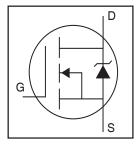
AUTOMOTIVE GRADE

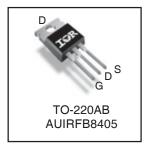
AUIRFB8405

Features


- Advanced Process Technology
- New Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and wide variety of other applications.


Applications

- Electric Power Steering (EPS)
- Battery Switch
- Start/Stop Micro Hybrid
- Heavy Loads
- DC-DC Applications

HEXFET® Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	$2.1 \mathrm{m} \mathbf{\Omega}$
max.	2.5 m Ω
I _{D (Silicon Limited)}	185A ①
I _{D (Package Limited)}	120A

G	D	S
Gate	Drain	Source

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form Quantity		
AUIRFB8405	TO-220	Tube	50	AUIRFB8405

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	185 ^①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	131①	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	120	
I _{DM}	Pulsed Drain Current ②	904	
P _D @T _C = 25°C	Maximum Power Dissipation	163	W
	Linear Derating Factor	1.1	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10lbf∙ in (1.1N· m)	

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	181	mJ
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value ®	247	IIIO
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 24a, 24b	Α
E _{AR}	Repetitive Avalanche Energy ②		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ® 9		0.92	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.026		V/°C	Reference to 25°C, I _D = 1.0mA ²
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.1	2.5	$m\Omega$	$V_{GS} = 10V, I_D = 100A$ §
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 40V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
R_{G}	Internal Gate Resistance		2.3		Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

Dynamic e	1) = 25 0 (diffess offici wise specified)					
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	100			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		107	161		$I_{D} = 100A$
Q_{gs}	Gate-to-Source Charge		29		nC	V _{DS} =20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		39			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		68			$I_D = 100A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 26V$
t _r	Rise Time		128		ns	$I_{D} = 100A$
$t_{d(off)}$	Turn-Off Delay Time		55		115	$R_G = 2.7\Omega$
t _f	Fall Time		77			V _{GS} = 10V ^⑤
C _{iss}	Input Capacitance		5193			$V_{GS} = 0V$
C _{oss}	Output Capacitance		754			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		519		pF	f = 1.0 MHz, See Fig. 5
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		878			$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V ②, See Fig. 11
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		1225			V _{GS} = 0V, V _{DS} = 0V to 32V ©

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			185①		MOSFET symbol
	(Body Diode)			1050	A	showing the
I _{SM}	Pulsed Source Current			904		integral reverse
	(Body Diode) ②			304		p-n junction diode.
V_{SD}	Diode Forward Voltage		0.9	1.3	V	$T_J = 25^{\circ}C$, $I_S = 100A$, $V_{GS} = 0V$ $^{\circ}$
dv/dt	Peak Diode Recovery ⁴		1.7		V/ns	$T_J = 175$ °C, $I_S = 100$ A, $V_{DS} = 40$ V
t _{rr}	Reverse Recovery Time		44		ns	$T_J = 25^{\circ}C$ $V_R = 34V$,
			45		115	$T_J = 125^{\circ}C$ $I_F = 100A$
Q_{rr}	Reverse Recovery Charge		44		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $^{\circ}$
			46		lic	$T_J = 125$ °C
I _{RRM}	Reverse Recovery Current		1.9		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- ③ Limited by T_{Jmax} , starting T_J = 25°C, L = 0.036mH, R_G = 50 Ω , I_{AS} = 100A, V_{GS} =10V. Part not recommended for use above this value.
- $\textcircled{4} \ I_{SD} \leq 100 A, \ di/dt \leq 1295 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175 ^{\circ} C.$

- ⑤ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$
- $\ \ \, \ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ C $_{oss}$ eff. (ER) is a fixed capacitance that gives the same energy as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}.$
- $\ensuremath{\$}\ \ensuremath{\mathsf{R}}_{\theta}$ is measured at T_J approximately $90^\circ C$.
- $\ \ \, \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\$ $\ \$ $\$

