Freescale Semiconductor

Data Sheet: Advance Information

Document Number: MC13851 Rev. 2.0, 12/2010

MC13851

Package Information Plastic Package: MLPD-8 $2.0 \times 2.0 \times 0.6 \text{ mm}$ Case: 2128-01

MC13851

General Purpose Low Noise Amplifier with Bypass Switch

Ordering Information

Device	Device Marking	Package
MC13851EP	851	MLPD-8

Introduction 1

The MC13851 is a cost-effective, high IP3 LNA with low noise figure. This is the smaller leadless package version of the MC13821 device. The MC13851 includes an integrated bypass switch to preserve high input intercept performance in variable signal strength environments and boosts dynamic range. On-chip bias circuitry offers low system cost. The input and output match are external to allow maximum design flexibility. An external resistor is used to set device current which allows balancing required linearity with low current consumption. Gain is optimized for applications greater than 1000 MHz. The MC13851 is fabricated with the advanced RF BiCMOS process using the eSiGe:C module and is available in the 2 × 2 mm MLPD-8 leadless package, offering a small, low height, easy-to-solder solution for applications with tight printed circuit board placement requirements.

Contents:

1	Introduction
2	Electrical Specifications
3	Application Information
4	Printed Circuit and Bill of Materials20
5	Scattering and Noise Parameters
6	Packaging32
7	Product Documentation
8	Revision History33

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2006-2010. All rights reserved.

1.1 Features

The MC13851 is intended for applications from 1000 MHz to 2500 MHz and the MC13852 is for applications less than 1000 MHz.

- Gain: 18.7 dB (typical) at 1960 MHz and 17.7 dB (typical) at 2140 MHz
- Output third order intercept point (OIP3): 16 dBm at 1960 MHz and 17 dBm (typical) dBm at 2140 MHz
- Noise Figure (NF): 1.37 dB (typical) at 1960 MHz and 1.46 dB at 2140 MHz
- Output 1 dB compression point (P1dB): 8 dBm (typical) at 1960 MHz and 8 dBm (typical) at 2140 MHz
- IP3 Boost Circuitry from Freescale
- Bypass mode has return losses comparable to active mode, for use in systems with filters and duplexers
- Bypass mode improves dynamic range in variable signal strength environments
- Integrated logic-controlled standby mode with current drain < 1uA
- Total supply current variable from 2.5 mA-5 mA using an external bias resistor
- In a receiver system with 20% active mode and 80% bypass mode, the average current drain is < 0.6 mA
- On-chip bias sets the bias point
- Bias stabilized for device and temperature variations
- MLPD-8 leadless package with low parasitics
- 1575 MHz, 1960 MHz, 2140 MHz and 2500 MHz application circuit evaluation boards with characterization data are available
- Available in tape and reel packaging

1.2 Applications

Ideal for use in any RF product that operates between 1000 MHz and 2.5 GHz, and may be applied in:

- Buffer amplifiers
- Mixers
- IF amplifiers
- Voltage controlled oscillators (VCOs)
- Use with transceivers requiring external LNAs
- Smart metering
- Mobile—Cellular front end LNA, GPS, two-way radios
- Consumer—WLAN, 802.11 b/g
- Auto—GPS, active antenna, wireless security
- Low current drain/long standby time for extended battery life applications

Figure 1 shows a simplified block diagram of the MC13851 with the pinouts and location of the Pin 1 designator on the package.

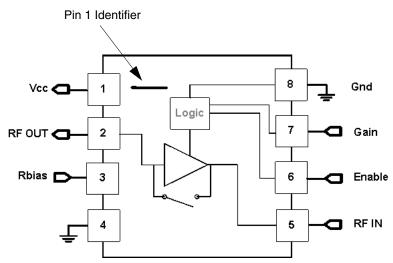


Figure 1. Functional Block Diagram

2 Electrical Specifications

Table 1. lists the maximum ratings for the device.

Table 1. Maximum Ratings (TA=25°C, unless otherwise noted)

Rating	Symbol	Value	Unit
Supply voltage	Vcc	3.3	Vdc
Storage temperature range	T _{stg}	-65–150	°C
Operating ambient temperature range	T _A	-30–85	°C
RF input power	P RF	10	dBm
Power dissipation	Pdis	100	mW
Thermal resistance, junction to case	R _{thetaJC}	24	°C/W
Thermal resistance, junction to ambient, 4 layer board	R thetaJA	90	°C/W

Note: Maximum ratings

- 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the recommended Operating Conditions and Electrical Characteristics tables.
- 2. ESD (electrostatic discharge) immunity meets Human Body Model (HBM) \leq 200V. Charge Device Model (CDM) \leq 450V, and Machine Model (MM) \leq 50V

Table 2 lists the recommended operating conditions.

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Min	Тур	Max	Unit
RF frequency range	f _{RF}	1000	_	2500	MHz
Supply voltage	V _{CC}	2.3	2.75	3	V

MC13851 Advance Information, Rev. 2.0

Electrical Specifications

Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Logic voltage Input high voltage Input low voltage	_	1.25 0	1.8 0	V _{CC} 0.80	Vdc Vdc

Table 3 shows the use of the Gain and Enable pins to select Active mode (High Gain), Bypass mode (Low Gain) or Standby mode (Disable) operation.

Table 3. Truth Table

Pin Function	Pin Name	Ena	able	Disable		
First unction	Fill Name	Low Gain	High Gain	Low Gain	High Gain	
Logic Circuit Bias Vcc	Vcc	1	1	1	1	
Toggles Gain Mode (Active or Bypass)	Gain	0	1	0	1	
Toggles LNA On/Off	Enable	1	1	0	0	

Notes:

- 1. Logic state 1 equals Vcc voltage. Logic state of 0 equals ground potential.
- 2. Vcc is inductively coupled to LNA Out pin and Vcc pin
- 3. Minimum logic state 1 for enable and gain pins is 1.25V
- 4. Maximum logic state 0 for enable and gain pins is 0.8V

Table 4 lists the electrical characteristics associated with noise performance measured in a 50 Ω system. Additional noise parameters are listed in Table 15 and Table 16. Also listed are the typical Icc and RF turn on times for the device. Information and details on the boards are shown in Section 4, "Printed Circuit and Bill of Materials."

Table 4. Electrical Characteristics (Vcc = 2.75 V, Ta = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Insertion Gain			•		
R1=1.2 kΩ, Freq=1.575 GHz		17.4	18.9	_	
R1=1.2 kΩ, Freq=2.14 GHz	IS21I ²	14.5	16	_	dB
R1=1.5 kΩ, Freq=1.575 GHz		16.4	17.9	_	
R1=1.5 kΩ, Freq=2.14 GHz		14.9	16.4	_	
Maximum Stable Gain and/or Maximum Available Gain [Note1]					
R1=1.2 kΩ, Freq=1.575 GHz		21.1	22.6	_	
R1=1.2 kΩ, Freq=2.14 GHz	MSG, MAG	19.6	21.1	_	dB
R1=1.5 kΩ, Freq=1.575 GHz		19	20.5	_	
R1=1.5 kΩ, Freq=2.14 GHz		18.1	19.6	_	
Minimum Noise Figure					
R1=1.2 kΩ, Freq=1.575 GHz		_	0.97	1.3	
R1=1.2 kΩ, Freq=2.14 GHz	NFmin	_	1.07	1.4	dB
R1=1.5 kΩ, Freq=1.575 GHz		_	0.98	1.3	
R1=1.5 kΩ, Freq=2.14 GHz			1.1	1.4	

