

General Description

The MAX9979 evaluation kit (EV kit) is a fully assembled and tested PCB that evaluates the MAX9979 dual PEIC with PMU. The EV kit includes SMA connections for the high-speed digital I/Os and the MAX9979 pin driver outputs. The MAX9979 EV kit is connected to the computer through the universal serial bus (USB) port. The EV kit also includes Windows® 2000/XP/Vista®-compatible software that provides a simple graphical user interface (GUI) for exercising the features of the MAX9979.

Features

- ♦ Up to 1Gbps Dual-Pin PEIC
- ♦ Internal Level-Setting DACs
- ♦ Internal PMU with Remote Sense
- **♦** Heatsink Included for Safe Operation
- ♦ Windows 2000/XP- and Windows Vista (32-Bit) - Compatible
- **♦ USB-PC Connection (Cable Included)**
- **♦ Lead(Pb)-Free and RoHS Compliant**
- ♦ Proven PCB Layout
- ♦ Fully Assembled and Tested

Ordering Information

PART	TYPE
MAX9979EVKIT+	EV Kit

⁺Denotes lead(Pb)-free and RoHS compliant.

Windows and Windows Vista are registered trademarks of Microsoft Corp.

Component List

DESIGNATION	QTY	DESCRIPTION
C1–C7, C9–C14, C16, C17, C18	16	10nF ±10%, 25V X7R ceramic capacitors (0402) Murata GRM155R71E103K
C19	1	10μF ±10%, 25V X5R ceramic capacitor (1206) Murata GRM31CR61E106K
C20, C23, C24, C27, C28, C30, C31	7	0.1µF ±10%, 25V X7R ceramic capacitors (0603) Murata GRM188R71E104K
C21, C22, C25, C26, C29	5	1μF ±10%, 25V X7R ceramic capacitors (0805) Murata GRM21BR71E105K
C43, C54, C56	3	10μF ±20%, 16V X5R ceramic capacitors (1206) Murata GRM31CR61C106M
C44, C45	2	22pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H220J
C46	1	0.033µF ±10%, 16V X5R ceramic capacitor (0603) Taiyo Yuden EMK107BJ333KA
C47–C52, C59, C60	8	0.1µF ±10%, 16V X7R ceramic capacitors (0603) Murata GRM188R71C104K
C53, C55, C61–C72		1μF ±10%, 16V X5R ceramic capacitors (0603) Murata GRM188R61C105K

DESIGNATION	QTY	DESCRIPTION
C57, C58	2	10pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H100J
D1	1	Red LED (0603) Panasonic LNJ208RARA
J1–J18	18	SMA connectors
J19, J20	2	75Ω BNC female jacks
J21	1	Dual-row (2 x 12) 24-pin header
J22, J23, J24	3	Banana jacks, uninsulated panel jacks
J31	1	USB type-B, right-angle PC-mount receptacle
JU1–JU12	12	3-pin headers
JU14–JU22	9	2-pin headers
L1	1	Ferrite bead TDK MMZ1608R301A (0603)
L7, L8	2	10μH ±10%, 340m Ω inductors (1210) Panasonic ELJ-EA100KF
R1	1	100Ω SMT cermet trimmer
R2	1	220Ω ±5% resistor (0603)
R3–R7	5	1kΩ ±5% resistors (0603)
R9	1	0Ω ±5% resistor (0603)
R10, R11	2	27Ω ±5% resistors (0603)
R12	1	1.5kΩ ±5% resistor (0603)

Component List (continued)

DEGIGNIATION	O-T\/	DECODIDETION
DESIGNATION	QTY	DESCRIPTION
R13	1	470Ω ±5% resistor (0603)
R14	1	2.2kΩ ±5% resistor (0603)
R15	1	10kΩ ±5% resistor (0603)
R16	1	169kΩ ±1% resistor (0603)
R17	1	100kΩ ±1% resistor (0603)
R18-R22	0	Not installed, resistors—short (PC trace) (0603)
R23	1	500Ω SMT cermet trimmer
R24, R28, R30	3	243Ω ±1% resistors (0603)
R25	1	147Ω ±1% resistor (0603)
R26	1	301Ω ±1% resistor (0603)
R27	1	475Ω ±1% resistor (0603)
R29	1	301Ω ±1% resistor (0603)
R31	1	1.5kΩ ±1% resistor (0603)
TP1-TP23	23	Test points
U1	1	Dual PEIC with PMU (68 TQFN-EP-IDP*) Maxim MAX9979KCTK+
U2	1	2.5V voltage reference (8 SO) Maxim MAX6126AASA25+
U3	1	LDO regulator (5 SC70) Maxim MAX8511EXK25+T
U4	1	UART-to-USB converter (32 TQFP)

DESIGNATION	QTY	DESCRIPTION
U5	1	93C46 type 3-wire EEPROM 16-bit architecture (8 SO)
U6	1	Microcontroller (68 QFN-EP**) Maxim MAXQ2000-RAX+
U7	1	Adjustable output LDO regulator (5 SC70) Maxim MAX8512EXK+T
U8–U13	6	Level translator (10 µMAX®) Maxim MAX1840EUB+
U14, U15, U16	3	LDOs (TO-263)
Y1	1	16MHz crystal (HCM49) Hong Kong X'tals SSM1600000E18FAF
Y2	1	6MHz crystal (HCM49) Hong Kong X'tals SSL6000000E18FAF
Y3	0	Not installed, crystal
_	1	Heat pad
_	1	Heatsink
_	21	Shunts
_	1	PCB: MAX9979 Evaluation Kit+

^{*}EP-IDP = Exposed pad, inverted die pad.

μΜΑΧ is a registered trademark of Maxim Integrated Products, Inc.

