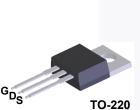
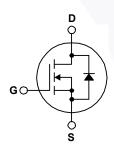


December 2014


FCP104N60F N-Channel SuperFET[®] II FRFET[®] MOSFET 600 V, 37 A, 104 m Ω


Features

- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 91 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 110 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 313 pF)
- 100% Avalanche Tested

Applications

- Lighting
- Solar Inverter
- AC-DC Power Supply

component and improve system reliability.

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new

high voltage super-junction (SJ) MOSFET family that is utilizing

charge balance technology for outstanding low on-resistance

and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy.

Consequently, SuperFET II MOSFET is very suitable for the

switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power

applications. SuperFET[®] II FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional

Description

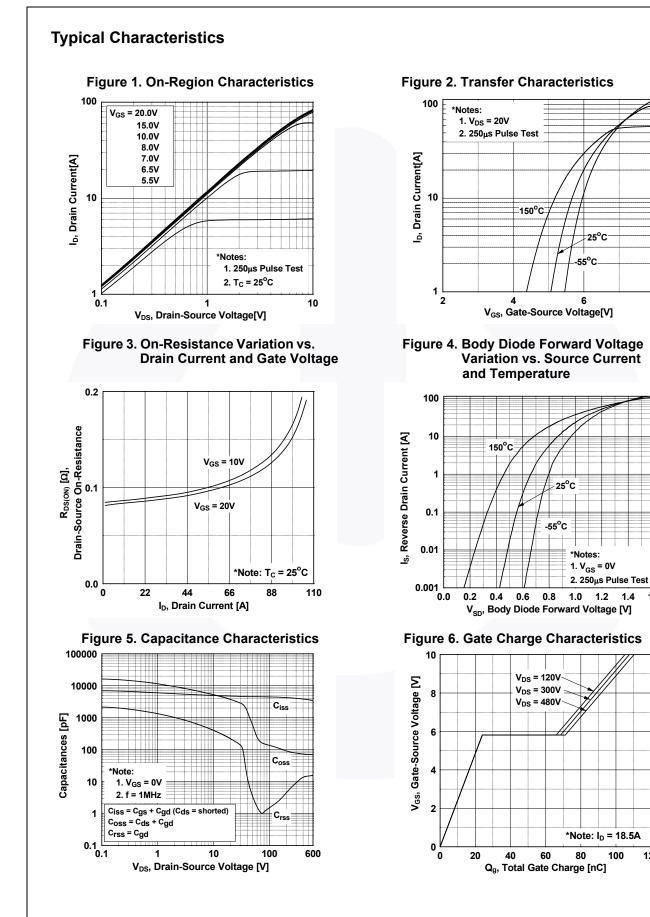
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCP104N60F	Unit	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Cata ta Cauraa Valtaga	- DC	- DC		V	
	Gate to Source Voltage	- AC	(f > 1Hz)	±30	V	
I _D	Drain Current	- Continuous (T _C = 25°C)		37	Α	
		- Continuous (T _C = 100 ^o C)		24		
I _{DM}	Drain Current	- Pulsed (Note 1)		114	A	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			809	mJ	
AR	Avalanche Current		(Note 1)	6.8	А	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	3.57	mJ	
du/dt	Peak Diode Recovery dv/dt (Note 3)			50	1//22	
dv/dt	MOSFET dv/dt			100	V/ns	
P _D	Devuer Dissinction	(T _C = 25 ^o C)		357	W	
	Power Dissipation	- Derate Above 25°C		2.85	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

