

September 2014

# FSA8028 Audio Jack Detection and Configuration Switch

#### **Features**

|                       | Accessory Plug-In              |
|-----------------------|--------------------------------|
| Detection             | 3- or 4-Pole Audio Jack        |
|                       | Send/End Key Pressed           |
| Functionality         | Decreased Timing for Sensitive |
|                       | Send/End Keys                  |
| Switch Type           | MIC                            |
| $V_{DD}$              | 2.5 to 4.4 V                   |
| $V_{IO}$              | 1.6 to V <sub>DD</sub>         |
| THD (MIC)             | 0.01% Typical                  |
| ESD (Air Gap)         | 15 kV                          |
| Operating Temperature | -40°C to 85°C                  |
|                       |                                |

# Description

The FSA8028 is an audio jack detector and switch for 3- or 4-pole accessories. In addition to detection, the FSA8028 features an integrated MIC switch that allows the processor to configure the audio jack. The architecture is designed to allow common third-party headphones to be used for listening to music from mobile handsets, personal media players, and portable peripheral devices.

- Determines 3- or 4-Pole Audio Jacks
- Removes Audio Jack Pop-n-Click Caused by MIC Bias
- Detects Audio Jack Accessories:
  - Standard Headphones
  - Headsets with MIC
  - Send / End Button Presses
- Integrates a MIC Switch for 4-Pole Configuration

# **Applications**

- 3.5 mm and 2.5 mm Audio Jacks
- Cellular Phones, Smart Phones
- MP3 and PMP

# **Ordering Information**

| Part Number | Operating Temperature Range | Top Mark | Package                                                                                 |
|-------------|-----------------------------|----------|-----------------------------------------------------------------------------------------|
| FSA8028UMX  | -40 to +85°C                | KZ       | 10-Lead, 1.4 x 1.8 x 0.55 mm, 0.4 mm Pitch,<br>Ultrathin Molded Leadless Package (UMLP) |

# **Typical Application**

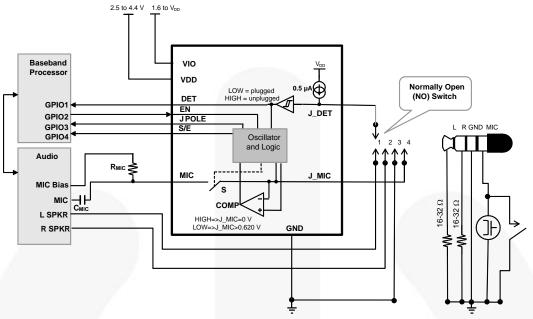



Figure 1. Mobile Phone Example

# **Pin Configuration**

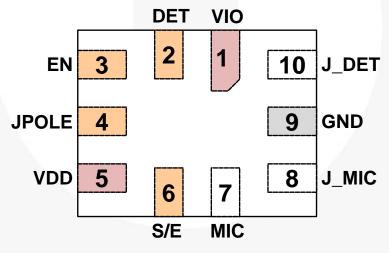



Figure 2. 10-Lead UMLP Pin Assignment (Through View)