Table 4. Electrical Characteristics (Vcc = 2.75 V, Ta = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Associated Gain at Minimum Noise Figure			•	•	
R1=1.2 kΩ, Freq=1.575 GHz		20.5	22	_	
R1=1.2 kΩ, Freq=2.14 GHz	Gnf	17	18.6	_	dB
R1=1.5 kΩ, Freq=1.575 GHz		20.5	22	_	
R1=1.5 kΩ, Freq=2.14 GHz		17.5	19	_	
Icc and RF Turn On Time Enable trigger total time of 1.8 μsecond from 0 to 2.75 V					
Icc rise time from 0 to 76% of final current level		_	6.4	_	μS
Icc rise time from 0 to 87% of final current level		_	9.6	_	
RF on time from leading edge of enable trigger to RF turn-on		_	1.37	_	

Note:

Maximum Available Gain and Maximum Stable Gain are defined by the K factor as follows:

 $MAG = |S21/S12(K \pm sqrt(K2-1))|$ |, if K>1, MSG = |S21/S12|, if K<1

Table 5 lists the electrical characteristics measured on evaluation boards tuned for typical application frequencies when Rbias is $1.2 \text{ k}\Omega$. Further details on the application circuits are shown in Section 3, "Application Information"

Table 5. Electrical Characteristics Measured in Frequency Specific Tuned Circuits (Vcc = 2.75V, TA = 25° C, Rbias = $1.2k\Omega$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
1575 MHz (Refer to Figure 7)	1	1		l .	
Frequency	f	_	1575	_	MHz
Active RF Gain	G	18.4	19.4	_	dB
Active Noise Figure	NF	_	1.28	1.6	dB
Active Input Third Order Intercept Point	IIP3	-6.5	-5	_	dBm
Active Input 1dB Compression Point	P1dBoutput	6.3	7.4	_	dBm
Active Current @ 2.75V, Rbias=1.2kΩ	Icc	_	4.8	5.8	mA
Active Current @ 2.75V, Rbias=1.5kΩ	Icc	_	3.8	4.8	mA
Active Gain	S21	18	19	_	dB
Bypass RF Gain	G	-6.5	-5.5	_	dB
Bypass Noise Figure	NF	_	6	7	dB
Bypass Input Third Order Intercept Point	IIP3	24	25.5	_	dBm
Bypass Current	_	_	4	20	μΑ
Bypass Gain	S21	-7	-5.5	_	dB
1960 MHz (Refer to Figure 8)	<u>.</u>				
Frequency	f	_	1960	_	MHz
Active RF Gain	G	17.7	18.7	_	dB
Active Noise Figure	NF	_	1.37	1.65	dB
Active Input Third Order Intercept Point	IIP3	-4	-2.7	_	dBm
Active Input 1dB Compression Point	P1dBoutput	6	8	_	dBm

Electrical Specifications

Table 5. Electrical Characteristics Measured in Frequency Specific Tuned Circuits (continued) (Vcc = 2.75V, TA = 25° C, Rbias =1.2k Ω unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Active Current @ 2.75V, Rbias=1.2kΩ	Icc	_	4.8	5.8	mA
Active Current @ 2.75V, Rbias=1.5kΩ	Icc	_	3.8	4.8	mA
Active Gain	S21	17.4	18.4	_	dB
Bypass RF Gain	G	-6.5	-4.9	_	dB
Bypass Noise Figure	NF	_	4.8	6.2	dB
Bypass Input Third Order Intercept Point	IIP3	24.5	26	_	dBm
Bypass Current	_	_	4	20	μΑ
Bypass Gain	S21	-6.5	-5	_	dB
2140 MHz (Refer to Figure 9)					
Frequency	f	_	2140	_	MHz
Active RF Gain	G	16.7	17.7	_	dB
Active Noise Figure	NF	_	1.46	1.75	dB
Active Input Third Order Intercept Point	IIP3	-3	-0.5	_	dBm
Active Input 1dB Compression Point	P1dBoutput	6.7	8	_	dBm
Active Current @ 2.75V, Rbias=1.2kΩ	Icc	_	4.8	5.8	mA
Active Current @ 2.75V, Rbias=1.5kΩ	Icc	_	3.8	4.8	mA
Active Gain	S21	16.5	17.6	_	dB
Bypass RF Gain	G	-5.8	-4.8	_	dB
Bypass Noise Figure	NF	_	4.9	5.9	dB
Bypass Input Third Order Intercept Point	IIP3	24.5	25.7	_	dBm
Bypass Current	_	_	4	20	μΑ
Bypass Gain	S21	-5.7	-4.7	_	dB
2400 MHz (Refer to Figure 10)					
Frequency	f	_	2400	_	MHz
Active RF Gain	G	15	16	_	dB
Active Noise Figure	NF	<u> </u>	1.52	1.8	dB
Active Input Third Order Intercept Point	IIP3	-0.2	2	_	dBm
Active Input 1dB Compression Point	P1dBoutput	7	8.1	_	dBm
Active Current @ 2.75V, Rbias=1.2kΩ	Icc	_	4.8	5.8	mA
Active Current @ 2.75V, Rbias=1.5kΩ	Icc	_	3.8	4.8	mA
Active Gain	S21	14.7	15.7	_	dB
Bypass RF Gain	G	-6	-5	_	dB
Bypass Noise Figure	NF	_	5.2	5.8	dB
Bypass Input Third Order Intercept Point	IIP3	24	25.3	_	dBm
Bypass Current	_	_	4	20	μΑ
Bypass Gain	S21	-5.4	-5		dB

Figure 2 and Figure 3 show maximum stable and maximum available gain and forward insertion gain versus frequency for the packaged device in a 50 Ω system using bias resistors of 1.5 k Ω and 1.2 k Ω

Figure 2. Maximum Stable/Available Gain and Forward Insertion Gain vs. Frequency (Rbias = $1.5k\Omega$)

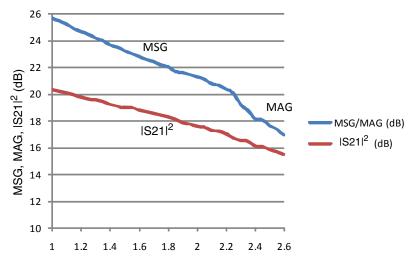


Figure 3. Maximum Stable/Available Gain and Forward Insertion Gain vs. Frequency (Rbias = 1.2 kΩ)

Electrical Specifications

Figure 4 and Figure 5 show minimum noise figure and associated gain versus frequency for the packaged device in a 50 Ω system using bias resistors of 1.5 k Ω and 1.2 k Ω .

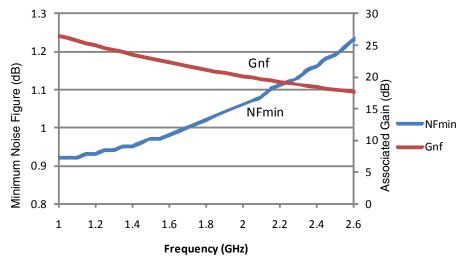


Figure 4. Minimum Noise Figure and Associated Gain vs. Frequency (Rbias = 1.5 $k\Omega$)

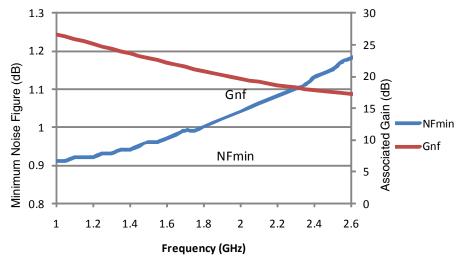


Figure 5. Minimum Noise Figure and Associated Gain vs. Frequency (Rbias = 1.2 $k\Omega$)

9

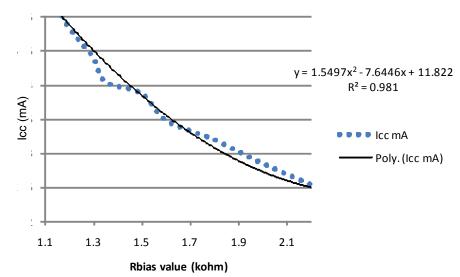


Figure 6 shows the Icc current drain for a range of values for the external bias resistor Rbias.

