

FQA14N30 300V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply.

Features

• 15A, 300V, $R_{DS(on)} = 0.29\Omega @V_{GS} = 10 V$ • Low gate charge (typical 30 nC)

D

- Low Crss (typical 23 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQA14N30	Units
V _{DSS}	Drain-Source Voltage		300	V
I _D	Drain Current - Continuous (T _C = 25°C)		15	A
	- Continuous (T _C = 100°C)		9.5	A
I _{DM}	Drain Current - Pulsed	(Note 1)	60	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	600	mJ
I _{AR}	Avalanche Current	(Note 1)	15	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	16	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _C = 25°C)		160	W
	- Derate above 25°C		1.28	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.78	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.24		°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient		40	°C/W

©2000 Fairchild Semiconductor International

April 2000

ТМ

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	300			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to 25°C		0.34		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 300 V, V _{GS} = 0 V			1	μA
		V _{DS} = 240 V, T _C = 125°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	rootoriotioo					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{\text{D}} = 7.5 \text{ A}$		0.23	0.29	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 7.5 A (Note 4)		10		S
Dynam C _{iss}	Input Capacitance	$V_{DS} = 25 V. V_{CS} = 0 V.$		1050	1360	pF
Ciss		V _{DS} = 25 V, V _{GS} = 0 V,		1050	1360	p⊢
C C	Reverse Transfer Canacitance	f = 1.0 MHZ		200	200	pr pF
Orss	Reverse transier Capacitance			20	30	рі
Switchi	ng Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{} = 150 V_{} = 14.4 A_{}$		22	55	ns
t _r	Turn-On Rise Time	$R_{0} = 25 \Omega$		145	300	ns
t _{d(off)}	Turn-Off Delay Time			45	100	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		70	150	ns
Qg	Total Gate Charge	Vps = 240 V. lp = 14.4 A.		30	40	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 10 V$		7.5		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		13		nC
			•			
Drain-S	ource Diode Characteristics a	nd Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				15	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	Forward Current			60	Α
Van	Drain-Source Diode Forward Voltage	$V_{00} = 0 V I_0 = 15 A$			15	V

 $V_{\rm GS}$ = 0 V, $I_{\rm S}$ = 14.4 A,

 dI_F / dt = 100 A/µs

(Note 4)

200

1.5

--

ns

μC

 Q_{rr}

t_{rr}

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 4.5mH, I_{AS} = 15A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 14.4A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Reverse Recovery Time

Reverse Recovery Charge

FQA14N30

Typical Characteristics V (88 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V 5.5 V Тор 10 10 I_D, Drain Ourrent [A] I_D, Drain Qurrent [A] 150°C 10 -**55**℃ 1(※ Notes : 1. V_{DS} = 50V 2. 250µ s Pulse Test ⊛ Notes 1. 250µ s Puls 2. T_c = 25°C 10⁻¹ 8 10 10 10 6 V_{GS} , Gate-Source Voltage [V] V_{DS}, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 1.0 I_{DR} , Reverse Drain Ourrent [A] 10 V_{GS} = 10V = 20V 10 Notes = 0V 1. V_{GS} = 0V 2. 250µ s Pu ₩ Note : T, = 25°C 10⁻¹ ∟ 0.2 0.0 L 0 1.6 20 25 30 40 45 0.4 0.6 0.8 1.0 1.2 1.4 1.8 5 10 15 35 50 $I_{_D}$, Drain Current [A] $\rm V_{_{SD}}$, Source-Drain Voltage $\rm [V]$ Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage Variation vs. Source Current **Drain Current and Gate Voltage** and Temperature 2100 12 + C V_{DS} = 60V 1800 V_{DS} = 150V 10 V_{DS} = 240V 1500 V_{GS}, Gate-Source Voltage [V] Capacitance [pF] 1200 900 Notes 600 1. V_{GS} = 0 V 2. f = 1 MHz 300 ⊛ Note : L = 14.4 A 0 L 10⁰ 10¹ 0 5 15 20 25 V_{DS}, Drain-Source Voltage [V] Q_c, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International

Rev. A, April 2000

FQA14N30

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E^2 CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com