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
Murata Electronics North America, Inc.	770-436-1300	www.murata-northamerica.com
Panasonic Corp.	800-344-2112	www.panasonic.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-803-6100	www.component.tdk.com

Note: Indicate that you are using the MAX9979 when contacting these component suppliers.

MAX9979 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX9979.EXE	Application program
FTD2XX.INF	USB device driver file
UNINST.INI	Uninstalls the EV kit software
USB_Driver_Help.PDF	USB driver installation help file

2 ______/N/XI/N

^{**}EP = Exposed pad.

Quick Start

Required Equipment

Before beginning, the following equipment is needed:

- MAX9979 EV kit (USB cable included)
- A user-supplied Windows 2000/XP- or Windows Vista-compatible PC with a spare USB port
- +17.5V/0.5A DC power supply (VHH)
- -4.75V/0.5A DC power supply (VEE)
- Differential output pulse generator
- High-speed oscilloscope
- Digital multimeter

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system.

Procedure

The MAX9979 EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supplies until all connections are completed.

- Visit www.maxim-ic.com/evkitsoftware to download the latest version of the EV kit software, 9979Rxx.ZIP. Save the EV kit software to a temporary folder and uncompress the ZIP file.
- Install the EV kit software on your computer by running the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows Start I Programs menu.
- 3) Make sure the shunts of all jumpers are in the default positions, as shown in Tables 2 and 3.
- 4) Verify that the heatsink is installed and flush on the top of the MAX9979 IC.
- 5) Verify the correct polarity, voltage, and current limit of all power supplies. Ensure all power supplies are disabled (at 0V).
- 6) Set the differential pulse generator to output ±100mV centered at +1.2V common-mode voltage. Ensure that the outputs are disabled (high impedance). Set the pulse frequency to 20MHz, 50% duty cycle.
- Connect the power supplies to the banana jacks of the MAX9979 EV kit. Connect all power-supply grounds to a single ground terminal.

- 8) Connect the digital multimeter positive input to TP10, and the negative input to ground. Ensure that the multimeter is in DC-voltage measurement mode, either on auto range or a fixed range greater than 5V.
- Connect the differential pulse generator to the DATA0 and NDATA0 SMA connectors on the MAX9979 EV kit with SMA cables of equal length.
- 10) Set the RCV0/NRCV0 to a differential logic-low (i.e., VRCV0 < VNRCV0) to disable the high-impedance output mode.
- 11) Connect the OUTO SMA connector of the MAX9979 EV kit with a short SMA cable to the high-speed oscilloscope. Set the scope input impedance to 50Ω .
- 12) Turn on the power supplies in the following order: VHH, VEE.
- 13) Enable the differential pulse generator.
- 14) Connect the USB cable from the PC to the EV kit board. A <u>New Hardware Found</u> window pops up when installing the USB driver for the first time. If a window that is similar to the one described above is not seen after 30s, remove the USB cable from the board and reconnect it. Administrator privileges are required to install the USB device driver on Windows.
- 15) Follow the directions of the Add New Hardware Wizard to install the USB device driver. Choose the Search for the best driver for your device option. Specify the location of the device driver to be C:\Program Files\MAX9979 (default installation directory) using the Browse button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condition and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.
- 16) Start the MAX9979 EV kit software by opening its icon in the <u>Start I Programs</u> menu. The EV kit software main window appears, as shown in Figure 1.
- 17) Put the EV kit into drive mode by checking the **DriveHi Ch0/Ch1 quickstart** checkbox on the **DCL/Channel 0** tab sheet of the GUI, as shown in Figure 2. This is a quick start option and places both channel 0 and channel 1 into the drive-high mode. In this mode, VDH is set to 3V and VDL to 0V for both channels.

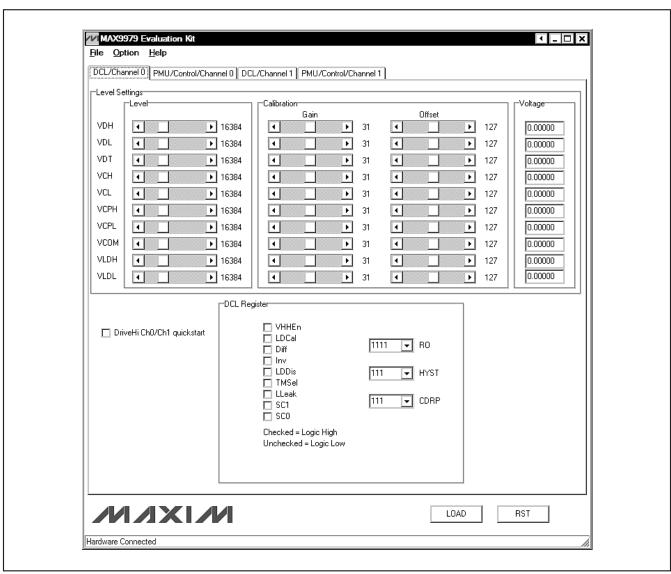


Figure 1. MAX9979 EV Kit Software Main Window (DCL/Channel 0 Tab)

- 18) TP10 monitors the MAX9979 junction temperature. Verify that the multimeter does not read higher than +4.2V (T_J < +150°C).
- 19) Set the oscilloscope to 50Ω input-impedance mode.
- 20) Set the oscilloscope to trigger on the OUTO channel, with the trigger level set to 0.5V. Set the time base to 20ns per division. A 0 to 3V square wave of 20MHz should appear on the oscilloscope.

Detailed Description of Software

User-Interface Panel

The GUI is organized into four tab sheets for all level, register, and control signal settings, plus the **File** menu to save and load all these settings. There are identical DCL and PMU/Control tab sheets for channels 0 and 1, respectively.