Figure 6. Icc vs. Bias Resistor R1 Value

3 Application Information

The MC13851 LNA is designed for applications in the 1000 MHz to 2.5 GHz range. It has three different modes: High Gain, Low Gain (bypass) and standby. The LNA is programmable through the Gain and Enable pins. The logic truth table is given in Table 3. The internal bypass switch is designed for broadband applications. One of the advantages of the MC13851 is the simplification of the matching network in both bypass and amplifier modes. The bypass switch is designed so that changes of input and output return losses between bypass mode and active mode are minimized and the matching network design is simplified. In these application examples a balance is made between the competing RF performance characteristics of Icc, NF, gain, IP3 and return losses with unconditional stability. Conjugate matching is not used for the input or output. Instead, matching which achieves a trade-off in RF performance qualities is used. For a particular application or specification requirement, the matching can be changed to achieve enhanced performance of one parameter. Measurements are made at a bias of Vcc=2.75 V. Frequency spacing for IP3 measurements is 200 kHz. Non-linear measurements are made at Pin = -30 dBm. Typical application circuits are provided for 1575 MHz, 1960 MHz, 2140 MHz and 2.4 GHz applications. Typical RF performance is shown for two values of bias resistor R1: 1.2 k Ω and 1.5 k Ω These two current drain levels offer variations in intercept point, gain and noise figure. Included with each application are the schematics and electrical performance. Section 4, "Printed Circuit and Bill of Materials" provides the evaluation board layout and Bill of Material for the circuits. Section 5, "Scattering and Noise Parameters" provides Smith charts with gain and noise circles for each application frequency.

3.1 1575 MHz Application

This application was designed to provide typical NF = 1.28 dB, S21 gain = 19 dB, OIP3 = 14.5 dBm with return losses better than -10 dB at 1575 MHz. Typical performance that can be expected from this circuit at 2.75V is listed in Table 6. The component values can be changed to enhance the performance of a particular parameter, but usually at the expense of another. Two values of bias resistor R1 are shown to

Application Information

demonstrate performance for different IP3 and Icc requirements. Inductor L3 provides bias to the logic circuit.

Figure 7 is the 1575 MHz application schematic with package pinouts and the circuit component topology.

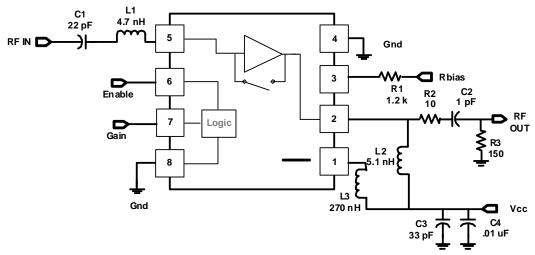


Figure 7. 1575 MHz Application Schematic

Table 6 shows the electrical characteristics for the 1575 MHz evaluation board.

Table 6. Typical 1575 MHz Evaluation Board Performance (Vcc = 2.75V, T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
R1=1.2 KΩ	l		l	I	
Frequency	f	_	1575	_	MHz
RF Gain					
High Gain	G	18.4	19.4	_	dB
Bypass		-6.5	-5.5	_	
Output Third Order Intercept Point					
High Gain	OIP3	13.2	14.5	_	dBm
Bypass		19	20.3	_	
Input Third Order Intercept Point			•	•	
High Gain	IIP3	-6.5	-5	_	dBm
Bypass		24	25.5	_	
Out Ref P1dB	P1dBout		•	•	dBm
High Gain	Plabout	6.3	7.4	_	ubili
In Ref P1dB	P1dBin		•	•	dBm
High Gain	FIUDIII	-13.3	-12	_	ubili
Noise Figure			•	•	
High Gain	NF	_	1.28	1.6	dB
Bypass		_	6	7	
Current Draw					•
High Gain	Icc	_	4.8	5.8	mA
Bypass		_	4	20	μΑ
Rbias R1 Value	_	_	1.2	_	kΩ

MC13851 Advance Information, Rev. 2.0

Table 6. Typical 1575 MHz Evaluation Board Performance (continued) (Vcc = 2.75V, T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Return Loss				I	
High Gain	S11	_	-11	-8	dB
Bypass	-	_	-11	-8	
Gain				I	
High Gain	S21	18	19	_	dB
Bypass	-	-7	-5.5	_	
Reverse Isolation				I	
High Gain	S12	_	-27	-25	dB
Bypass	-	_	-5.7	-4.4	
Output Return Loss				I	
High Gain	S22	_	-14.9	-9	dB
Bypass	-	_	-18	-9	
R1=1.5 kΩ				l .	
Frequency	f	_	1575	_	MHz
RF Gain				<u> </u>	
High Gain	G	18	19	_	dB
Bypass	-	-6.5	-5.5	_	
Output Third Order Intercept Point					
High Gain	OIP3	13.9	15.9	_	dBm
Bypass	-	19	20.3	_	
Input Third Order Intercept Point				<u> </u>	
High Gain	IIP3	-5.5	-3.2	_	dBm
Bypass	-	24	26	_	
Out Ref P1dB			<u> </u>	<u>I</u>	
High Gain	P1dBout	6.6	7.6	_	dBm
In Ref P1dB	D4 ID:		ı	I	
High Gain	P1dBin	-13.5	-11.5	_	dBm
Noise Figure				I	
High Gain	NF	_	1.27	1.6	dB
Bypass	<u> </u>	_	5.9	6.9	
Current Draw				I	l
High Gain	Icc	_	3.8	4.8	mA
Bypass	-	_	4	20	μΑ
Rbias R1 Value	<u> </u>	_	1.5	_	kΩ
Input Return Loss				I	
High Gain	S11	_	-10.6	-8.6	dB
Bypass	7	_	-11.5	-10	1
Gain			1	ı	
High Gain	S21	17.9	18.9	_	dB
Bypass	7	-6.5	-5.5	_	
Reverse Isolation			1	ı	
High Gain	S12	_	-25.9	-24.5	dB
Bypass	-	_	-5.6	-4.6	1

Table 6. Typical 1575 MHz Evaluation Board Performance (continued) (Vcc = 2.75V, T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Return Loss					
High Gain	S22	_	-13	-9	dB
Bypass		_	-18	-12	

3.2 1960 MHz Application

These application circuits are designed to demonstrate performance at 1960 MHz. Typical results of NF = 1.4 dB, S21 gain > 18 dB and OIP3 of 16 dBm. Two values of bias resistor R1 are shown to demonstrate performance for different IP3 and Icc requirements. Resistor R3 is used to de-Q output inductor L2 and adjust gain and return losses. Inductor L3 provides bias to the logic circuit. Reducing R3 lowers gain and improves return losses. Typical performance that can be expected from this circuit at 2.75 V is listed in Table 7.

Figure 8 is the 1960 MHz application schematic with package pinouts and the circuit component topology.

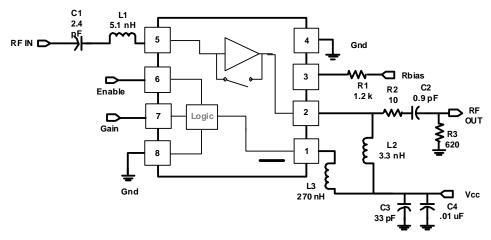


Figure 8. 1960 MHz Application Schematic

Table 7 shows the electrical characteristics for the 1960 MHz evaluation board.