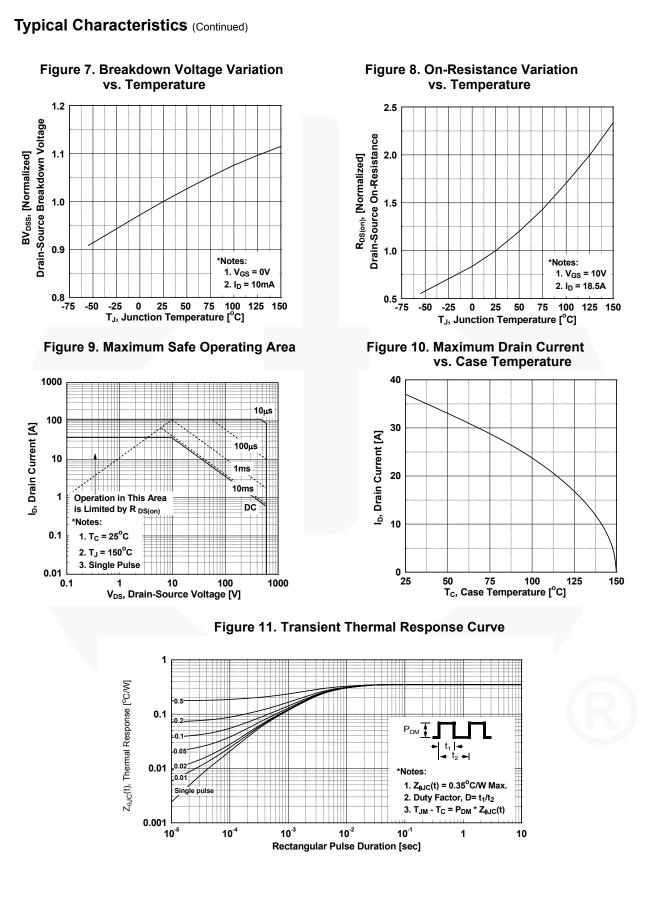
Symbol	Parameter	FCP104N60F	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.35	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient ,Max.	62.5	0/10