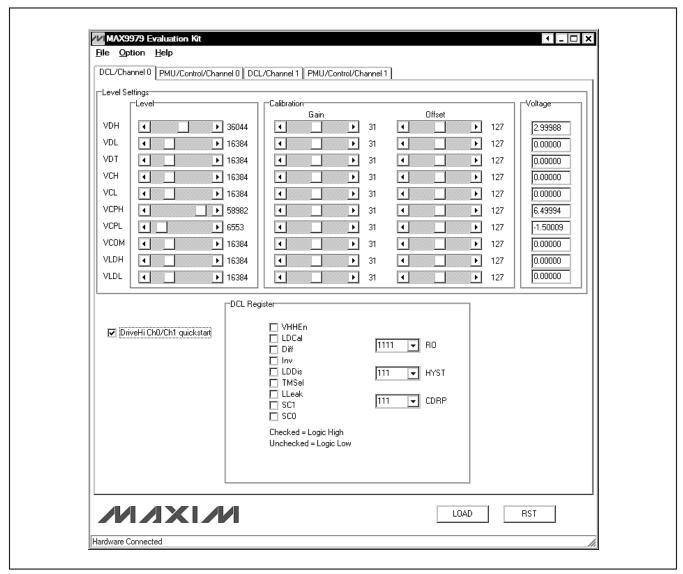


Figure 2. Quickstart Setup—Drive High Mode for Channels 0 and 1

Driver/Comparator/Load (DCL) Settings DCL/Channel 0 and **DCL/Channel 1** tab sheets
(Figures 1 and 3) are identical and are for channels 0 and 1, respectively. These tab sheets contain **Level Settings** and **DCL Register** group boxes.

Level Settings

The **Level Settings** group box contains registers for signal level, calibration, and gain settings for VDH, VDL, VDT, VCH, VCL, VCPH, VCPL, VCOM, VLDH, and VLDL level settings. Each setting is controlled by a

scrollbar with a value label to its right. Finer adjustment can be made by clicking on the arrows on each side of the scrollbar. The scrollbars in the **Level** group box have 65,536 steps corresponding to 16 bits. In the **Calibration** group box, the **Offset** scrollbars have 256 steps corresponding to 8 bits, and the **Gain** scrollbars have 64 steps corresponding to 6 bits. The corresponding voltage levels are also calculated and shown in the edit boxes inside the **Voltage** group box. The value, calibration, and gain selections become effective immediately after an adjustment without having to press

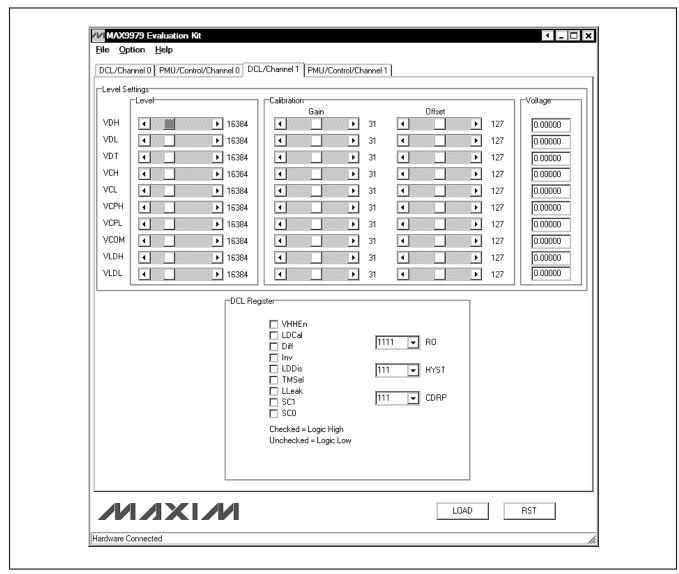


Figure 3. MAX9979 EV Kit Software Main Window (DCL/Channel 1 Tab)

the **LOAD** button. The value can also be typed into the edit boxes inside the **Voltage** group box. Pressing the Enter key loads the values to the device.

DCL Register

The **DCL Register** group box contains nine checkboxes to control the D0–D8 bits of the DCL register. A checked checkbox represents a logic-high and an unchecked checkbox represents a logic-low. Any change in state of the checkbox immediately sends the new bit setting to the device.

Parametric Measurement Unit (PMU) Settings

PMU/Control/Channel 0 and PMU/Control/Channel 1 tab sheets (Figures 4 and 5) are almost identical except that the PMU/Control/Channel 0 tab sheet also contains the PMU Control Signals group box. Both of these tab sheets contain Level Settings and PMU Register group boxes.

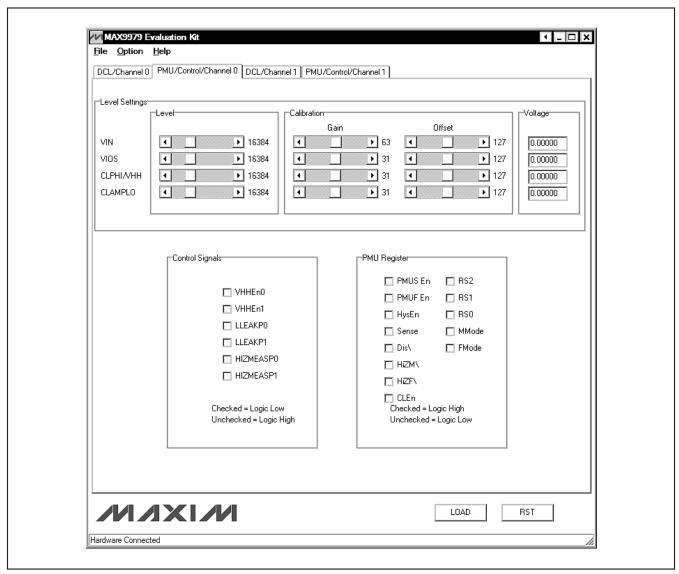


Figure 4. MAX9979 EV Kit Software Main Window (PMU/Control/Channel 0 Tab)