Table 7. Typical 1960 MHz Evaluation Board Performance (Vcc = 2.75V, Ta = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
R1=1.2 KΩ					
Frequency	f	_	1960	_	MHz
RF Gain					
High Gain	G	17.7	18.7	_	dB
Bypass		-6.5	-4.9	_	
Output Third Order Intercept Point					
High Gain	OIP3	14	16	_	dBm
Bypass		19.2	20.9	_	

MC13851 Advance Information, Rev. 2.0

Table 7. Typical 1960 MHz Evaluation Board Performance (continued) (Vcc = 2.75V, Ta = $25^{\circ}C$)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Third Order Intercept Point			•		
High Gain	IIP3	-4	-2.7	_	dBm
Bypass		24.5	26	_	
Out Ref P1dB	P1dBout		•	•	alD:sa
High Gain	Plabout	6	8	_	- dBm
In Ref P1dB	P1dBin				- dBm
High Gain	FIGBIII	-13	-10.5	_	ubili
Noise Figure					
High Gain	NF	_	1.37	1.65	dB
Bypass		_	4.8	6.2	
Current Draw					
High Gain	lcc	_	4.8	5.8	mA
Bypass		_	4	20	μΑ
Rbias R1 Value	_	_	1.2	_	kΩ
Input Return Loss					
High Gain	S11	_	-10	-7	dB
Bypass		_	-11	-8	
Gain					
High Gain	S21	17.4	18.4	_	dB
Bypass		-6.5	-5	_	
Reverse Isolation					
High Gain	S12	1	-25	-23.5	dB
Bypass		_	-4.8	-3	
Output Return Loss					
High Gain	S22	_	-14	-8	dB
Bypass		_	-14.8	-10	
R1=1.5 kΩ					
Frequency	f	_	1960	_	MHz
RF Gain			•	•	•
High Gain	G	17.5	18.5	_	
Bypass		-6.8	-5	_	- dB
Output Third Order Intercept Point				1	
High Gain	OIP3	16.1	17.1	_	dBm
Bypass	\dashv	19.1	20.9	_	1
		10.1			
Input Third Order Intercept Point		10.1			
Input Third Order Intercept Point High Gain	IIP3	-3	-1.5	_	dBm

Table 7. Typical 1960 MHz Evaluation Board Performance (continued) (Vcc = 2.75V, Ta = $25^{\circ}C$)

Characteristic	Symbol	Min	Тур	Max	Unit
Out Ref P1dB	P1dBout				dBm
High Gain	- Tabout	5.6	8	_	abiii
In Ref P1dB	P1dBin				dBm
High Gain	1 Tubiii	-13	-10.5	_	dbiii
Noise Figure					
High Gain	NF	_	1.35	1.65	dB
Bypass		_	4.9	6.2	
Current Draw					
High Gain	lcc	_	3.8	4.8	mA
Bypass		_	4	20	μΑ
Rbias R1 Value	_	_	1.5	_	kΩ
Input Return Loss					1
High Gain	S11	_	-9	-6.5	dB
Bypass		_	-11	-8	
Gain					
High Gain	S21	17	18	_	dB
Bypass		-6.5	-5	_	
Reverse Isolation					
High Gain	S12	_	-24.5	-22.5	dB
Bypass		_	-4.5	-4	
Output Return Loss					
High Gain	S22		-12.5	-7	dB
Bypass			-15	-10	

3.3 2140 MHz Application

These application circuits demonstrate performance at 2140 MHz. Matching component values can be changed to enhance a particular parameter. Typical performance expected from this circuit at 2.75V Vcc is listed in Table 8. Two values of bias resistor R1 are shown to demonstrate performance for different IP3 and Icc requirements. The same matching topology is used on each of the application circuits, with a highpass match on the output and a simple inductor-capacitor network on the LNA input. Resistor R3 is used to de-Q output inductor L2 and adjust gain and return losses. Lowering the value of R3 lowers gain and improves return losses.

Figure 9 is the 2140 MHz application schematic with package pinouts and the circuit component topology.

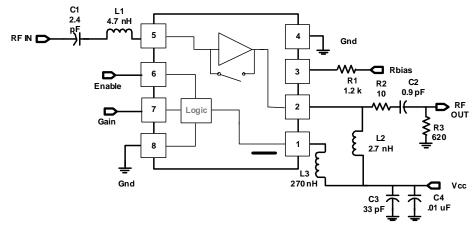


Figure 9. 2140 MHz Application Schematic

Table 8 shows the electrical characteristics for the 2140 MHz evaluation board.

Table 8. Typical 2140 MHz Evaluation Board Performance (Vcc = 2.75V, $Ta = 25^{\circ}C$)

Characteristic	Symbol	Min	Тур	Max	Unit
R1=1.2 K Ω (Refer to Figure 9)		ı	1	·	
Frequency	f	_	2140	_	MHz
RF Gain			1	•	
High Gain	G	16.7	17.7	_	dB
Bypass		-5.8	-4.8	_	ub
Output Third Order Intercept Point					
High Gain	OIP3	15.5	17.1	_	dBm
Bypass		20	21	_	
Input Third Order Intercept Point					
High Gain	IIP3	-3	-0.5	_	dBm
Bypass		24.5	25.7	_	
Out Ref P1dB	P1dB				dBm
High Gain	T FIGE	6.7	8	_	UDIII
In Ref P1dB	P1dB				dBm
High Gain	T FIGE	-11	-9.6	_	UDIII
Noise Figure					
High Gain	NF		1.46	1.75	dB
Bypass			4.9	5.9	
Current Draw					
High Gain	lcc		4.8	5.8	mA
Bypass			4	20	μΑ
Rbias R1 Value	_		1.2		kΩ

Table 8. Typical 2140 MHz Evaluation Board Performance (continued)

 $(Vcc = 2.75V, Ta = 25^{\circ}C)$

Characteristic	Symbol	Min	Тур	Max	Unit				
Input Return Loss									
High Gain	S11	_	-10.5	-7	dB				
Bypass		_	-13.5	-10	1				
Gain			•						
High Gain	S21	16.5	17.6	_	dB				
Bypass		-5.7	-4.7	_					
Reverse Isolation									
High Gain	S12	_	-24.7	-23.7	dB				
Bypass		_	-4.5	-4					
Output Return Loss			•	•					
High Gain	S22	_	-11	-8	dB				
Bypass		_	-20.8	-10					
R1=1.5 KΩ (Refer to Figure 9)									
Frequency	f	_	2140	_	MHz				
RF Gain			ı	ı	dB				
High Gain	G	16.4	17.4	_					
Bypass		-5.8	-4.8	_					
Output Third Order Intercept Point									
High Gain	OIP3	16	18	_	dBm				
Bypass		19.5	21	_	=				
Input Third Order Intercept Point			ı	ı					
High Gain	IIP3	-2	0.9	_	dBm				
Bypass		24.7	25.7	_	1				
Out Ref P1dB	DAAD		•		al Date				
High Gain	P1dB	7	8	_	- dBm				
In Ref P1dB	DAAD		•		al Date				
High Gain	P1dB	-10.3	-9.3	_	- dBm				
Noise Figure			•						
High Gain	NF	_	1.46	1.75	dB				
Bypass		_	4.7	5.3	1				
Current Draw									
High Gain	Icc	_	3.8	4.8	mA				
Bypass		_	4	20	μА				
Rbias R1 Value	_	_	1.5	_	kΩ				
Input Return Loss			1	ı	1				
High Gain	S11	_	-9.6	-8	dB				
Bypass		_	-13	-9	1				

MC13851 Advance Information, Rev. 2.0

dΒ

Characteristic	Symbol	Min	Тур	Max	Unit
Gain					
High Gain	S21	16.5	17.4	_	dB
Bypass		-5.4	-4.7	_	
Reverse Isolation					
High Gain	S12	_	-24	21.6	dB
Bypass		_	-4.6	4.1	
Output Return Loss					
			1	1	1

S22

-10.6

-21

-8

-10

Table 8. Typical 2140 MHz Evaluation Board Performance (continued) $(Vcc = 2.75V, Ta = 25^{\circ}C)$

3.4 2400 MHz Application

High Gain

Bypass

This application was designed to provide NF =1.5 dB, S21 gain > 16 dB, OIP3 of 17.5 dBm with return losses better than -9 dB at 2400 MHz. Typical performance that can be expected from this circuit at 2.7V is listed in Table 9. Two values of bias resistor R1 are shown to demonstrate performance for different IP3 and Icc requirements. Resistor R3 is used to de-Q output inductor L2 and adjust gain and return losses. Lowering the value of R3 lowers gain and improves return losses.

