

August 2014

FCPF650N80Z — N-Channel SuperFET[®] II MOSFET

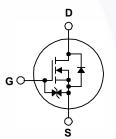
FCPF650N80Z

N-Channel SuperFET[®] II MOSFET

800 V, 8 A, 650 m Ω

Features

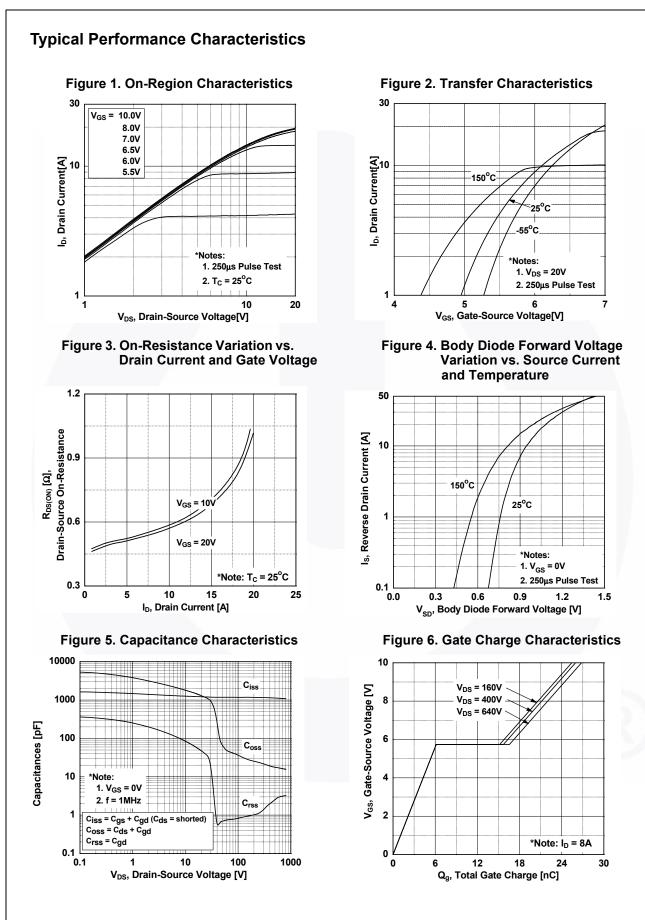
- R_{DS(on)} = 530 mΩ (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 27 nC)
- Low E_{oss} (Typ. 2.8 uJ @ 400V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 124 pF)
- 100% Avalanche Tested
- RoHS Compliant
- ESD Improved Capability


Applications

- AC DC Power Supply
- LED Lighting

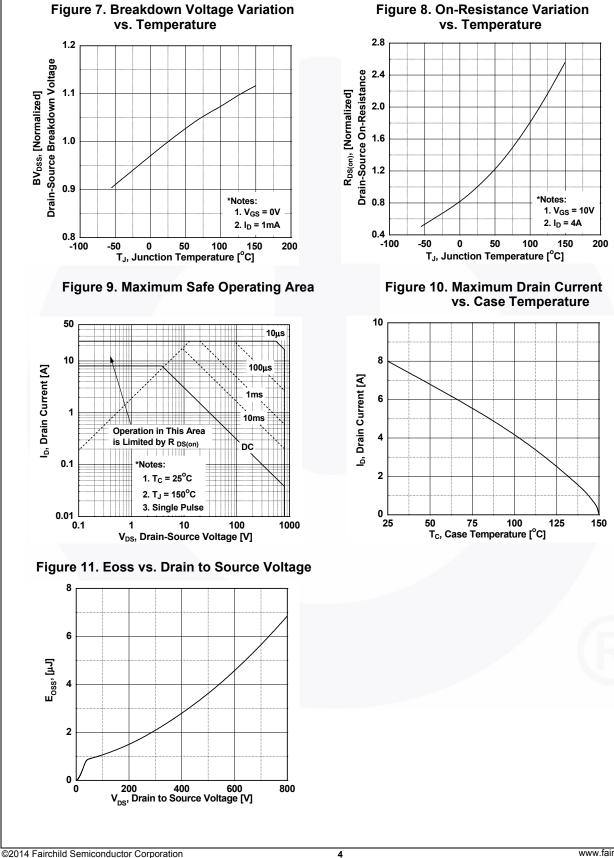
Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. In addition, internal gate-source ESD diode allows to withstand over 2kV HBM surge stress.Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

