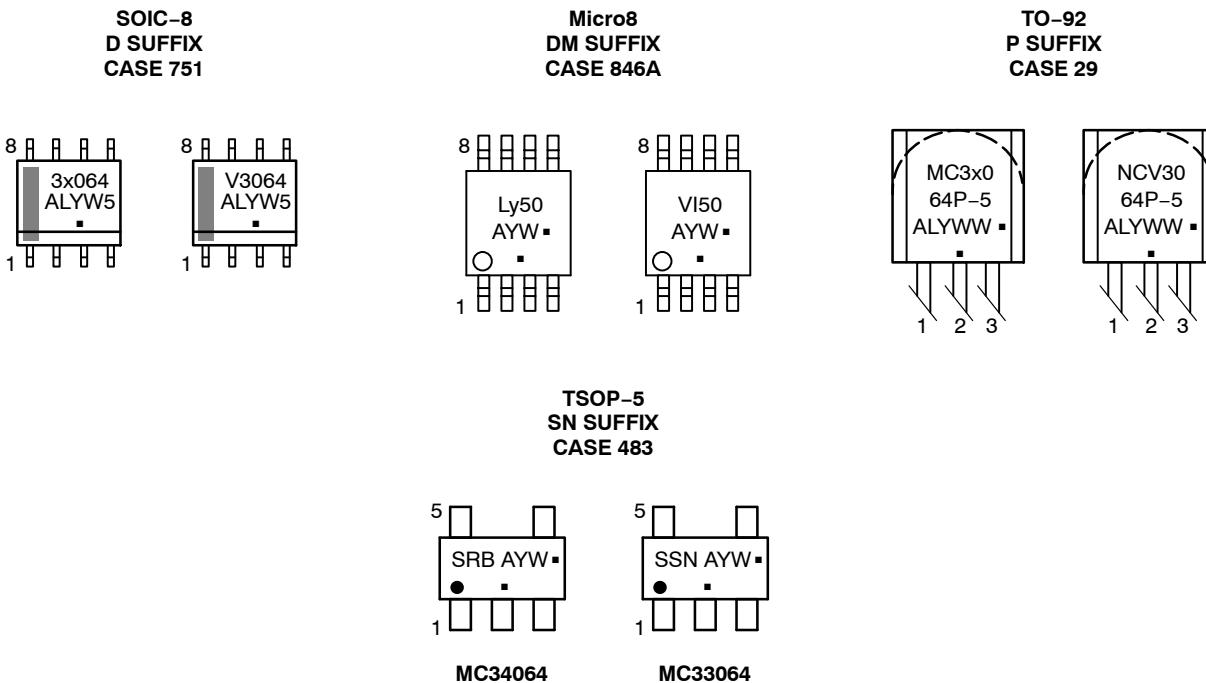
ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping†
MC34064D-005	$T_A = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$	SOIC-8	98 Units / Rail
MC34064D-5G		SOIC-8 (Pb-Free)	
MC34064D-5R2		SOIC-8	2500 Units/ Tape & Reel
MC34064D-5R2G		SOIC-8 (Pb-Free)	
MC34064DM-5R2		Micro8	4000 Units / Tape & Reel
MC34064DM-5R2G		Micro8 (Pb-Free)	
MC34064P-005		TO-92	2000 Units / Bag
MC34064P-5G		TO-92 (Pb-Free)	
MC34064P-5RA		TO-92	2000 Units / Tape & Reel
MC34064P-5RAG		TO-92 (Pb-Free)	
MC34064P-5RP		TO-92	2000 Units / Ammo Pack
MC34064P-5RPG		TO-92 (Pb-Free)	
MC34064P-5RM		TO-92	
MC34064P-5RMG		TO-92 (Pb-Free)	
MC34064SN-5T1		TSOP-5	3000 Units / Tape & Reel
MC34064SN-5T1G		TSOP-5 (Pb-Free)	
MC33064D-005	$T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$	SOIC-8	98 Units / Rail
MC33064D-5G		SOIC-8 (Pb-Free)	
MC33064D-5R2		SOIC-8	2500 Units / Tape & Reel
MC33064D-5R2G		SOIC-8 (Pb-Free)	
MC33064DM-5R2		Micro8	4000 Units / Tape & Reel
MC33064DM-5R2G		Micro8 (Pb-Free)	
MC33064P-005		TO-92	2000 Units / Bag
MC33064P-5G		TO-92 (Pb-Free)	
MC33064P-5RA		TO-92	2000 Units / Tape & Reel
MC33064P-5RAG		TO-92 (Pb-Free)	
MC33064P-5RP		TO-92	2000 Units / Ammo Pack
MC33064P-5RPG		TO-92 (Pb-Free)	
MC33064SN-5T1		TSOP-5	3000 Units / Tape & Reel
MC33064SN-5T1G		TSOP-5 (Pb-Free)	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV33064: $T_{\text{low}} = -40^{\circ}\text{C}$, $T_{\text{high}} = +125^{\circ}\text{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