Figure 9 is the 2400 MHz application schematic with package pinouts and the circuit component topology.

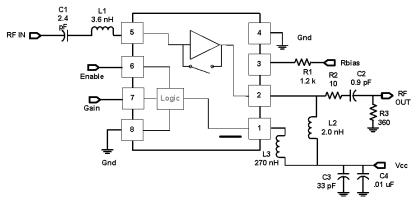


Figure 10. 2400 MHz Application Schematic

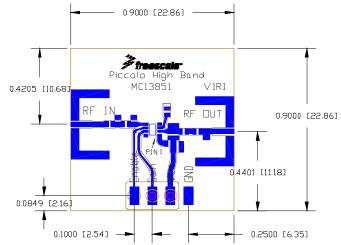
Application Information

Table 9 shows the electrical characteristics for the 2400 MHz evaluation board.

Table 9. Typical 2400 MHz Evaluation Board Performance

 $(Vcc = 2.75V, Ta = 25^{\circ}C)$

Characteristic	Symbol	Min	Тур	Max	Unit			
R1=1.2 KΩ (Refer to Figure 10)								
Frequency	f		2400		MHz			
RF Gain			ı					
High Gain	G	15	16	_	dB			
Bypass		-5.5	-5	_	1			
Output Third Order Intercept Point								
High Gain	OIP3	16	17.5	_	dBm			
Bypass		18.5	20	_	1			
Input Third Order Intercept Point								
High Gain	IIP3	-0.2	1.3	_	dBm			
Bypass		24	25.3	_	1			
Out Ref P1dB	Dado		•		alD:			
High Gain	P1dB	7	8.1	_	dBm			
In Ref P1dB								
High Gain	P1dB	-9	-8	_	dBm			
Noise Figure								
High Gain	NF	_	1.51	1.8	dB			
Bypass		_	5.2	5.8				
Current Draw								
High Gain	Icc	_	4.8	5.8	mA			
Bypass		_	4	20	μΑ			
Rbias R1 Value	_	_	1.2	_	kΩ			
Input Return Loss								
High Gain	S11	_	-12.5	-9	dB			
Bypass		_	-14	-10				
Gain								
High Gain	S21	14.7	15.7	_	dB			
Bypass		-5.4	-5	_				
Reverse Isolation			•					
High Gain	S12	_	-23.6	-22.6	dB			
Bypass		_	-5.5	-4.5				
Output Return Loss								
High Gain	S22	_	-12	-9	dB			
Bypass		_	-22.5	-20				


Table 9. Typical 2400 MHz Evaluation Board Performance (continued)

 $(Vcc = 2.75V, Ta = 25^{\circ}C)$

Characteristic	Symbol	Min	Тур	Max	Unit		
R1=1.5 KΩ (Refer to Figure 10)							
Frequency	f	_	2400	_	MHz		
RF Gain							
High Gain	G	14.9	15.9	_	dB		
Bypass		-6	-5	_			
Output Third Order Intercept Point							
High Gain	OIP3	16	18	_	dBm		
Bypass		19.2	20.4	_			
Input Third Order Intercept Point							
High Gain	IIP3	-0.2	2	_	dBm		
Bypass		24.3	25.3	_			
Out Ref P1dB	P1dB		•	•	dBm		
High Gain	Flub	7	7.9	_	UDIII		
In Ref P1dB P1dB							
High Gain	Flub	-8.8	-7.8	_	- dBm		
Noise Figure							
High Gain	NF	_	1.52	1.8	dB		
Bypass		_	5.2	6			
Current Draw							
High Gain	Icc	_	3.8	4.8	mA		
Bypass		_	4	20	μΑ		
Rbias R1 Value	_	_	1.5	_	kΩ		
Input Return Loss							
High Gain	S11	_	-10.7	-9	dB		
Bypass		_	-14.5	-12			
Gain							
High Gain	S21	14.4	15.4	_	dB		
Bypass		-6	-5.1	_			
Reverse Isolation							
High Gain	S12	_	-23.3	-22	dB		
Bypass		_	-5.5	-4.5			
Output Return Loss							
High Gain	S22	_	-11.3	-8.5	dB		
Bypass		_	-21.9	-15			

4 Printed Circuit and Bill of Materials

Figure 11 is the drawing of the printed circuit board. Figure 13 is the drawing of the evaluation board used for each of the application frequency designs described in Section 3, "Application Information." These drawings show the boards with the circuit matching components placed and identified.

Note: Dimensions are in inches and [mm].

Soldering Note: The center flag under the part must be soldered to board.

Figure 11. Printed Circuit Board

Figure 11 is a picture of a typical assembled evaluation board similar to the ones in the evaluation kits.

Figure 12. Typical Assembled Evaluation Board with SMA Connectors

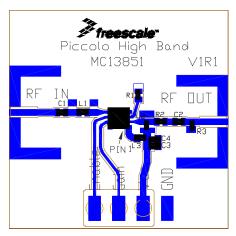


Figure 13. 1575-, 1960-, 2140-, 2400 MHz Application Board

The bill of materials for each of the application frequency circuit boards is listed in Table 10. The value, case size, manufacturer and circuit function of each component are shown.

Table 10. Bill of Materials for the Application Circuit Boards

Component	Value	Case	Manufacturer	Comments						
1575 MHz Ap	1575 MHz Application Circuit (see Figure 7)									
C1	22 pF	402	Murata	DC block, input match						
C2	1 pF	402	Murata	DC block, output match						
C3	33 pF	402	Murata	RF bypass						
C4	0.1 μF	402	Murata	Low frequency bypass						
L1	4.7 nH	402	Murata	Input match						
L2	5.1 nH	402	Murata	Output match, bias decouple						
L3	270 nH	402	Murata	Bias couple to logic						
R1	1.2 kΩ	402	KOA	Bias set point						
R2	10 Ω	402	KOA	Stability						
R3	150 Ω	402	KOA	L2 de-Q, gain adjust						
1900 MHz Ap	plication C	ircuit (see l	Figure 8)							
C1	2.4pF	402	Murata	Input match						
C2	0.9 pF	402	Murata	Output match						
C3	33 pF	402	Murata	RF bypass						
C4	.01 μF	805	Murata	Low frequency bypass						
L1	5.1 nH	402	Murata	Input match						
L2	3.3 nH	402	Murata	Output match						
L3	270 nH	402	Murata	Bias couple to logic						
R1	1.2 kΩ	402	KOA	LNA bias						
R2	15 Ω	402	KOA	Stability						
R3	620	402	KOA	De-Q L2, adjust gain, RLs						

Table 10. Bill of Materials for the Application Circuit Boards (continued)

Component	Value	Case	Manufacturer	Comments
2140 MHz Ap	plication Ci	rcuit (see	igure 9)	
C1	2.4pF	402	Murata	Input match
C2	0.9 pF	402	Murata	Output match
C3	33 pF	402	Murata	RF bypass
C4	.01 μF	805	Murata	Low frequency bypass
L1	4.7 nH	402	Murata	Input match
L2	2.7	402	Murata	Output match
L3	270 nH	402	Murata	Bias couple to logic
R1	1.2 kΩ	402	KOA	LNA bias
R2	10 Ω	402	KOA	Stability
R3	620	402	KOA	De-Q L2, adjust gain, RLs
2400 MHz Ap	plication Ci	rcuit (see	igure 10)	
C1	2.4pF	402	Murata	Input match
C2	0.9 pF	402	Murata	Output match
C3	33 pF	402	Murata	RF bypass
C4	.01 μF	805	Murata	Low frequency bypass
L1	3.6 nH	402	Murata	Input match
L2	2	402	Murata	Output match
L3	270 nH	402	Murata	Bias couple to logic
R1	1.2 kΩ	402	KOA	LNA bias
R2	10 Ω	402	KOA	Stability
R3	620	402	KOA	De-Q L2, adjust gain, RLs

5 Scattering and Noise Parameters

Table 11 through Table 14 list the S parameters for the packaged part in a 50 Ω system for each of the modes of operation and for two values of the external bias resistor.