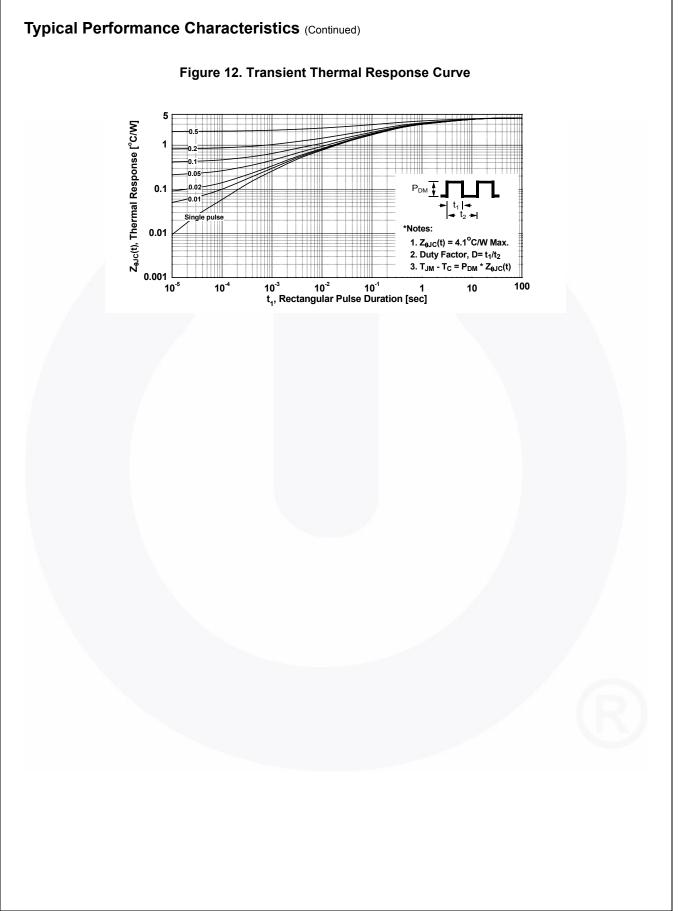

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

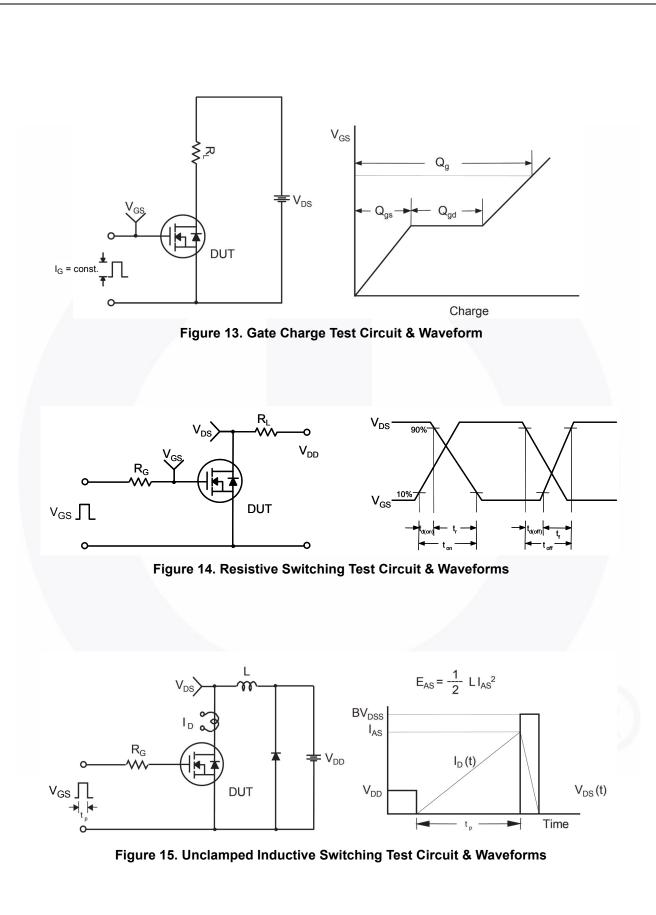
Symbol		FCPF650N80Z	Unit		
V _{DSS}	Drain to Source Voltage				
V _{GSS} Gate		- DC	- DC		V
	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	V
ID	Drain Current	- Continuous (T _C = 25 ^o C)	- Continuous (T _C = 25 ^o C)		А
		- Continuous (T _C = 100 ^o C)		5.1*	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	24*	Α
E _{AS}	Single Pulsed Avalanche Ene	204	mJ		
I _{AR}	Avalanche Current (Note 1)			1.6	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)			0.305	mJ
dv/dt	MOSFET dv/dt	100	V/ns		
	Peak Diode Recovery dv/dt	20			
P _D	Rower Dissipation	(T _C = 25 ^o C)		30.5	W
	Power Dissipation	- Derate Above 25°C		0.24	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C
Drain current limited	d by maximum junction temperature.				