# **Pin Descriptions**

| Name  | Pin# | Туре   | Description                                                                             |       | Function                  |  |  |
|-------|------|--------|-----------------------------------------------------------------------------------------|-------|---------------------------|--|--|
| DET   | 2    | Output | Indicates if an accessory is plugged into the audio jack, as                            |       | Plugged                   |  |  |
| DET   | 2    | Output | detected on the J_DET pin                                                               | 1     | Unplugged                 |  |  |
| JPOLE | 4    | Output | Indicates if an accessory plugged into the audio jack is 3 pole                         | 0     | 4-pole jack               |  |  |
| JFOLL | 4    | Output | or 4 pole                                                                               | 1     | 3-pole jack               |  |  |
| S/E   | 6    | Output | Indicates state of SEND/END for a 4-pole accessory when a                               | 0     | No key press              |  |  |
| 3/E   | b    | Output | key has been pressed                                                                    | 1     | Key press                 |  |  |
| EN    | 3    | Input  | Controls internal microphone switch between the J_MIC and                               |       | MIC / J_MIC switch open   |  |  |
| LIN   | 3    | input  | MIC pins                                                                                | 1     | MIC / J_MIC switch closed |  |  |
|       |      | 1      | Input from a pin of the audio jack socket tied to a mechanical                          | 0     | Plugged                   |  |  |
| J_DET | 10   | Input  | switch that typically closes whenever an audio jack is inserted into that socket        | 1     | Unplugged                 |  |  |
| MIC   | 7    | Switch | Microphone switch path that goes to the microphone preamplifier                         | Soci  | EN pin                    |  |  |
| J_MIC | 8    | Switch | Microphone switch path that connects to the microphone and SEND/END key audio jack pole | 366 1 | _ιν ριπ                   |  |  |
| VDD   | 5    | Power  | Core supply voltage                                                                     |       |                           |  |  |
| VIO   | 1    | Power  | Baseband I/O supply voltage                                                             |       |                           |  |  |
| GND   | 9    | Ground | Ground for both the audio jack and the PCB                                              |       |                           |  |  |

Note:  $1.0 = V_{OL}$  or  $V_{IL}$ ;  $1 = V_{OH}$  or  $V_{IH}$ 

# **Functional Diagram**

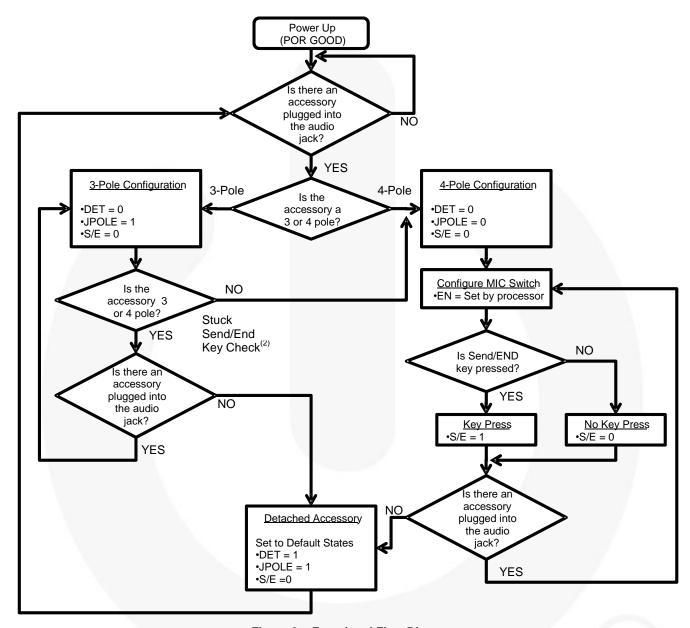



Figure 3. Functional Flow Diagram

#### Note:

2. Stuck Send/End key function is only available if EN=HIGH.

Table 1. FSA8028 Stuck Send/End Key

| EN   | FSA8028                       |
|------|-------------------------------|
| HIGH | Stuck Send / End Key Active   |
| LOW  | Stuck Send / End Key Disabled |

Table 2. States During Power Good and OFF

| State Description | VDD | VIO | DET                      | EN | JPOLE    | S/E           | J-DET               | MIC Switch |
|-------------------|-----|-----|--------------------------|----|----------|---------------|---------------------|------------|
| Active            | 1   | 1   | Active                   |    |          |               |                     |            |
|                   | 0   | 0   |                          |    |          | _             |                     |            |
| OFF               | 1   | 0   | 1<br>(unplugged) 3-State |    | (3 Pole) | (No Press)    | HIGH<br>(unplugged) | Open       |
|                   | 0   | 1   | (anplaggoa)              |    | (0.00)   | (1.10.1.1000) | (G.Ipiaggoa)        |            |