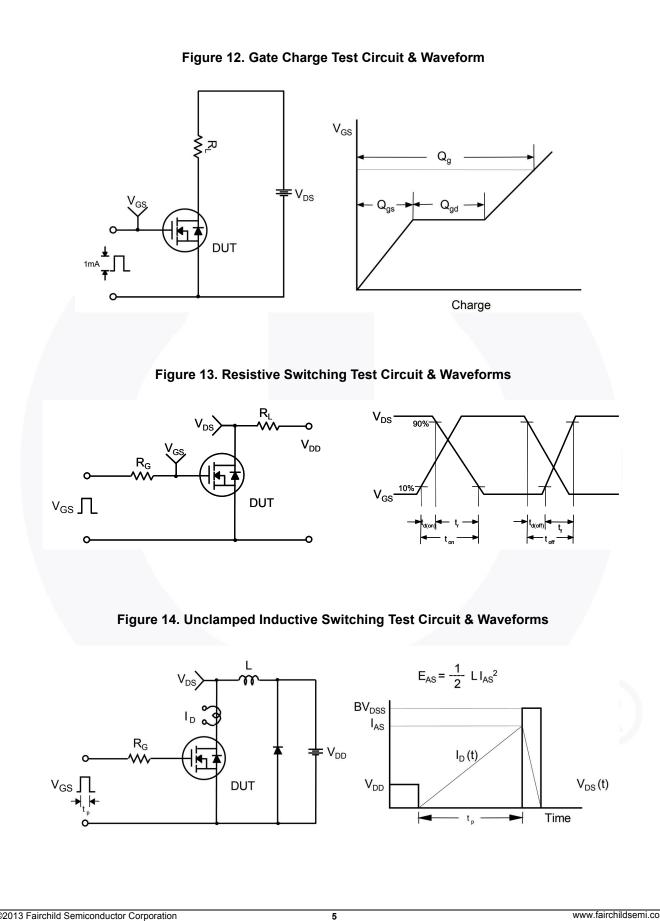
Part Nur	nber	Top Mark	Packag	e Packing Method	Reel Size	Тар	e Width	Qua	ntity
FCP104	N60F	FCP104N60F	TO220	Tube	N/A		N/A	50 units	
Electrica	I Cha	racteristics T _c = :	25°C unless	s otherwise noted.					
Symbol	Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristic	s			Į.			I	1
				$V_{00} = 0 V I_{0} = 10 mA$	$T_{1} = 25^{\circ}C_{1}$	600	_	_	
BV _{DSS}	BV _{DSS} Drain to Source Breakdown V		Itage	$V_{GS} = 0 V, I_D = 10 mA, T_J = 25^{\circ}C$ $V_{GS} = 0 V, I_D = 10 mA, T_J = 150^{\circ}C$		650	-	<u>-</u> ۱	V
ΔΒV _{DSS} / ΔΤ _J		Breakdown Voltage Temperature Coefficient Drain-Source Avlanche Breakdown age		$I_D = 10$ mA, Referenced to 25°C		-	0.67	-	V/ºC
BV _{DS}						-	700	-	V
I _{DSS}	Zero G	Zero Gate Voltage Drain Current		V_{DS} = 600V, V_{GS} = 0 V		-	-	10	μA
.099				V _{DS} = 480 V, T _C = 125		-	16	-	
I _{GSS}	Gate to	Body Leakage Current		$V_{GS} = \pm 20 V, V_{DS} = 0$	V	-	-	±100	nA
On Charac	teristic	s							
V _{GS(th)}	Gate T	hreshold Voltage		V _{GS} = V _{DS} , I _D = 250 μ	A	3	-	5	V
R _{DS(on)}	Static D	Drain to Source On Resist	stance	V _{GS} = 10 V, I _D = 18.5		-	91	104	mΩ
9 _{FS}	Forwar	Forward Transconductance		V _{DS} = 20 V, I _D = 18.5 A		-	33	-	S
Dynamic (Charact	eristics							
C _{iss}	Input C	Input Capacitance				- 1	4610	6130	pF
C _{oss}	Output	Capacitance		V _{DS} = 25 V, V _{GS} = 0 V f = 1 MHz		-	3255	4330	pF
C _{rss}	Revers	e Transfer Capacitance				-	155	235	pF
C _{oss}	Output	Output Capacitance		V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MHz		-	74	-	pF
C _{oss} eff.		Effective Output Capacitance		V_{DS} = 0 V to 480 V, V_{GS} = 0 V		-	313	-	pF
Q _{g(tot)}		ate Charge at 10V		V _{DS} = 380 V, I _D = 18.5 A V _{GS} = 10 V		-	110	145	nC
Q _{gs}	Gate to	Source Gate Charge				-	24	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge		V _{GS} = 10 V	(Note 4)	-	44	-	nC
ESR	Equival	ent Series Resistance	0	Drain open			0.9		Ω
Switching	Charac	cteristics							
t _{d(on)}		n Delay Time		V _{DD} = 380 V, I _D = 18.5 A V _{GS} = 10 V, R _{GEN} = 4.7 Ω		-	34	78	ns
t _r	Turn-O	n Rise Time				_	20	50	ns
t _{d(off)}		ff Delay Time				-	102	214	ns
t _f	Turn-Off Fall Time		(Note 4)		-	5.7	21.4	ns	
Drain-Sou	rce Dio	de Characteristics					1		
I _S	-	Im Continuous Drain to S		de Forward Current		-	-	37	A
I _{SM}		im Pulsed Drain to Sour				-	-	114	A
V _{SD}		Source Diode Forward		$V_{GS} = 0 V, I_{SD} = 18.5 A$		-	-	1.2	V
t _{rr}		e Recovery Time	5	V _{GS} = 0 V, I _{SD} = 18.5		-	144	-	ns
Q _{rr}	-	e Recovery Charge		$dl_{\rm F}/dt = 100 {\rm A}/{\mu {\rm s}}$		-	0.91		μC