Table 11. Scattering Parameters, Active Mode, Rbias=1.2k Ω (Vcc = 2.75V, 25°C, 50 Ω system)

f (MU=)	S11		S21		S12		S22	
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1000	0.712	-19.7	10.508	145.3	0.027	94.1	0.913	9.6
1050	0.696	-20.3	10.318	144.3	0.029	94.3	0.904	10.0
1100	0.679	-21.2	10.132	143.1	0.030	94.8	0.896	10.5
1150	0.663	-21.7	9.947	142.2	0.031	94.8	0.886	10.7
1200	0.651	-21.9	9.742	141.0	0.033	95.1	0.875	10.8
1250	0.634	-22.2	9.552	140.2	0.034	95.6	0.870	11.0
1300	0.619	-22.4	9.413	139.3	0.035	96.4	0.861	11.2

MC13851 Advance Information, Rev. 2.0

Table 11. Scattering Parameters, Active Mode, Rbias=1.2kΩ (continued)

(Vcc = 2.75V, 25°C, 50 Ω system)

£ (NALI_)	S1	11	S	21	S1	2	S22	
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1350	0.607	-22.9	9.242	138.3	0.036	97.3	0.854	11.5
1400	0.597	-23.3	9.069	138.0	0.038	98.5	0.851	11.6
1450	0.587	-23.6	8.977	137.0	0.040	99.3	0.847	11.4
1500	0.576	-23.9	8.813	136.2	0.042	100.3	0.845	11.1
1550	0.571	-24.4	8.806	135.9	0.044	101.5	0.846	10.2
1600	0.571	-26.2	8.693	134.7	0.049	100.1	0.840	8.2
1650	0.556	-28.2	8.583	133.0	0.050	97.4	0.802	7.2
1700	0.538	-29.7	8.420	131.8	0.051	96.5	0.779	7.4
1750	0.519	-31.3	8.284	130.8	0.052	96.4	0.764	7.2
1800	0.505	-33.5	8.129	129.5	0.054	96.1	0.751	6.8
1850	0.486	-35.7	8.009	128.3	0.057	95.2	0.737	5.6
1900	0.448	-37.5	7.735	126.4	0.058	91.7	0.700	5.2
1950	0.435	-37.8	7.564	126.2	0.058	92.2	0.688	5.5
2000	0.415	-41.7	7.421	124.4	0.061	90.4	0.662	4.1
2050	0.376	-45.4	7.155	122.5	0.063	86.6	0.618	3.7
2100	0.313	-44.8	6.708	121.6	0.059	80.1	0.569	6.2
2150	0.28	-37.0	6.321	121.8	0.052	79.7	0.541	11.7
2200	0.251	-29.5	5.956	125.2	0.044	78.1	0.561	18.1
2250	0.309	-16.2	6.073	130.1	0.037	100.5	0.648	20.3
2300	0.367	-24.7	6.554	129.3	0.050	110.1	0.694	14.8
2350	0.364	-30.5	6.756	126.9	0.058	108.1	0.678	9.3
2400	0.351	-35.0	6.542	124.4	0.062	104.0	0.648	8.3
2450	0.338	-37.9	6.459	122.8	0.065	102.4	0.627	7.8
2500	0.323	-40.5	6.304	121.6	0.066	100.3	0.613	8.1
2550	0.319	-41.4	6.168	120.6	0.067	100.7	0.608	8.1
2600	0.308	-43.6	6.047	119.6	0.068	99.4	0.606	7.1

Table 12. Scattering Parameters, Active Mode, Rbias=1.5k Ω

(Vcc = 2.75V, 25°C, 50 Ω system)

£ (NALI_)	S11		S	S21 S1		12	S22	
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1000	0.754	-17.9	9.171	150.9	0.028	94.9	0.941	10.7
1050	0.739	-18.6	9.055	149.8	0.029	95.2	0.933	11.1
1100	0.721	-19.4	8.902	148.7	0.031	95.0	0.927	11.7
1150	0.709	-19.9	8.774	147.9	0.032	95.4	0.918	11.8
1200	0.698	-20.3	8.629	146.8	0.033	95.6	0.910	12.0
1250	0.682	-20.6	8.517	146.2	0.035	96.3	0.907	12.2

MC13851 Advance Information, Rev. 2.0

Table 12. Scattering Parameters, Active Mode, Rbias=1.5k Ω (continued) (Vcc = 2.75V, 25°C, 50 Ω system)

£ (BALL-)	S1	1	S2	21	S1	2	S22	
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1300	0.667	-21.2	8.444	145.1	0.036	96.3	0.897	12.2
1350	0.654	-21.9	8.318	144.0	0.037	96.4	0.888	12.4
1400	0.640	-22.5	8.150	143.8	0.039	97.1	0.884	12.6
1450	0.625	-22.8	8.093	142.6	0.040	97.3	0.876	12.6
1500	0.611	-23.0	7.908	141.9	0.041	97.6	0.871	12.6
1550	0.595	-23.1	7.910	141.3	0.043	98.2	0.863	12.2
1600	0.591	-23.1	7.668	140.8	0.044	98.5	0.861	11.8
1650	0.586	-24.0	7.619	139.9	0.046	99.0	0.841	11.5
1700	0.577	-25.1	7.505	139.2	0.048	99.0	0.829	11.8
1750	0.560	-26.7	7.410	138.5	0.049	99.1	0.821	11.9
1800	0.548	-28.0	7.283	137.6	0.050	99.4	0.813	11.7
1850	0.528	-28.8	7.154	136.9	0.052	99.6	0.807	11.5
1900	0.513	-28.8	7.006	136.3	0.053	98.7	0.794	11.4
1950	0.509	-29.0	6.929	136.3	0.054	99.8	0.789	11.5
2000	0.500	-31.2	6.861	135.6	0.056	100.1	0.781	11.1
2050	0.489	-32.4	6.832	134.8	0.058	101.1	0.773	10.7
2100	0.475	-33.9	6.707	134.5	0.060	100.5	0.770	10.2
2150	0.467	-34.2	6.660	133.1	0.062	101.1	0.750	9.6
2200	0.454	-37.8	6.588	133.3	0.063	99.6	0.745	9.2
2250	0.436	-39.4	6.538	132.1	0.065	100.1	0.730	8.6
2300	0.409	-41.7	6.508	130.5	0.066	98.0	0.714	8.4
2350	0.390	-40.9	6.467	129.7	0.067	98.2	0.693	7.3
2400	0.378	-41.5	6.181	128.3	0.067	97.2	0.671	8.6
2450	0.369	-42.2	6.079	127.5	0.068	97.5	0.659	9.7
2500	0.359	-43.2	5.945	126.8	0.068	97.6	0.651	10.7
2550	0.356	-44.0	5.825	126.3	0.069	97.8	0.652	11.4
2600	0.348	-44.7	5.680	125.7	0.069	98.1	0.652	11.9

Table 13. Scattering Parameters, Bypass Mode, Rbias=1.2k Ω and 1.5k Ω (Vcc = 2.75V, 25°C, 50 Ω system)

f (MHz)	S11		S	S21 S		12 S2		22
i (WiFiZ)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1000	0.356	-25.9	0.658	25.8	0.646	25.2	0.402	-12.4
1050	0.340	-24.6	0.663	24.9	0.651	24.3	0.387	-11.3
1100	0.327	-23.0	0.667	24.0	0.655	23.5	0.373	-9.9
1150	0.312	-21.4	0.671	23.3	0.659	22.7	0.359	-8.2
1200	0.298	-20.3	0.674	22.6	0.662	22.0	0.347	-6.5