Table 3. FSA8028 I/O States During Detection<sup>(3)</sup>

| I DET       | L DET L MIC |        | S            | /E           | JPC        | DET        |        |     |
|-------------|-------------|--------|--------------|--------------|------------|------------|--------|-----|
| J_DET   J_N | J_MIC       | J_WIIC | EN           | 3 Pole       | 4 Pole     | 3 Pole     | 4 Pole | DEI |
| 0           | 1           | 1      | 0 (no press) | 0 (no press) | 0 (4 Pole) | 0 (4 Pole) | 0      |     |
| 0           | 0           | 0      | 0 (no press) | 1 (press)    | 1 (3 Pole) | 0 (4 Pole) | 0      |     |
| 0           | 1           | 0      | 0 (no press) | 0 (no press) | 1 (3 Pole) | 0 (4 Pole) | 0      |     |
| 0           | 0           | 1      | 0 (no press) | 1 (press)    | 1 (3 Pole) | 0 (4 Pole) | 0      |     |
| 1           | X           | Х      | 0 (no press) | 0 (no press) | 1 (3 Pole) | 1 (3 Pole) | 1      |     |

#### Note:

3. State detected after initial plug-in.

# **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                            | Parameter                                         |                                                 | Min. | Max.                 | Units |
|-----------------------------------|---------------------------------------------------|-------------------------------------------------|------|----------------------|-------|
| V <sub>DD</sub> & V <sub>IO</sub> | Supply Voltage from Battery                       |                                                 | -0.5 | 6.0                  | V     |
| V <sub>SW</sub>                   | Switch I/O Voltage for "S" Switch and All Input V | oltages Except J_DET                            | -0.5 | V <sub>DD</sub> +0.5 | V     |
| V <sub>JD</sub>                   | Input Voltage for J_DET Input                     |                                                 | -1.5 | V <sub>DD</sub> +0.5 | V     |
| I <sub>IK</sub>                   | Input Clamp Diode Current                         |                                                 | -50  |                      | mA    |
| I <sub>SW</sub>                   | Switch I/O Current (Continuous)                   |                                                 |      | 50                   | mA    |
| T <sub>STG</sub>                  | Storage Temperature Range                         |                                                 | -65  | +150                 | °C    |
| TJ                                | Maximum Junction Temperature                      |                                                 |      | +150                 | °C    |
| TL                                | Lead Temperature (Soldering, 10 Seconds)          |                                                 |      | +260                 | °C    |
| 1/1                               | IEC 61000-4-2 System ESD                          | Air Gap                                         | 15.0 |                      |       |
|                                   |                                                   | Contact                                         | 8.0  |                      | ]     |
| ESD                               | IEDEC IESD22 A114 Human Pody Model                | All Pins                                        | 7.5  |                      | kV    |
|                                   | JEDEC JESD22-A114, Human Body Model               | J_DET, J_MIC, V <sub>DD</sub> , V <sub>IO</sub> | 12.0 |                      |       |
|                                   | JEDEC JESD22-C101, Charged Device Model           | 2.0                                             |      |                      |       |

#### Note:

4. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

# **Recommended Operating Conditions**

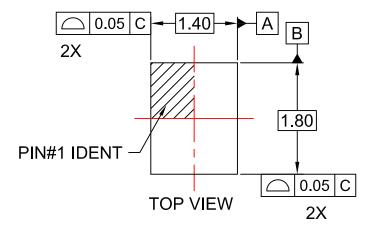
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

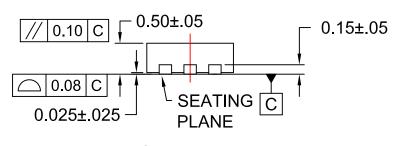
| Symbol          | Parameter                   | Min. | Max.     | Units |
|-----------------|-----------------------------|------|----------|-------|
| $V_{DD}$        | Battery Supply Voltage      | 2.5  | 4.4      | ٧     |
| V <sub>IO</sub> | Parallel I/O Supply Voltage | 1.6  | $V_{DD}$ | V     |
| T <sub>A</sub>  | Operating Temperature       | -40  | +85      | °C    |

# **DC Electrical Characteristics**

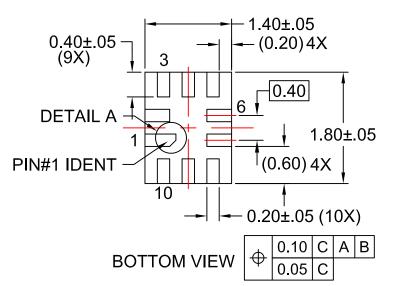
All typical values are at T<sub>A</sub>=25°C unless otherwise specified.