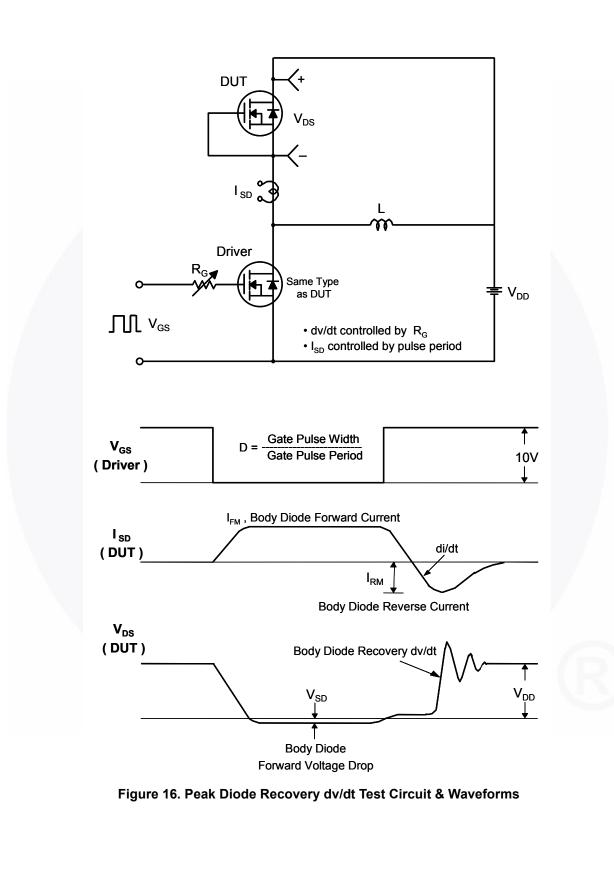
Thermal Characteristics

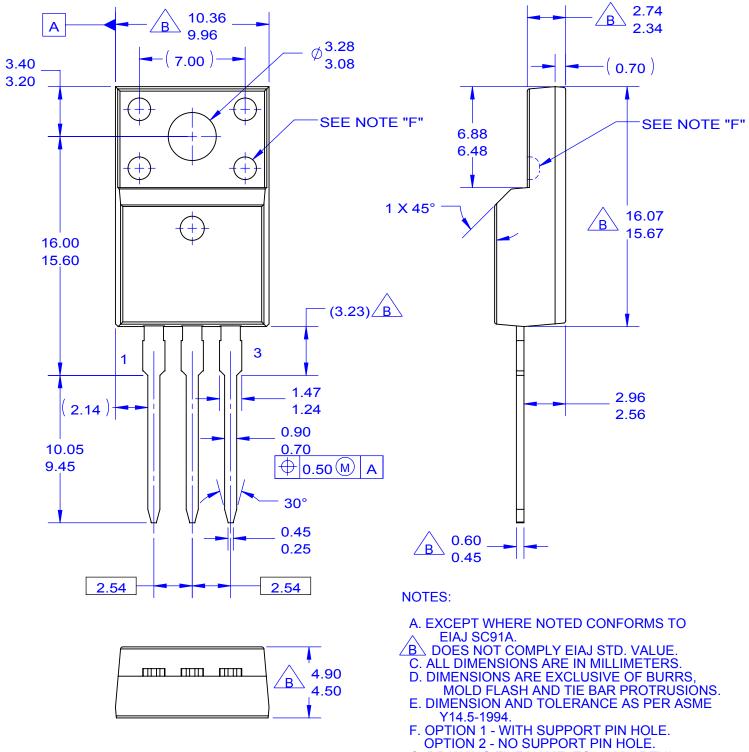

Symbol	Parameter	FCPF650N80Z	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	4.1	0CAA	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W	