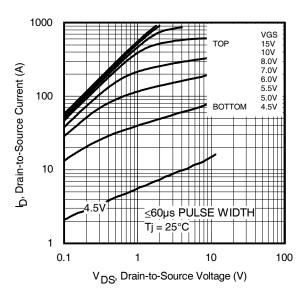


Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

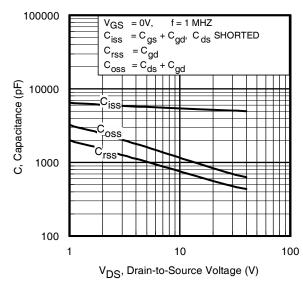


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

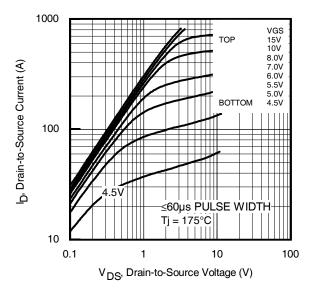


Fig 2. Typical Output Characteristics

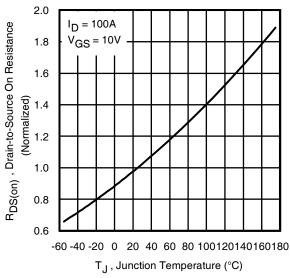


Fig 4. Normalized On-Resistance vs. Temperature

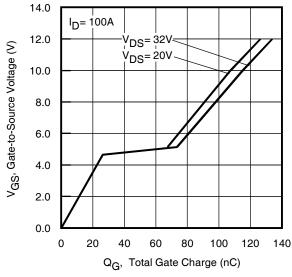
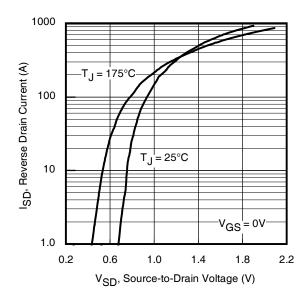
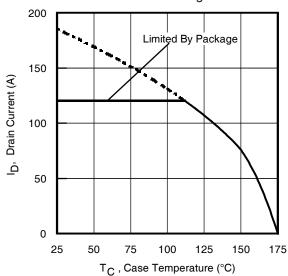




Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

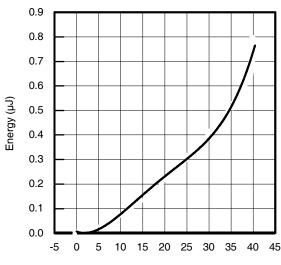


Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

 $\label{eq:VDS} \text{V}_{DS,} \text{ Drain-to-Source Voltage (V)} \\ \textbf{Fig 11.} \ \, \textbf{Typical C}_{OSS} \ \, \textbf{Stored Energy} \\$