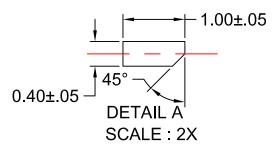
| Symbol                  | Parameter                                                  | V <sub>DD</sub> (V) | Conditions                                                     | T <sub>A</sub> =      | Units |                       |       |
|-------------------------|------------------------------------------------------------|---------------------|----------------------------------------------------------------|-----------------------|-------|-----------------------|-------|
| Symbol                  |                                                            |                     | Conditions                                                     | Min.                  | Тур.  | Max.                  | Units |
| MIC Switch              | 1                                                          |                     |                                                                |                       |       | •                     |       |
|                         |                                                            | 2.5                 | 9.                                                             |                       | 0.9   | 2.9                   |       |
| Ron                     | MIC Switch On Resistance                                   | 2.8                 | $I_{OUT} = 30 \text{ mA},$<br>$V_{IN} = 2.0 \text{ V}$         |                       | 0.8   | 2.5                   |       |
|                         |                                                            | 3.8                 | VIN - 2.0 V                                                    |                       | 0.6   | 2.0                   |       |
|                         |                                                            | 2.5                 | I <sub>OUT</sub> = 30 mA,<br>V <sub>IN</sub> = 1.6, 2.0, 2.5 V |                       | 1.50  |                       | Ω     |
| $R_{FLAT(ON)}$          | On Resistance Flatness                                     | 2.8                 | I <sub>OUT</sub> = 30 mA,                                      | /                     | 0.70  |                       |       |
|                         |                                                            | 3.8                 | $V_{IN} = 1.6, 2.0, 2.8 \text{ V}$                             | A1                    | 0.25  |                       |       |
| V <sub>IN</sub>         | Switch Input Voltage Range                                 | 2.5 to 4.4          |                                                                | 0                     |       | $V_{DD}$              | V     |
| C <sub>ON</sub>         | MIC and J_MIC Switch ON Capacitance                        | 3.8                 | f = 1 MHz                                                      |                       | 76    |                       | pF    |
| $C_{OFF}$               | MIC and J_MIC Switch OFF Capacitance                       | 3.8                 | f = 1 MHz                                                      |                       | 24    |                       | pF    |
| J_DET                   |                                                            |                     |                                                                | 1                     |       | 2                     |       |
| J_DET <sub>AudioV</sub> | Audio Voltage Range on J_DET Pin                           | 2.5 to 4.4          | DET = LOW                                                      | -1                    |       | 1                     | V     |
| J_DET <sub>Audiof</sub> | Audio Frequency on J_DET Pin                               | 2.5 to 4.4          | DET = LOW                                                      | 20                    |       | 20000                 | Hz    |
| J_DET <sub>RGND</sub>   | Detection Resistance to Ground                             | 2.5 to 4.4          | Audio Jack Inserted                                            | 0                     |       | 500                   | ΚΩ    |
| J_DET <sub>HYS</sub>    | Hysteresis of J_DET                                        |                     |                                                                |                       | 230   |                       | mV    |
| Parallel I/O            |                                                            |                     |                                                                |                       |       |                       |       |
| V <sub>IH</sub>         | Input High Voltage                                         | Veri.               |                                                                | 0.7 x V <sub>IO</sub> |       | V <sub>IO</sub>       | V     |
| $V_{IL}$                | Input Low Voltage                                          |                     |                                                                |                       |       | 0.3 x V <sub>IO</sub> | V     |
| V <sub>OH</sub>         | Output High Voltage                                        |                     | I <sub>OH</sub> = -100 μA                                      | 0.8 x V <sub>IO</sub> |       |                       | V     |
| V <sub>OL</sub>         | Output Low Voltage                                         |                     | I <sub>OL</sub> = +100 μA                                      |                       |       | 0.2 x V <sub>IO</sub> | V     |
| Comparato               | or                                                         |                     |                                                                |                       |       |                       |       |
| $V_{COMP}$              | Comparator Threshold for SEND/END Sensing                  | 2.5-3.8             | J_DET, EN = LOW                                                |                       | 620   |                       | mV    |
| Current                 |                                                            | ~ .                 |                                                                |                       |       |                       |       |
| l <sub>OFF</sub>        | Power Off Leakage Current Through Switch                   | 0                   | MIC and J_MIC<br>Ports V <sub>IN</sub> = 4.4 V                 |                       |       | 1.5                   | μA    |
| I <sub>IN</sub>         | Input Leakage Current                                      | 0 to 4.4            | Inputs 0 = 4.4 V                                               |                       |       | 1                     | μA    |
| I <sub>CC-SLNA</sub>    | Battery Supply Sleep Mode Current<br>No Accessory Attached | 2.5 to 4.4          | Static Current<br>During Sleep Mode<br>(EN = LOW)              |                       | 1     | 3                     | μA    |
| I <sub>CC-SLWA</sub>    | Battery Supply Sleep Mode Current with Accessory Attached  | 2.5 to 4.4          | Active Current<br>(EN = LOW and/or<br>DET = HIGH)              |                       | 15    | 25                    | μA    |