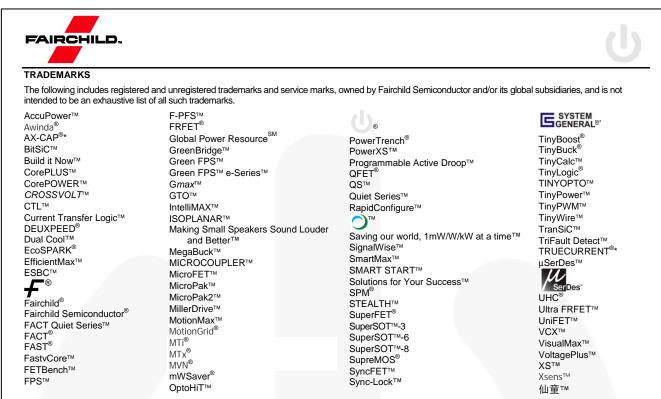
Part Nu	Part Number Top Mark Pa		Pack	age	Packing Method	Reel Si	ze	Tape Widt	h Q	uantity
FCPF650N80Z FCPF650N80Z TO		TO-2	20F	Tube	N/A		N/A	5	50 units	
Electrica	l Char	acteristics T _C = 25 ^c	^o C unle	ss oth	erwise noted.					
Symbol		Parameter		Test Conditions			Min.	Тур.	Max.	Unit
Off Charad	teristic	s								
BV _{DSS}			ne '	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C			800	_	-	V
ΔBV_{DSS}		Drain to Source Breakdown Voltage Breakdown Voltage Temperature				000				
$/\Delta T_{J}$	Coeffic	U 1		I _D = 1	mA, Referenced to 2	5ºC	-	0.8	-	V/ºC
	Zara C	ata Valtaga Drain Currant	'	V _{DS} =	800 V, V _{GS} = 0 V		-	-	25	
DSS	Zero G	ate Voltage Drain Current		$V_{DS} = 640 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{T}_{C} = 125^{\circ}\text{C}$			-	-	250	μA
I _{GSS}	Gate to	Body Leakage Current		$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-	-	±10	μA
On Charac	teristic	s								
V _{GS(th)}	Gate T	nreshold Voltage		V _{GS} =	V _{DS} , I _D = 0.8 mA		2.5	-	4.5	V
R _{DS(on)}		Prain to Source On Resista			10 V, I _D = 4 A		-	530	650	mΩ
9 _{FS}	Forwar	d Transconductance			20 V, I _D = 4 A		-	7.8	-	S
Dynamic (Charact	eristics		-						
C _{iss}	Input C	apacitance		V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz			1178	1565	pF	
C _{oss}	Output	Capacitance				1	36	48	pF	
C _{rss}	Revers	e Transfer Capacitance	1			-		0.84	-	pF
C _{oss}		Capacitance		V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz		-	18	-	pF	
C _{oss (eff.)}	Effectiv	e Output Capacitance		$V_{\rm DS} = 0 \text{ V to 480 V}, V_{\rm GS} = 0 \text{ V}$			-	124	-	pF
Q _{g(tot)}	Total G	ate Charge at 10V		$V_{DS} = 640 \text{ V}, \text{ I}_{D} = 8 \text{ A},$ $V_{GS} = 10 \text{ V}$		-	27	35	nC	
Q _{gs}	Gate to	Source Gate Charge				-	6	-	nC	
Q _{gd}	Gate to	Drain "Miller" Charge		00		(Note 4)	-	11	-	nC
ESR	Equival	ent Series Resistance	1	f = 1 MHz		-	1.9	-	Ω	
Switching	Charac	teristics				I			I	
t _{d(on)}	-	n Delay Time					-	17	44	ns
t _r		n Rise Time	,	V _{DD} =	400 V, I _D = 8 A,	-	-	11	32	ns
t _{d(off)}		f Delay Time			10 V, $R_g = 4.7 \Omega$		-	40	90	ns
t _f		f Fall Time			·	(Note 4)	-	3.4	17	ns
		de Characteristics				(1000-1)	/			
I _S		m Continuous Drain to So	urce Di	ode Fo	orward Current		-	_	8	А
I _{SM}		m Pulsed Drain to Source				-	_	24	A	
V _{SD}		Source Diode Forward Vo		$V_{GS} = 0 V, I_{SD} = 8 A$			-	-	1.2	V
t _{rr}		Recovery Time	-		0 V, I _{SD} = 8 A,		-	365	-	ns
Q _{rr}		e Recovery Charge		$v_{GS} = 0.0, v_{SD} = 0.0, A,$ $dI_{F}/dt = 100 A/\mu s$		-	5.9	-	μC	
lotes:		, , , , , , , , , , , , , , , , , , , ,								1 1.0
. Repetitive rating	g: pulse width	limited by maximum junction temp	erature.							
. I _{AS} = 1.6 A, R _G	= 25 Ω, Starti	ng T _J = 25°C								




©2014 Fairchild Semiconductor Corporation FCPF650N80Z Rev. C1


Typical Performance Characteristics (Continued)




FCPF650N80Z — N-Channel SuperFET[®] II MOSFET

FCPF650N80Z — N-Channel SuperFET[®] II MOSFET

- G. DRAWING FILE NAME: TO220M03REV3

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition	of Terms	
------------	----------	--

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 171

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com