Level Settings

The **Level Settings** group box contains registers for signal level, calibration, and gain settings for VIN, VIOS (channel 0)/IIOS (channel 1), CLPHI/VHH, and CLAMPLO level settings. Each setting is controlled by a scrollbar with a value label to its right. Finer adjustment can be made by clicking on the arrows on each side of the scrollbar. The scrollbars in the **Level** group box have 65,536 steps corresponding to 16 bits. In the **Calibration** group box, the **Offset** scrollbars have 256 steps corresponding to 8 bits, and the **Gain** scrollbars have 64 steps corresponding to 6 bits except for the

VIN. The **Gain** scrollbars for the **VIN** have 128 steps corresponding to 7 bits. Pressing the Enter key loads the values to the device.

PMU Register

The **PMU Register** group box contains 13 checkboxes to control the D0–D12 bits of the PMU register. A checked checkbox represents a logic-high and an unchecked checkbox represents a logic-low. Any change in state of the checkbox immediately sends the new bit setting to the device.

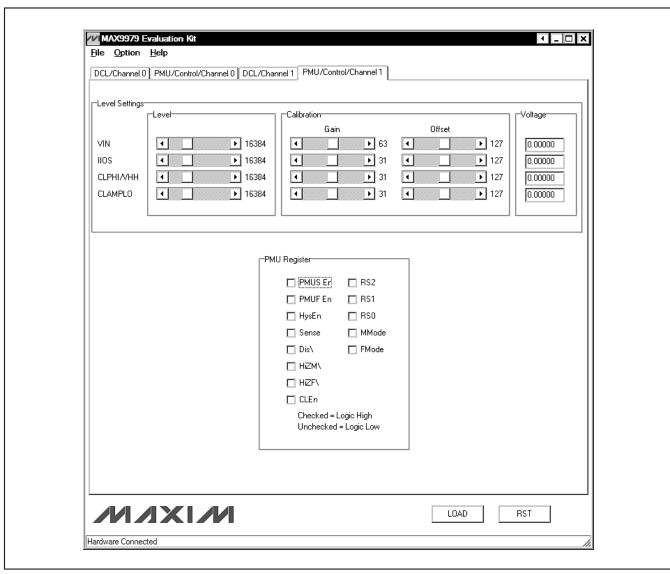


Figure 5. MAX9979 EV Kit Software Main Window (PMU/Control/Channel 1 Tab)

Control Signals

The **Control Signals** group box controls the **VHHEn0**, **VHHEn1**, **LLEAKP0**, **LLEAKP1**, **HIZMEASP0**, and **HIZMEASP1** checkboxes. These signals are activated with a logic-low. Check a checkbox to activate the corresponding bit (logic-low) and uncheck it to deactivate (logic-high). The LOAD and RST signals can be sent by pressing the corresponding **Load** and **RST** buttons. The corresponding pins are logic-low level for 10ms when pressed.

Save/Load Settings

All settings specified by the GUI can be saved to a file by clicking on the **File I Save Setup** menu item located at the front of the menu bar. Settings saved in a file can also be loaded to the GUI and the MAX9979 through the same procedure by clicking on the **File I Load Setup** menu item. Use the save and load feature to save many different setups that can be recalled at future times.

nnection Bit Set/Clear 2-wire interface 3-wire interfac	
Connection K10 Clock (SCK) (SCLK)	Configuration ✓ Send & receive MSB first CPOL=1 (clock idles high) CPHA=1 (sample 2nd edge)
K12 🔻 Data from master to slave (MOSI) (DIN)	MOSI Data Inverted Logic MISO Data Inverted Logic
K11 ▼ Data from slave to master (MISO) (DOUT)	CS is active high, idle low
K9 Chip-select (CS) for data framing	8.0 ▼ × 1 MHz ▼
✓ Use standard connections for high-speed SPI	Get Speed Set Speed
Send and Receive Data Data bytes to be written:	
0x55, 0x4A	
Send Now repeat 1	
Data bytes received:	
?	

Figure 6. Advanced User Interface Window (3-Wire Interface Tab)

Simple Serial Commands

There are two methods for communicating with the MAX9979. The first is through the window shown in Figures 1, 3, 4, and 5. The second is through the **Advanced User Interface** window shown in Figure 6. The **Advanced User Interface** window is available by selecting the **Option I Interface (Advanced User)** menu item and allows execution of serial commands manually.

The **Advanced User Interface** window can also be used as a debug tool because it is capable of manually reading and writing to every register of the MAX9979.

_Detailed Description of Hardware

The MAX9979 evaluation kit (EV kit) is a fully assembled and tested PCB that evaluates the MAX9979 dual PEIC

with PMU. The EV kit includes SMA connections for the high-speed digital I/Os and the MAX9979 pin driver outputs. The MAX9979 EV kit is connected to the computer through the universal serial bus (USB) port.

Power Supplies

Connect the power supplies using the high-current banana jacks, J22 (-4.75V) and J23 (17.5V). Common for all the power supplies should be the GND banana jack on the MAX9979 EV kit. All power supplies should be within the range specified in the MAX9979 IC data sheet. The MAX9979 needs only two supplies to be attached to the board; all other supplies are generated through regulators on the EV kit board.

High-Speed Digital I/Os

The top edge and the bottom edge of the PCB are populated with end-launch SMA connectors, and are the high-speed digital I/Os of the MAX9979. The inputs are terminated internally to the MAX9979 IC. The outputs require termination (nominally 50Ω) at the end of the attached cable.