MC13851 Advance Information, Rev. 2.0

Table 13. Scattering Parameters, Bypass Mode, Rbias=1.2k Ω and 1.5k Ω (continued) (Vcc = 2.75V, 25°C, 50 Ω system)

	S1	11	S	21	S1	2	S2	22
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1250	0.288	-18.7	0.677	21.8	0.665	21.4	0.336	-4.7
1300	0.275	-16.7	0.678	21.2	0.667	20.7	0.326	-3.4
1350	0.263	-14.8	0.679	20.6	0.668	20.1	0.318	-1.9
1400	0.253	-12.6	0.678	20.0	0.667	19.6	0.311	-0.7
1450	0.248	-10.0	0.675	19.9	0.664	19.5	0.306	-0.3
1500	0.250	-9.6	0.680	20.0	0.669	19.6	0.289	0.9
1550	0.244	-10.4	0.687	19.5	0.676	19.1	0.279	2.1
1600	0.235	-10.0	0.689	18.9	0.678	18.5	0.272	3.7
1650	0.226	-10.2	0.690	18.5	0.680	18.0	0.267	4.9
1700	0.220	-9.5	0.690	17.8	0.680	17.3	0.260	6.3
1750	0.211	-8.5	0.689	17.4	0.679	17.0	0.253	6.9
1800	0.197	-6.2	0.685	16.9	0.675	16.4	0.245	6.8
1850	0.199	-1.7	0.682	17.3	0.673	16.9	0.235	7.3
1900	0.202	-3.2	0.688	17.0	0.679	16.6	0.229	8.5
1950	0.194	-5.0	0.688	16.5	0.678	16.1	0.223	9.4
2000	0.186	-4.4	0.687	16.1	0.677	15.8	0.213	8.4
2050	0.182	-3.6	0.682	16.2	0.673	15.8	0.204	8.1
2100	0.180	-4.2	0.686	16.3	0.676	15.9	0.198	9.5
2150	0.185	-4.3	0.689	16.2	0.680	15.9	0.192	11.2
2200	0.185	-5.5	0.695	15.7	0.685	15.4	0.186	10.4
2250	0.187	-8.3	0.695	15.2	0.685	14.9	0.185	9.3
2300	0.186	-10.1	0.697	14.6	0.688	14.3	0.178	7.5
2350	0.185	-12.0	0.694	14.2	0.685	13.8	0.173	7.0
2400	0.181	-14.1	0.696	13.7	0.686	13.4	0.168	4.1
2450	0.178	-16.8	0.695	13.1	0.681	12.5	0.159	2.0
2500	0.177	-19.8	0.694	12.5	0.680	11.9	0.155	-1.7
2550	0.174	-23.6	0.691	11.8	0.677	11.2	0.150	-5.6
2600	0.171	-27.4	0.686	11.2	0.673	10.6	0.143	-9.1

Table 14. Scattering Parameters, Standby Mode, Rbias=1.2k Ω and 1.5k Ω (Vcc = 2.75V, 25°C, 50 Ω system)

\$1		11	S21		S12		S22	
f (MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1000	0.939	2.1	0.031	104.0	0.031	103.1	0.991	12.9
1050	0.935	2.2	0.033	104.4	0.033	103.8	0.990	13.3
1100	0.934	2.5	0.035	104.8	0.034	104.2	0.988	13.5
1150	0.931	2.7	0.037	105.2	0.036	104.4	0.986	14.0

MC13851 Advance Information, Rev. 2.0

Table 14. Scattering Parameters, Standby Mode, Rbias=1.2k Ω and 1.5k Ω (continued) (Vcc = 2.75V, 25°C, 50 Ω system)

f (MHz)	Mag							
		Ang	Mag	Ang	Mag	Ang	Mag	Ang
1200	0.926	2.7	0.039	105.4	0.038	104.7	0.985	14.5
1250	0.924	2.6	0.041	105.8	0.040	105.2	0.982	15.0
1300	0.920	2.8	0.043	105.8	0.042	105.3	0.978	15.0
1350	0.914	2.9	0.045	106.1	0.044	105.5	0.977	15.2
1400	0.906	2.9	0.047	106.4	0.046	105.9	0.974	15.5
1450	0.896	3.3	0.048	106.9	0.048	106.2	0.973	15.7
1500	0.901	3.7	0.051	108.4	0.050	107.8	0.969	16.0
1550	0.907	3.3	0.054	108.6	0.053	107.9	0.965	15.9
1600	0.904	2.9	0.056	108.4	0.056	108.0	0.964	15.9
1650	0.900	2.4	0.059	108.8	0.058	108.3	0.959	16.1
1700	0.896	1.7	0.061	109.2	0.061	108.6	0.957	16.2
1750	0.886	1.3	0.064	109.7	0.063	109.2	0.954	16.1
1800	0.871	1.1	0.068	111.0	0.067	110.4	0.948	15.7
1850	0.859	2.3	0.074	109.8	0.073	109.4	0.946	15.7
1900	0.871	2.1	0.075	108.1	0.074	107.5	0.941	15.4
1950	0.866	1.0	0.078	109.2	0.076	108.7	0.935	15.3
2000	0.855	0.4	0.081	109.1	0.080	108.9	0.929	15.0
2050	0.843	0.5	0.086	110.1	0.085	109.8	0.923	14.3
2100	0.844	0.3	0.093	108.8	0.092	108.4	0.920	14.2
2150	0.848	-0.2	0.100	106.5	0.099	106.0	0.916	14.0
2200	0.853	-0.9	0.103	103.2	0.101	102.8	0.911	13.2
2250	0.853	-2.1	0.105	101.6	0.104	101.0	0.907	12.4
2300	0.850	-3.1	0.106	99.8	0.105	99.4	0.901	11.6
2350	0.844	-3.9	0.110	99.2	0.109	98.7	0.891	10.8
2400	0.838	-5.1	0.113	97.0	0.111	96.4	0.887	9.9
2450	0.829	-6.5	0.116	96.2	0.114	95.2	0.877	8.9
2500	0.820	-7.9	0.119	93.5	0.117	92.6	0.867	7.6
2550	0.807	-9.4	0.122	91.3	0.120	90.6	0.858	6.1
2600	0.791	-11.2	0.125	88.1	0.122	87.4	0.840	4.9

Table 15 provides the active mode noise parameters when the bias resistor is 1.2 k Ω

Table 15. Active Mode Noise Parameters, Rbias=1.2k Ω

(Vcc = 2.75V, 25 0C, 50 Ω system, lcc=4.6 mA)

Freq	Fmin	Gamm	na Opt	Rn	Ga
(MHz)	(dB)	Mag	Angle	NII	(dB)
1000	0.91	0.329	-8.8	14.0	27.42
1200	0.92	7.000	-7.3	13.5	25.09

MC13851 Advance Information, Rev. 2.0

Table 15. Active Mode Noise Parameters, Rbias=1.2kΩ (continued)

(Vcc = 2.75V, 25 0C, 50 Ω system, Icc=4.6 mA)

Freq	Fmin	Rn		- Pn	Ga	
(MHz)	(dB)	Mag	Angle	NII	(dB)	
1500	0.96	0.279	-12.3	12.5	22.83	
1700	0.99	0.244	-17.2	12	21.43	
1900	1.02	0.206	-20.8	11.5	20.15	
2000	1.04	0.186	-21.5	11.5	19.57	
2100	1.06	0.167	-20.9	11.0	19.04	
2400	1.13	0.114	-9.6	11.0	17.74	
2500	1.15	0.100	-1.6	10.5	17.43	
2600	1.18	0.087	8.8	10.5	17.18	

Table 16 provides the active mode noise parameters when the bias resistor is 1.5 k Ω