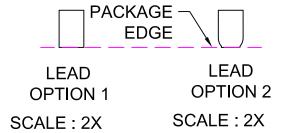

# **AC Electrical Characteristics**


All typical values are for  $V_{CC}$ =3.3 V at  $T_A$ =25°C unless otherwise specified.

| Cumbal               | Parameter                                                                      | V <sub>DD</sub> (V) | Conditions                                                                                                                                                                       | $T_A = -40 \text{ to } +85^{\circ}\text{C}$ |      |      | 11   |
|----------------------|--------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|------|------|
| Symbol               |                                                                                |                     |                                                                                                                                                                                  | Min.                                        | Тур. | Max. | Unit |
| MIC Swite            | ch                                                                             |                     |                                                                                                                                                                                  |                                             |      |      | •    |
| THD                  | Total Harmonic Distortion                                                      | 3.8                 | $R_T = 600 \ \Omega, \ V_{SW} = 0.5 \ V_{PP}, \ f = 20 \ Hz \ to \ 20 \ kHz, \ V_{IN} = 2.0 \ V$                                                                                 |                                             | 0.01 |      | %    |
| O <sub>IRR</sub>     | Off Isolation                                                                  | 3.8                 | $\begin{split} &\text{f} = 20 \text{ kHz},  \text{R}_\text{S} \! = \! 32  \Omega, \\ &\text{C}_\text{L} \! = \! 0 \text{ pF},  \text{R}_\text{T} \! = \! 32  \Omega \end{split}$ |                                             | -90  |      | dB   |
| Parallel I/          | O                                                                              |                     |                                                                                                                                                                                  |                                             |      |      |      |
|                      | Output Edge Detec (DET C/E IDOLE)                                              | 2.5                 | C 5 7 5 200/ to 000/                                                                                                                                                             |                                             | 19   |      |      |
| $t_R$ , $t_F$        | Output Edge Rates (DET, S/E, JPOLE)                                            | 3.8                 | $C_L = 5 \text{ pF}, 20\% \text{ to } 80\%$                                                                                                                                      |                                             | 15   |      | ns   |
| t <sub>POLL</sub>    | On Time of MIC Switch for Sensing SEND/END Button Press Oscillator Stable Time | 2.5 to 4.4          |                                                                                                                                                                                  |                                             | 1    |      | ms   |
| t <sub>PER</sub>     | Period of MIC Switching Time for<br>Sensing SEND/END Button Press              | 2.5 to 4.4          |                                                                                                                                                                                  |                                             | 10   |      | ms   |
| t <sub>DET-IN</sub>  | Debounce Time after J-DET Changes<br>State from High to Low                    | 2.5 to 4.4          |                                                                                                                                                                                  | 1                                           | 422  |      | ms   |
| t <sub>DET_REM</sub> | Debounce Time after J_DET Changes<br>State from Low to High                    | 2.5 to 4.4          |                                                                                                                                                                                  | \                                           | 30   |      | μs   |
| t <sub>DET</sub>     | Detection Timeout for Sensing 3-Pole or 4-Pole Audio Jack Plugged In           | 2.5 to 4.4          |                                                                                                                                                                                  |                                             | 4.5  |      | ms   |
| t <sub>KBK</sub>     | Debounce Time for Sensing<br>SEND/END Key Press / Release                      | 2.5 to 4.4          |                                                                                                                                                                                  |                                             | 27   |      | ms   |
| Power                |                                                                                | V.                  | y.                                                                                                                                                                               |                                             |      | LI.  |      |
| PSRR                 | Power Supply Rejection Ratio                                                   | 3.8                 | Power Supply Noise<br>300 mV <sub>PP</sub> , Measured<br>10/90%, f = 217 Hz                                                                                                      | A                                           | -90  | 1    | dB   |