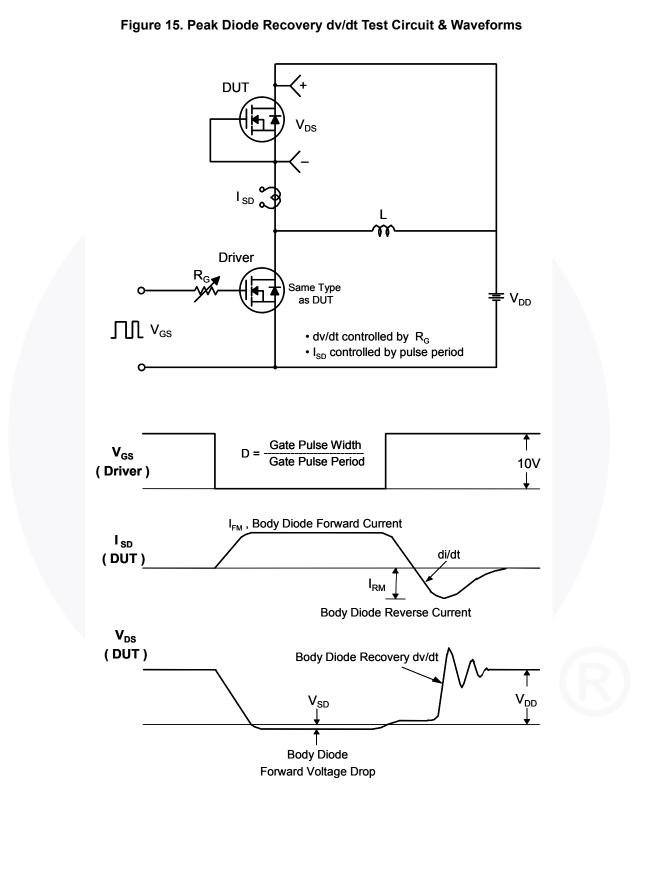

3. I_{SD} \leq 18.5 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

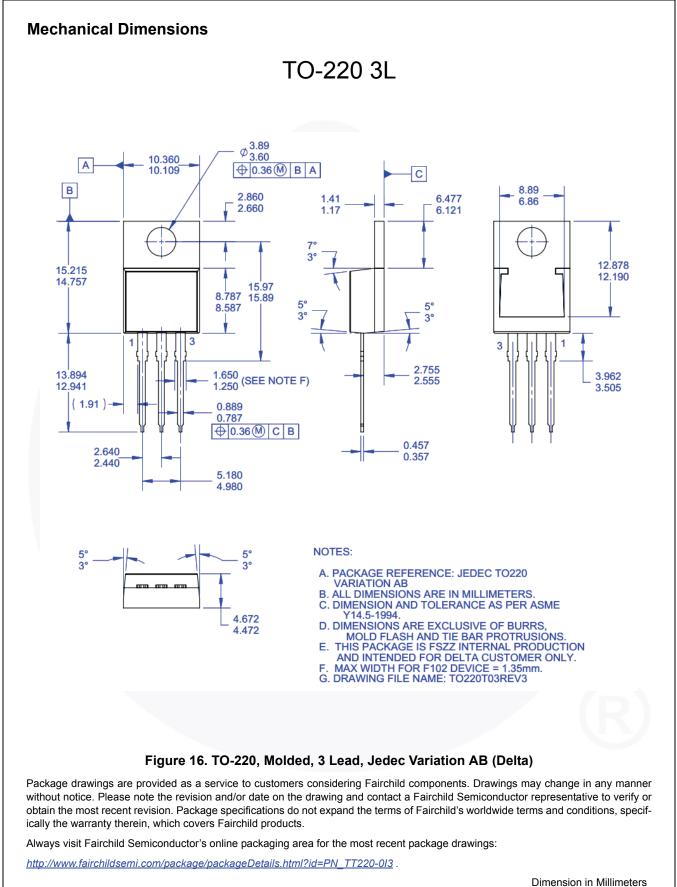
4. Essentially Independent of Operating Temperature Typical Characteristics

FCP104N60F — N-Channel SuperFET[®] II FRFET[®] MOSFET


8


1.6




©2013 Fairchild Semiconductor Corporation FCP104N60F Rev. C3

120

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CroePOWER TM CROSSVOLT TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM F Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] FacT [®] FAST [®] FastvCore TM FETBench TM FPS TM	F-PFS [™] FRFET [®] Global Power Resource SM Green Bridge [™] Green FPS [™] e-Series [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Louder and Better [™] MegaBuck [™] MICROCOUPLER [™] MicroPak [™] MotionMax [™] MotionMax [™] MotionGrid [®] MT [®] MT [®] MVN [®] mWSaver [®] OptoHiT [™] OPTOLOGIC [®]	OPTOPLANAR [®]	E GENERAL TinyBoost® TinyCalc™ TinyLogic® TINYOPTO™ TinyWire™ Transic™ TriFault Detect™ TRUECURRENT®* JSerDes* UHC® UItra FRFET™ VisualMax™ VoltagePlus™ XS™ Xsens™
---	---	-------------------------	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>http://www.fairchildsemi.com</u>. Fairchild does not assume any liability arising out of the application or use of ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

FCP104N60F Rev. C3

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 173

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com