MC34064, MC33064, NCV33064

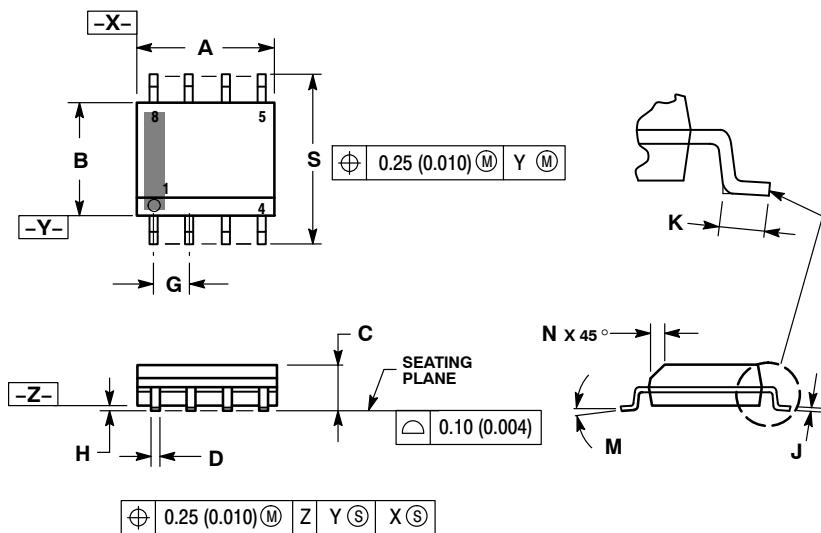

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
NCV33064D-5R2*	$T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$	SOIC-8	2500 Units / Tape & Reel
NCV33064D-5R2G*		SOIC-8 (Pb-Free)	
NCV33064P-5RA*		TO-92	2000 Units / Tape & Reel
NCV33064P-5RAG*		TO-92 (Pb-Free)	
NCV33064P-5RP*		TO-92	2000 Units / Ammo Pack
NCV33064P-5RPG*		TO-92 (Pb-Free)	
NCV33064DM-5R2*		Micro8	4000 Units / Tape & Reel
NCV33064DM-5R2G*		Micro8 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV33064: $T_{\text{low}} = -40^{\circ}\text{C}$, $T_{\text{high}} = +125^{\circ}\text{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

MARKING DIAGRAMS

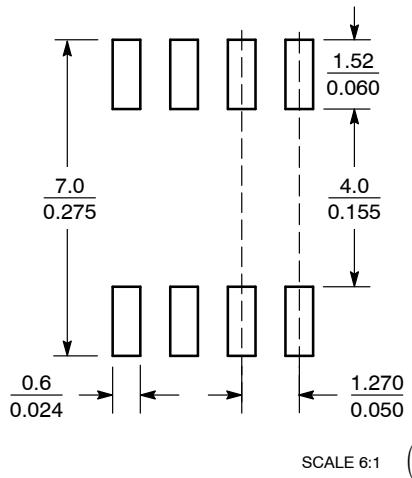


x = 3 or 4
 y = C or I
 A = Assembly Location
 L = Wafer Lot
 Y = Year
 W, WW = Work Week
 ■ = Pb-Free Package

(Note: Microdot may be in either location)

PACKAGE DIMENSIONS

SOIC-8
D SUFFIX
CASE 751-07
ISSUE AJ

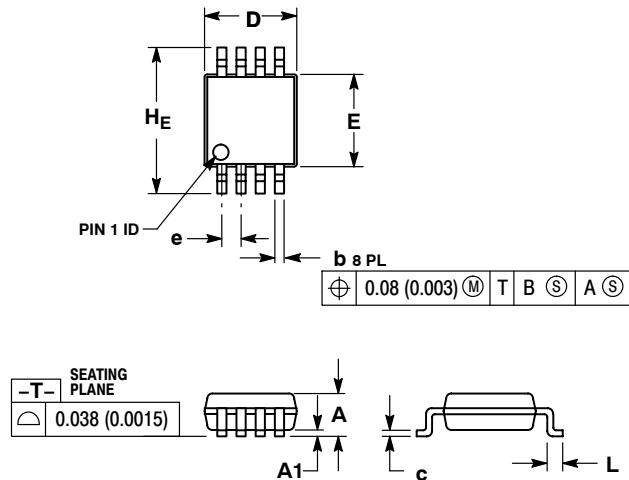


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

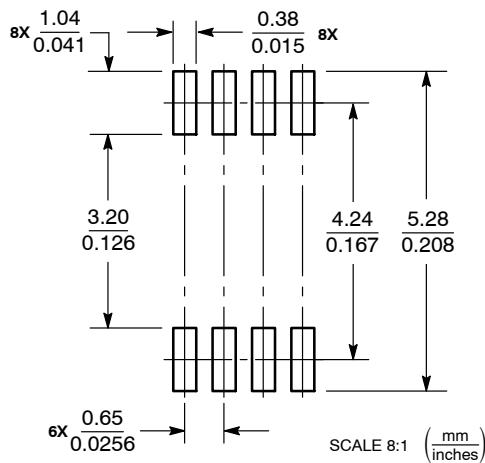


SCALE 6:1 (mm/inches)