Table 4. Package Nominal Values

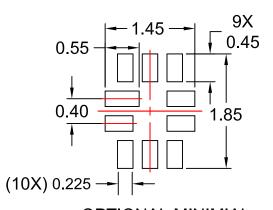

| JEDEC Symbol | Description      | Nominal Values (mm) |
|--------------|------------------|---------------------|
| A            | Overall Height   | 0.5                 |
| A1           | Package Standoff | 0.072               |
| A3           | Lead Thickness   | 0.152               |
| b            | Lead Width       | 0.4                 |
| L            | Lead Length      | 0.2                 |
| e            | Lead Pitch       | 0.4                 |
| D            | Body Length (Y)  | 1.8                 |
| Е            | Body Width (X)   | 1.4                 |







SIDE VIEW










RECOMMENDED LAND PATTERN



OPTIONAL MINIMIAL TOE LAND PATTERN

#### NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP10Arev6.







#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ Awinda<sup>®</sup>
AX-CAP<sup>®</sup>\* FRFET®

Global Power Resource<sup>SM</sup>

BitSiC™ GreenBridge™ Build it Now™ Green FPS™

CorePLUS™ Green FPS™ e-Series™ G*max*™ CorePOWER™ CROSSVOLT™ GTO™  $\mathsf{CTL}^{\mathsf{TM}}$ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™

DEUXPEED® Making Small Speakers Sound Louder Dual Cool™ and Better™

EcoSPARK® MegaBuck™ EfficientMax™ MIČROCOUPLER™ ESBC™ MicroFET™

MicroPak™ MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ MotionGrid<sup>®</sup> FACT<sup>®</sup> FAST® MTi<sup>®</sup> MTx® FastvCore™

MVN® FETBench™ mWSaver® OptoHiT™

PowerTrench® PowerXS™

Programmable Active Droop™

OFFT QS<sup>TM</sup>

> Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™

SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost<sup>®</sup> TinyBuck<sup>®</sup> TinyCalc™ TinyLogic<sup>®</sup> TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™

TriFault Detect™ TRUECURRENT®\* μSerDes™

**UHC**<sup>®</sup> Ultra FRFET™ UniFET™ VCX™

VisualMax™ VoltagePlus™ XSTM Xsens™ 仙童™

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS

#### Definition of Torms

| Definition of Terms      |                       |                                                                                                                                                                                                     |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. 171

# AMEYA360 Components Supply Platform

# **Authorized Distribution Brand:**

























# Website:

Welcome to visit www.ameya360.com

# Contact Us:

# > Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

# > Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

# Customer Service :

Email service@ameya360.com

# Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com