2.5 Watt Zener Diode in Flat Lead Package

This complete new line of 2.5 Watt Zener Diodes are offered in highly efficient micro miniature and space saving surface mount design. Because of its small size, it is ideal for use in cellular phones, portable devices, business machines and many other industrial/consumer applications.

Features

- Zener Breakdown Voltage: 6.2 V
- Low Leakage < 5 μA
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- Small Footprint Footprint Area of 8.45 mm²
- Low Profile Maximum Height of 1.0 mm
- Supplied in 8 mm Tape and Reel 3,000 Units per Reel
- Cathode Indicated by Polarity Band
- Lead Orientation in Tape: Cathode Lead to Sprocket Holes
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics:

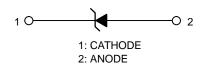
CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94 V-0

LEAD FINISH: 100% Matte Sn (Tin)

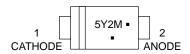
MOUNTING POSITION: Any

QUALIFIED MAX REFLOW TEMPERATURE: $260^{\circ}\mathrm{C}$


Device Meets MSL 1 Requirements

ON Semiconductor®

http://onsemi.com


PLASTIC SURFACE MOUNT 2.5 WATT ZENER DIODE 6.2 VOLTS

SOD-123FL CASE 498

MARKING DIAGRAM

5Y2 = Device Code M = Date Code

= Pb-Free Package

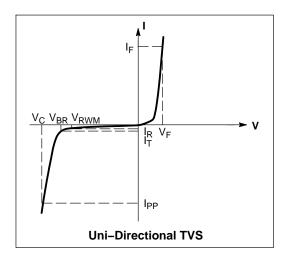
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]		
1SMF5920BT1G	SOD-123FL (Pb-Free)	3000/Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

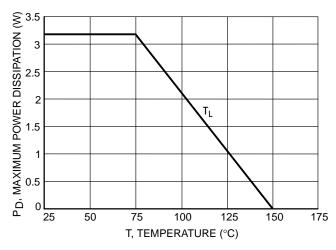

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C (Note 1) Derate above 25°C Thermal Resistance, Junction–to–Ambient	P_{D} $R_{ heta JA}$	350 2.9 350	mW mW/°C °C/W
Thermal Resistance, Junction-to-Lead	$R_{ hetaJL}$	30	°C/W
Maximum DC Power Dissipation (Notes 1 and 2)	P_{D}	2.5	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Mounted with recommended minimum pad size, PC board FR-4.
- 2. At lead temperature 75°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 1.5$ V Max. @ $I_F = 200$ mA for all

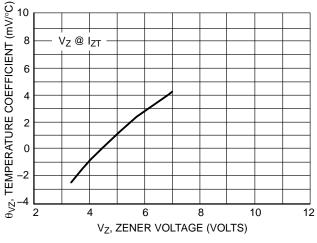
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V_{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
I _F	Forward Current
V _F	Forward Voltage @ I _F


ELECTRICAL CHARACTERISTICS (T_L = 30°C unless otherwise noted, V_F = 1.25 Volts @ 200 mA)

		Zener Voltage (Note 3)						Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK}	
	Device	V _Z @ I _{ZT} (Volts)		I _{ZT}	I _R @ V _R	V_R	(Note 4)	(Note 4)	I _{ZK}	
Device	Marking	Min	Nom	Max	(mA)	(μΑ)	(V)	(Ω)	(Ω)	(mA)
1SMF5920BT1G	5Y2	5.89	6.2	6.51	60.5	5.0	4.0	2.0	200	1.0

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- Zener voltage is measured with the device junction in thermal equilibrium with an ambient temperature of 25°C.
 Zener Impedance Derivation Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for I_Z(ac) = 0.1 I_Z(dc) with the ac frequency = 60 Hz.


TYPICAL CHARACTERISTICS

100 (YEW) 10 0.1 5 6 7 8 9 10 11 Vz, ZENER VOLTAGE (VOLTS)

Figure 1. Steady State Power Derating

Figure 2. V_Z

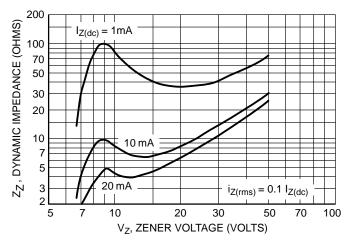
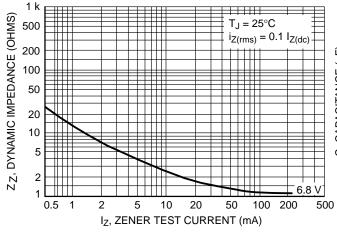
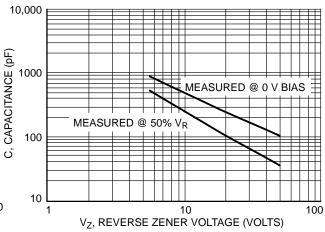
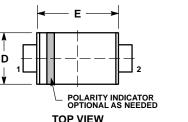
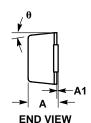
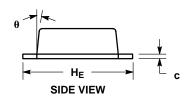



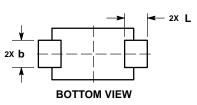
Figure 3. Zener Voltage

Figure 4. Effect of Zener Voltage

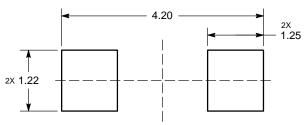




Figure 5. Effect of Zener Current


Figure 6. Capacitance versus Reverse Zener Voltage


PACKAGE DIMENSIONS

SOD-123FL **CASE 498** ISSUE D



- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- DIMENSIONING AND TOLERARCING PER ANSI 114-5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
 DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION
 OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	М	ILLIMETE	RS	INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.90	0.95	0.98	0.035	0.037	0.039		
A1	0.00	0.05	0.10	0.000	0.002	0.004		
b	0.70	0.90	1.10	0.028	0.035	0.043		
С	0.10	0.15	0.20	0.004	0.006	0.008		
D	1.50	1.65	1.80	0.059	0.065	0.071		
E	2.50	2.70	2.90	0.098	0.106	0.114		
L	0.55	0.75	0.95	0.022	0.030	0.037		
HE	3.40	3.60	3.80	0.134	0.142	0.150		
θ	0°	-	8°	0°	-	8°		

RECOMMENDED SOLDERING FOOTPRINT'

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com