Table 16. Active Mode Noise Parameters, Rbias=1.5k Ω (Vcc = 2.75V, 25°C, 50 Ω system, Icc=3.3 mA)

Freq	Fmin	Gamm	na Opt	Rn	Ga
(MHz)	(dB)	Mag	Angle	KII	(dB)
1000	0.92	0.358	-8.3	14.5	26.42
1200	0.93	0.344	-8.7	14.0	24.84
1500	0.97	0.306	-12.5	13.5	22.78
1700	1.00	0.273	-15.2	13.0	21.59
1900	1.04	0.237	-16.6	12.0	20.53
2000	1.06	0.218	-16.4	12.0	20.03
2100	1.08	0.199	-15.4	12.0	19.57
2400	1.16	0.143	-5.5	11.5	18.30
2500	1.19	0.127	0.6	11.5	17.91
2600	1.23	0.111	8.3	11.5	17.53

Scattering and Noise Parameters

Figure 14 through Figure 21 are the constant noise figure and gain circles with input and output stability regions shown on Smith charts. Gamma opt, noise resistance and stability at the frequency are shown for two values of the external bias resistor at 1600-, 1950-, 2150- and 2400 MHz.

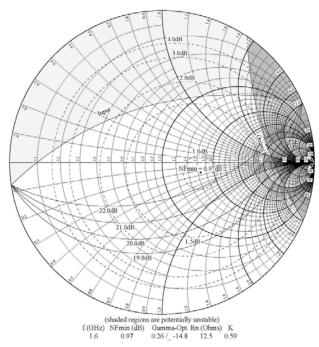


Figure 14. Constant Noise Figure and Gain Circles, 1600 MHz, Rbias=1.2 kΩ

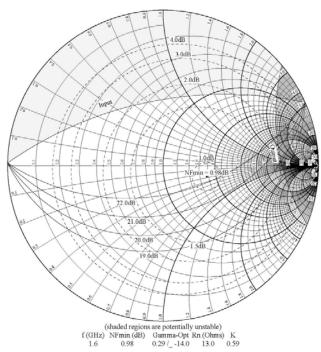


Figure 15. Constant Noise Figure and Gain Circles, 1600 MHz, Rbias=1.5kΩ

MC13851 Advance Information, Rev. 2.0

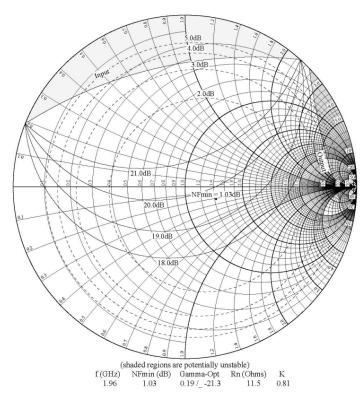


Figure 16. Constant Noise Figure and Gain Circles, 1960 MHz, Rbias=1.2 k Ω

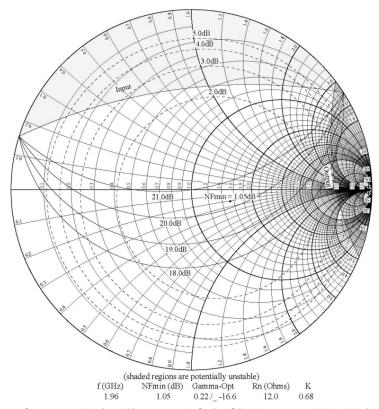


Figure 17. Constant Noise Figure and Gain Circles, 1960 MHz, Rbias=1.5k Ω

MC13851 Advance Information, Rev. 2.0

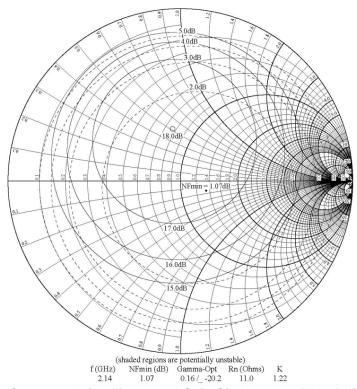


Figure 18. Constant Noise Figure and Gain Circles, 2140 MHz, Rbias=1.2 k Ω

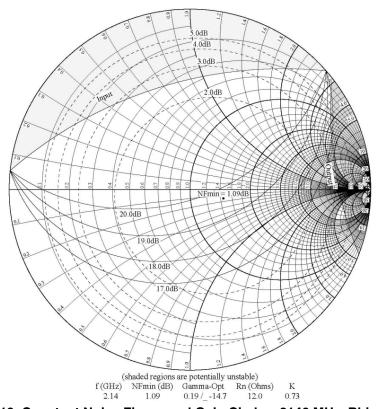


Figure 19. Constant Noise Figure and Gain Circles, 2140 MHz, Rbias=1.5k Ω

MC13851 Advance Information, Rev. 2.0

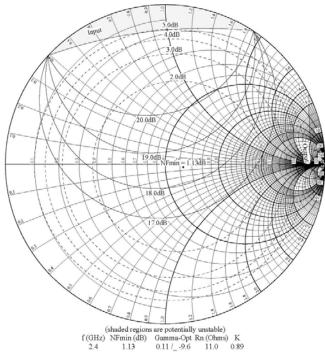


Figure 20. Constant Noise Figure and Gain Circles, 2400 MHz, Rbias=1.2 k Ω

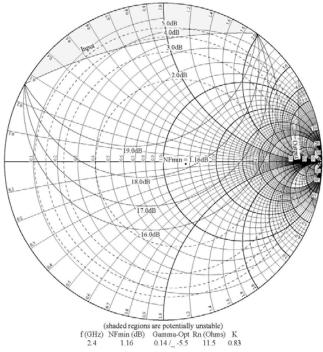


Figure 21. Constant Noise Figure and Gain Circles, 2400 MHz, Rbias=1.5k Ω

MC13851 Advance Information, Rev. 2.0 Freescale Semiconductor 31

6 Packaging

Figure 22 and Figure 22 are the package drawings with dimensions for the MLPD-8, $2 \times 2 \times 0.6$ mm, package.

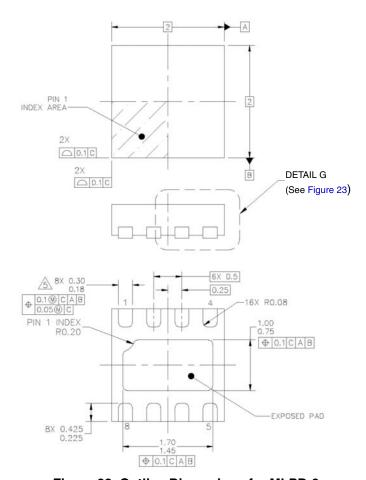


Figure 22. Outline Dimensions for MLPD-8

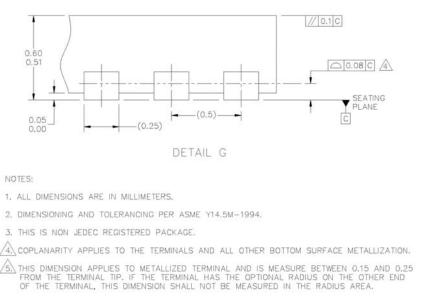


Figure 23. Package Details

7 Product Documentation

This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these types are available at: http://www.freescale.com.

8 Revision History

Table 17 summarizes revisions to this document since the previous release (Rev. 1).

LocationRevisionThroughout documentChanged package from MLF8 to MLPD-8Section 2, "Electrical SpecificationsComplete revisionSection 3, "Application InformationComplete update to Application InformationSection 3.4, "2400 MHz ApplicationNew 2400 MHz content.Section 4, "Printed Circuit and Bill of MaterialsComplete update to MLPD-8 package.Section 5, "Scattering and Noise ParametersAdded section and all content.

Table 17. Revision History

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale $^{\text{TM}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006-2010. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com