The board power supply (VTRM) is the voltage used to terminate the comparator outputs on the MAX9979 IC. Setting VTRM to +1.2V makes the high-speed digital I/Os compatible with LVDS levels.

The high-speed digital inputs (DATAO/NDATAO, RCVO/NRCVO, DATA1/NDATA1, and RCV1/NRCV1) are intended for use with a high-speed differential signal source such as LVDS, LVPECL, ECL, etc. If only a single-ended stimulus source is available, a converter consisting of a 1:1 ratio transformer (balun) can be used to produce a differential pair of inputs for DATAO/NDATAO or DATA1/NDATA1. A three-resistor network can be

used to produce a differential logic level for RCV0/NRCV0 or RCV1/NRCV1 inputs.

The high-speed digital outputs (CL0/NCL0, CH0/NCH0, CL1/NCL1, and CH1/NCH1) are intended for use with a high-speed differential logic analyzer. These outputs are internally pulled up to the VTRM voltage through internal 50Ω resistors. These outputs can be double terminated at the measurement source by external 50Ω resistors.

Pin Driver Outputs

The dual-pin driver outputs or DCLP IO pins (DUT0 and DUT1) are through end-launch SMA connectors on the right edge of the PCB. The outputs have a typical output impedance of 50Ω , which can be adjusted by software.

Test Points

There are 23 test points on the EV kit to facilitate performance analysis and circuit modification. The test points are listed in Table 1.

Table 1. Test Points and Their Functions

TEST POINT	SIGNAL	FUNCTION
TP1	MEAS0	PMU analog output for channel 0
TP2	DUTHI0	PMU comparator high output for channel 0
TP3	DUTLO0	PMU comparator low output for channel 0
TP4	REF	Reference for MAX9979, +2.5V nominal
TP5	DGS	Device ground sense
TP6	DUTLO1	PMU comparator low output for channel 1
TP7	DUTHI1	PMU comparator high output for channel 1
TP8	MEAS1	PMU analog output for channel 1
TP9	SENSE0	PMU remote sense for channel 0
TP10	TEMPSNS	MAX9979 die temperature indicator
TP11	SENSE1	PMU remote sense for channel 1
TP12	DOUT	Serial data output
TP13	DIN	Serial data input
TP14	SCLK	Serial clock
TP15	CS	Chip select
TP16	LOAD	Load
TP17	VHHEN0	High-voltage enable, channel 0
TP18	VHHEN1	High-voltage enable, channel 1
TP19	LLEAKP0	Low-leakage enable, channel 0
TP20	LLEAKP1	Low-leakage enable, channel 1
TP21	HIZMEASP0	High-impedance enable, channel 0
TP22	HIZMEASP1	High-impedance enable, channel 1
TP23	RST	Serial reset

Device Ground Sense

The MAX9979 IC has the ability to sense the ground potential at the device under test (DUT). The MAX9979 EV kit is preconfigured to have the device ground sense pin (DGS) connected to the ground plane through a 0Ω resistor (R9). If remote sensing is desired, remove R9 and connect TP5 to the remote DUT ground.

Temperature Sensing

The MAX9979 EV kit provides the means to determine the MAX9979 IC's die temperature through TP10. During operation, TP10 should be continuously monitored to ensure that the junction temperature does not exceed +150°C, which corresponds with +4.2V. During normal operation, a voltage of 3V to 3.6V is typical.

Jumper Settings

Tables 2 and 3 provide a list for jumper settings.

Table 2. Digital Interface Jumper Settings (JU1-JU12)

JUMPER	SHUNT POSITION	DESCRIPTION
JU1	1-2*	Connects the DOUT pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external DOUT signal to the J21-1 pin of the J21 connector
JU2	1-2*	Connects the DIN pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external DIN signal to the J21-3 pin of the J21 connector
JU3	1-2*	Connects the SCLK pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external SCLK signal to the J21-5 pin of the J21 connector
JU4	1-2*	Connects the $\overline{\text{CS}}$ pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external $\overline{\text{CS}}$ signal to the J21-7 pin of the J21 connector
JU5	1-2*	Connects the $\overline{\text{LOAD}}$ pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external TOAD signal to the J21-9 pin of the J21 connector
JU6	1-2*	Connects the VHHENO pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external VHHENO signal to the J21-11 pin of the J21 connector
JU7	1-2*	Connects the VHHEN1 pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external VHHEN1 signal to the J21-13 pin of the J21 connector
JU8	1-2*	Connects the LLEAKPO pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external LLEAKPO signal to the J21-15 pin of the J21 connector

Table 2. Digital Interface Jumper Settings (JU1-JU12) (continued)

JUMPER	SHUNT POSITION	DESCRIPTION
JU9	1-2*	Connects the LLEAKP1 pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external LLEAKP1 signal to the J21-17 pin of the J21 connector
JU10 1-2'	1-2*	Connects the HIZMEASPO pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external HIZMEASPO signal to the J21-19 pin of the J21 connector
JU11	1-2*	Connects the HIZMEASP1 pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external HIZMEASP1 signal to the J21-21 pin of the J21 connector
JU12	1-2*	Connects the RST pin of the MAX9979 to the on-board MAXQ2000 microcontroller through a level translator
	2-3	Connects the external RST signal to the J21-23 pin of the J21 connector

^{*}Default position.