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

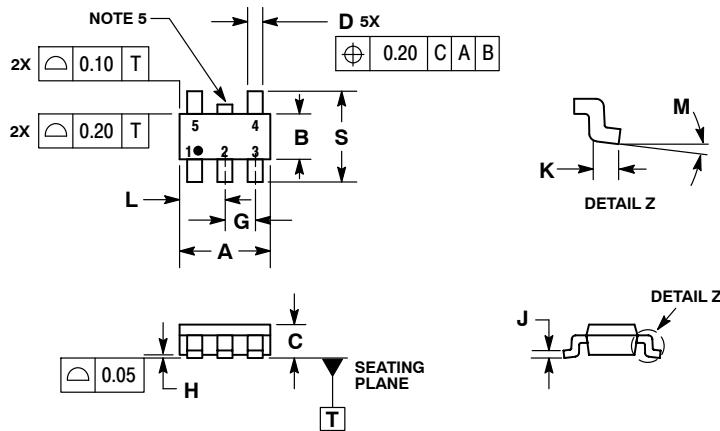
Micro8
DM SUFFIX
CASE 846A-02
ISSUE G



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

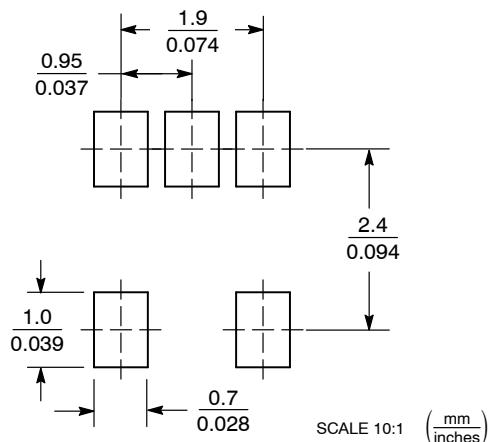
DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	--	--	1.10	--	--	0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
c	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
e	0.65 BSC			0.026 BSC		
L	0.40	0.55	0.70	0.016	0.021	0.028
H _E	4.75	4.90	5.05	0.187	0.193	0.199


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

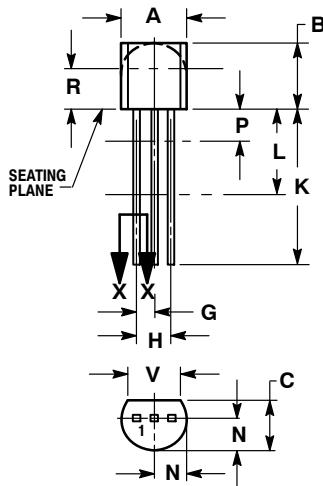
TSOP-5
SN SUFFIX
CASE 483-02
ISSUE H

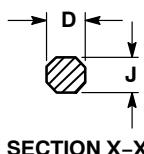


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

DIM	MILLIMETERS	
	MIN	MAX
A	3.00	BSC
B	1.50	BSC
C	0.90	1.10
D	0.25	0.50
G	0.95	BSC
H	0.01	0.10
J	0.10	0.26
K	0.20	0.60
L	1.25	1.55
M	0°	10°
S	2.50	3.00

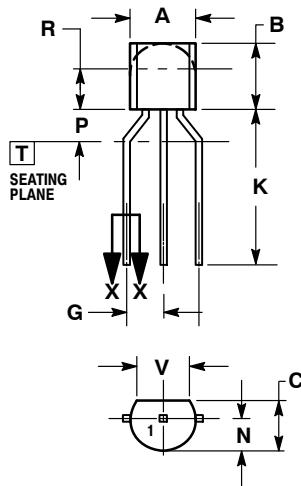

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

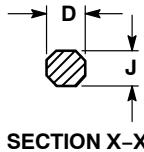
PACKAGE DIMENSIONS

TO-92 (TO-226)
P SUFFIX
CASE 29-11
ISSUE AM

STRAIGHT LEAD BULK PACK



SECTION X-X


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

BENT LEAD TAPE & REEL AMMO PACK

SECTION X-X

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

DIM	MILLIMETERS	
	MIN	MAX
A	4.45	5.20
B	4.32	5.33
C	3.18	4.19
D	0.40	0.54
G	2.40	2.80
J	0.39	0.50
K	12.70	---
N	2.04	2.66
P	1.50	4.00
R	2.93	---
V	3.43	---

Micro8 is a trademark of International Rectifier.

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
 P.O. Box 5163, Denver, Colorado 80217 USA
 Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
 Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
 Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

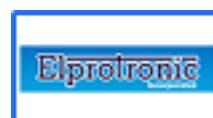
USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850


ON Semiconductor Website: www.onsemi.comOrder Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
 Sales Representative

AMEYA360

Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd
Minhang District, Shanghai , China

➤ Sales :

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

➤ Customer Service :

Email service@ameya360.com

➤ Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com