Table 3. Power Supplies Jumper Settings (JU14–JU22)

JUMPER	SHUNT POSITION	DESCRIPTION
11.14.4	1-2*	Connects the ADJ pin of the regulator (U16) to ground
JU14	Open	Disconnects the ADJ pin of the regulator from ground
11.14.5	1-2	Connects the ADJ pin of the regulator (U16) to ground through a 147Ω resistor (R25)
JU15	Open*	Disconnects the ADJ pin of the regulator from R25
11.14.0	1-2	Connects the ADJ pin of the regulator (U16) to ground through a 301Ω resistor (R26)
JU16	Open*	Disconnects the ADJ pin of the regulator from R26
11.14.7	1-2*	Jumper shorted by trace and connects the ADJ pin of the regulator (U16) to ground through a 475Ω resistor
JU17	Open	Jumper shorted by trace and connects the ADJ pin of the regulator (U16) to ground through a 475Ω resistor
11.140	1-2*	Connects VHH to the positive power-supply input jack
JU18	Open	Disconnect VHH from the positive input power supply
JU19	1-2*	Connects VCC to the on-board regulator (U14)
3019	Open	Disconnects VCC from the on-board regulator (U14)
JU20	1-2*	Connects VDD to the on-board regulator (U15)
3020	Open	Disconnects VDD from the on-board regulator (U15)
11.104	1-2*	Connects VTRM to the on-board regulator (U16)
JU21	Open	Disconnects VTRM from the on-board regulator (U16)
JU22	1-2*	Connects VEE to the negative power-supply input jack
3022	Open	Disconnect VEE from the negative input power supply

^{*}Default position.

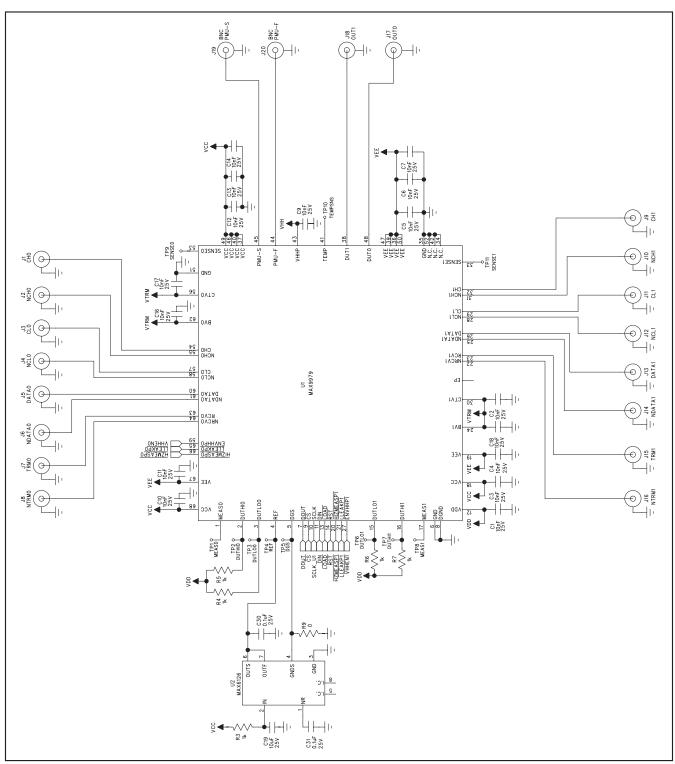


Figure 7a. MAX9979 EV Kit Schematic (Sheet 1 of 4)

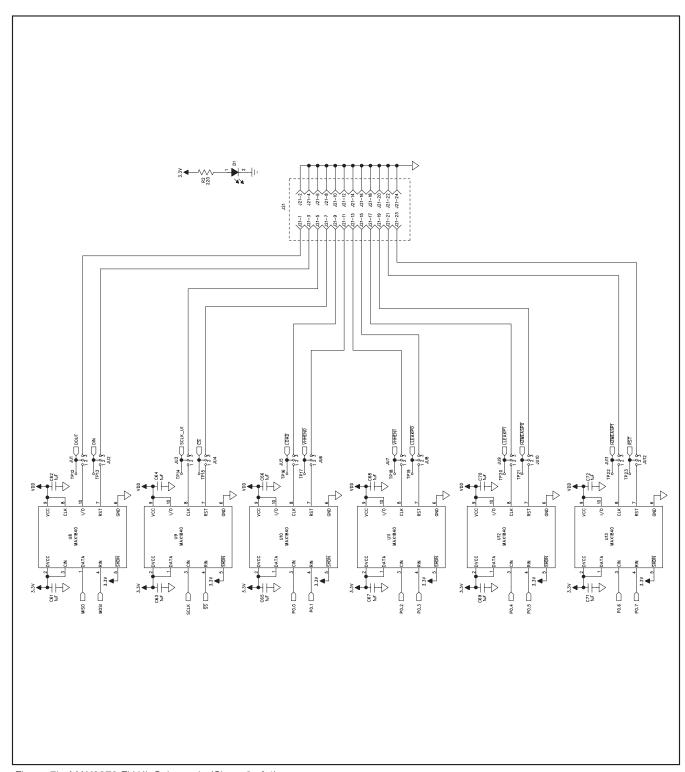


Figure 7b. MAX9979 EV Kit Schematic (Sheet 2 of 4)

14 ______ **/\/\/\/**

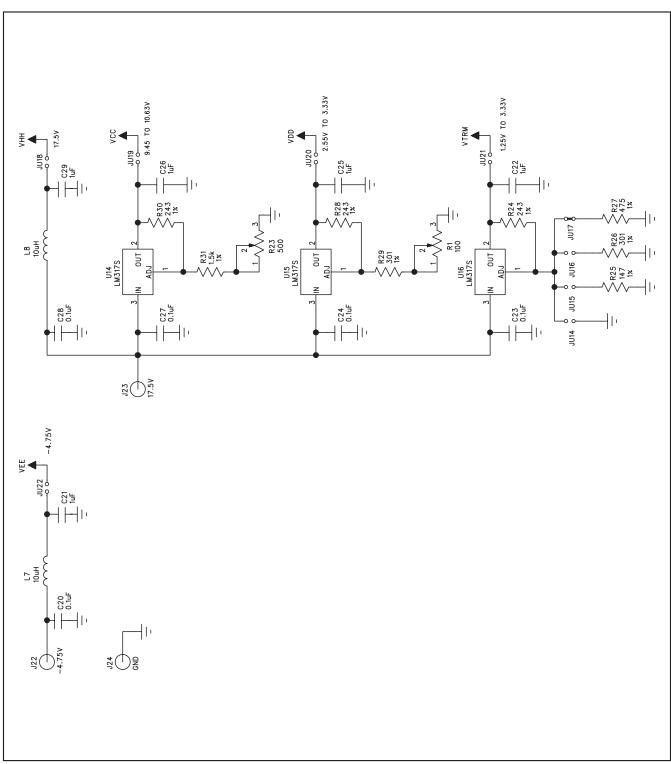


Figure 7c. MAX9979 EV Kit Schematic (Sheet 3 of 4)

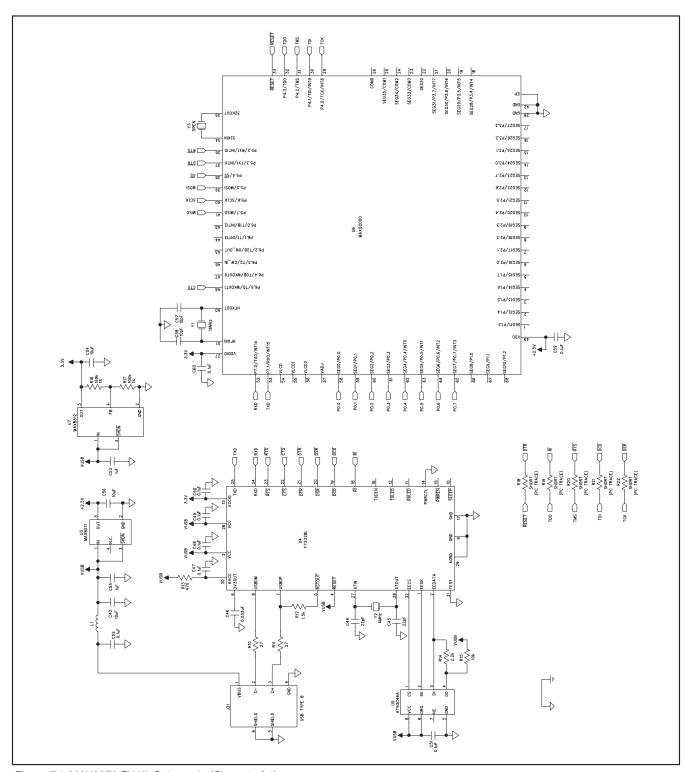


Figure 7d. MAX9979 EV Kit Schematic (Sheet 4 of 4)

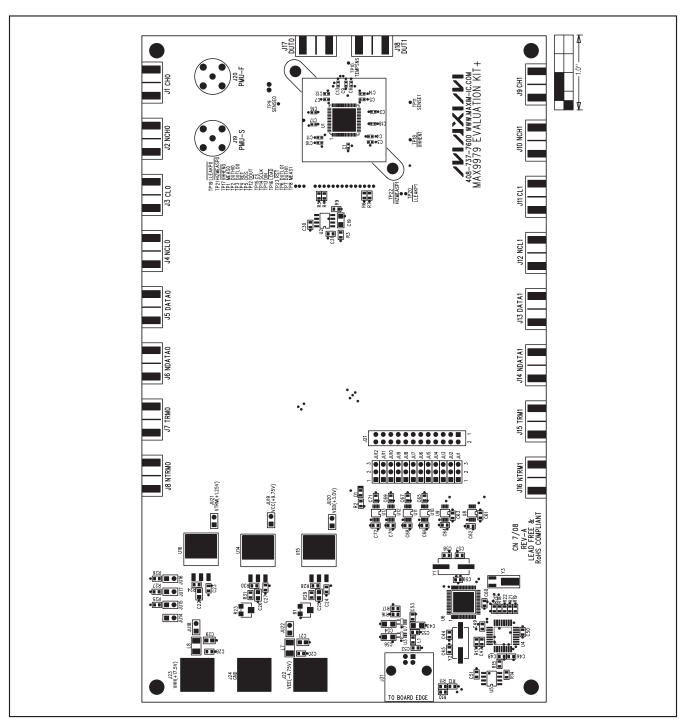


Figure 8. MAX9979 EV Kit Component Placement Guide—Top

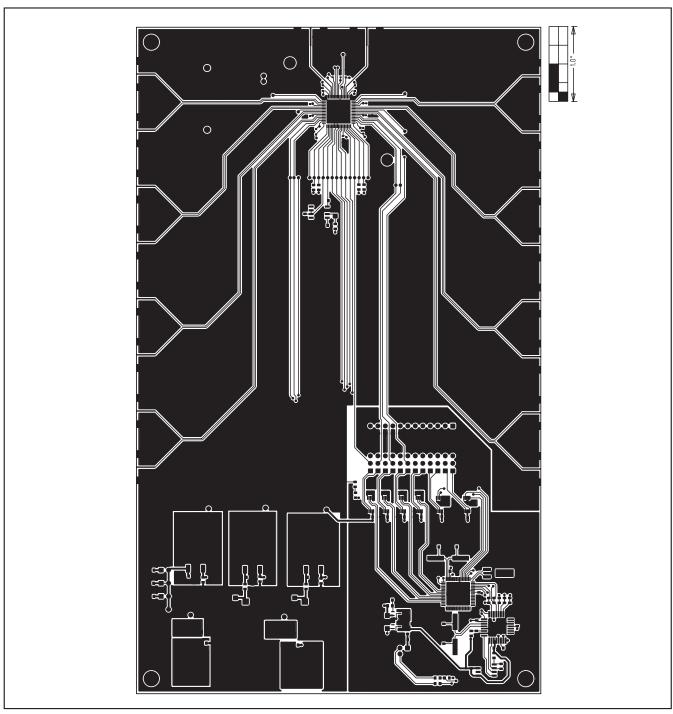


Figure 9. MAX9979 EV Kit PCB Layout—Component Side

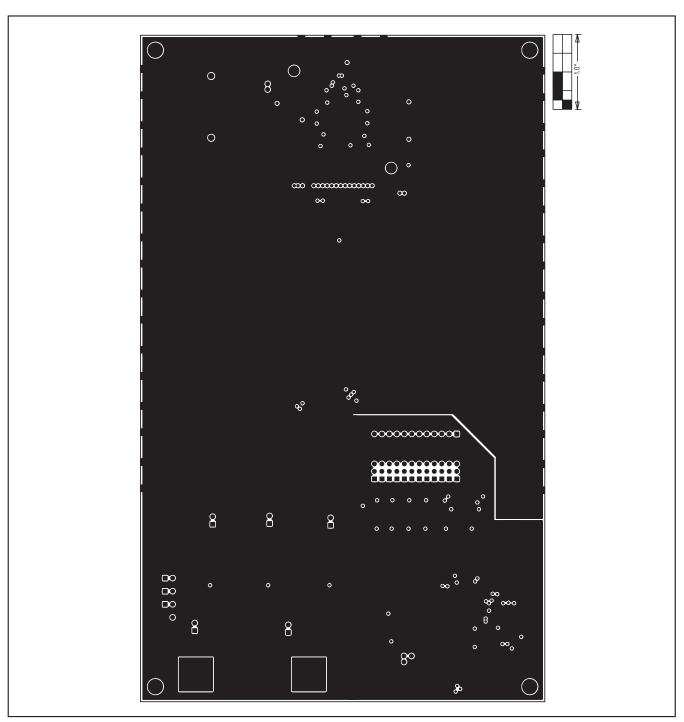


Figure 10. MAX9979 EV Kit PCB Layout—Layer 2

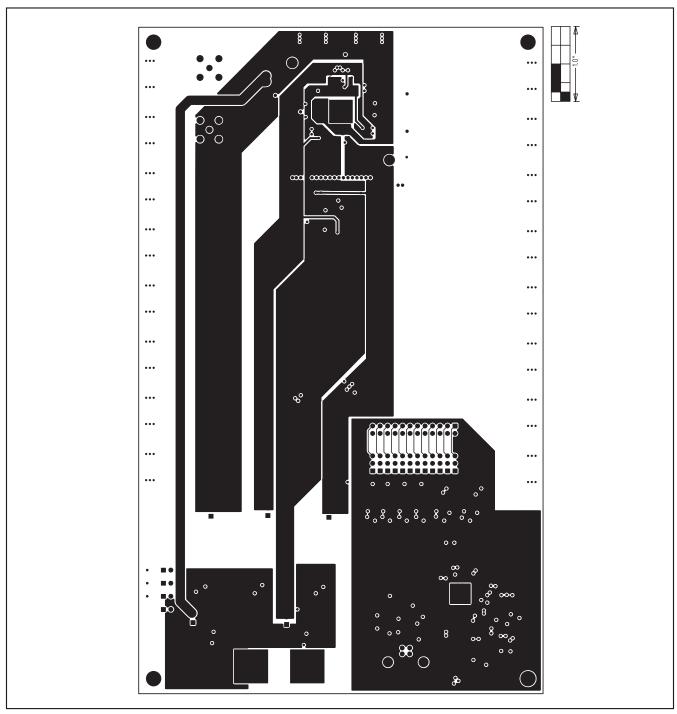


Figure 11. MAX9979 EV Kit PCB Layout—Layer 3

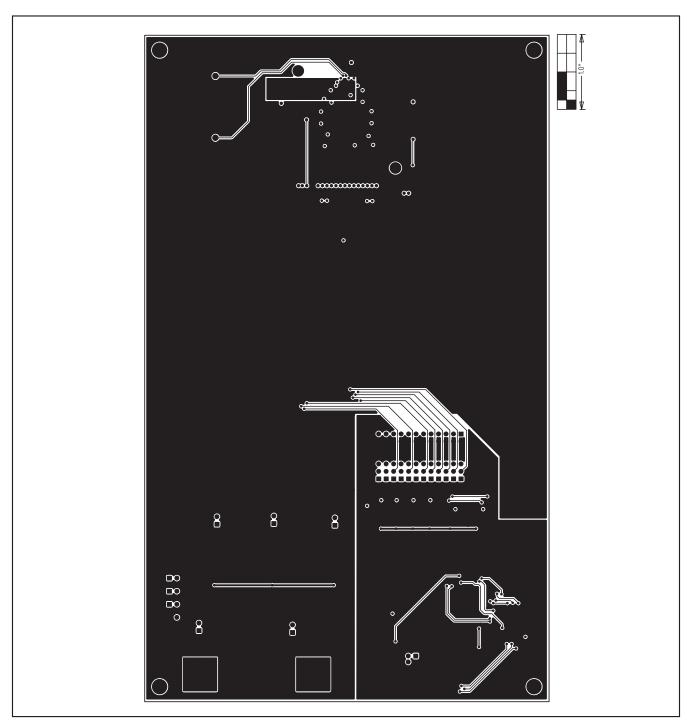


Figure 12. MAX9979 EV Kit PCB Layout—Bottom Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com