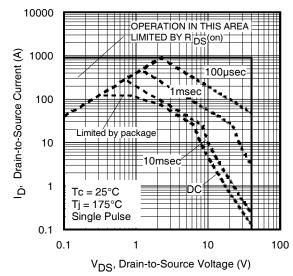


Fig 8. Maximum Safe Operating Area

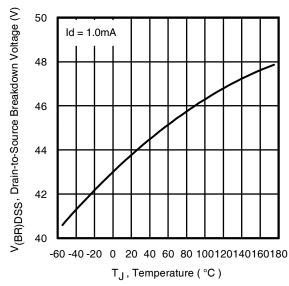


Fig 10. Drain-to-Source Breakdown Voltage

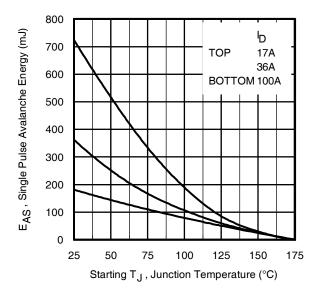


Fig 12. Maximum Avalanche Energy vs. DrainCurrent

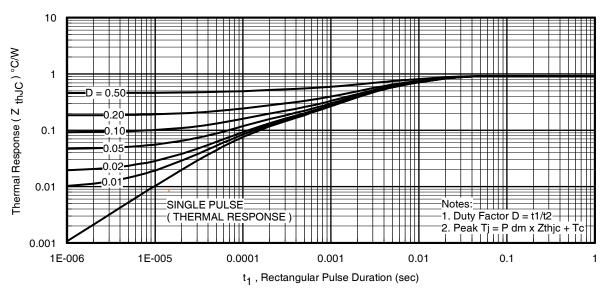


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

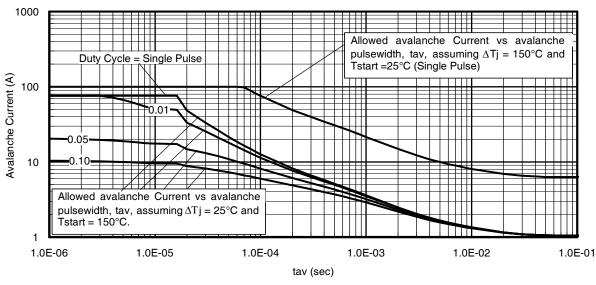


Fig 14. Typical Avalanche Current vs. Pulsewidth

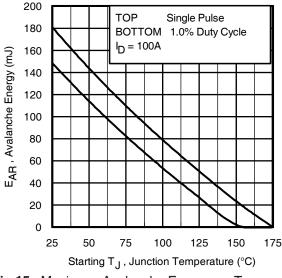


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15 (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 24a, 24b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
 - t_{av =} Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

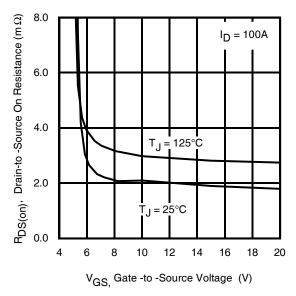


Fig 16. On-Resistance vs. Gate Voltage

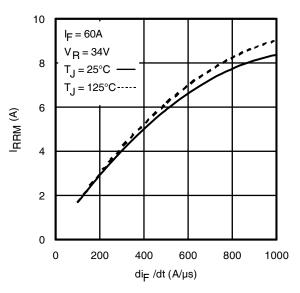


Fig. 18 - Typical Recovery Current vs. dif/dt

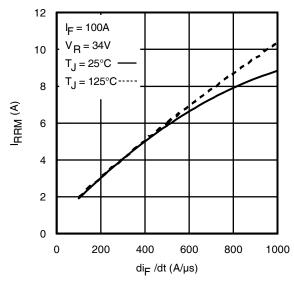


Fig. 20 - Typical Recovery Current vs. dif/dt

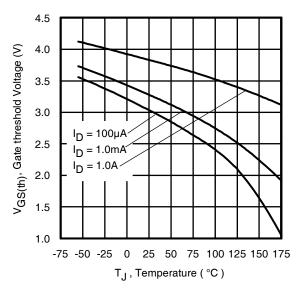


Fig 17. Threshold Voltage vs. Temperature

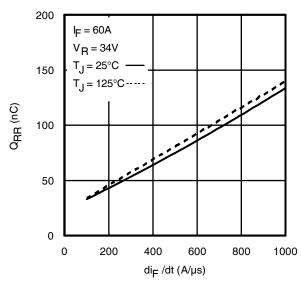


Fig. 19 - Typical Stored Charge vs. dif/dt

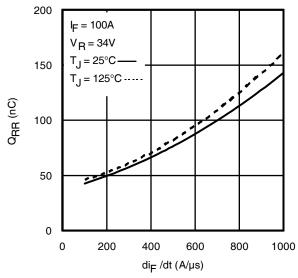


Fig. 21 - Typical Stored Charge vs. dif/dt



Fig 22. Typical On-Resistance vs. Drain Current

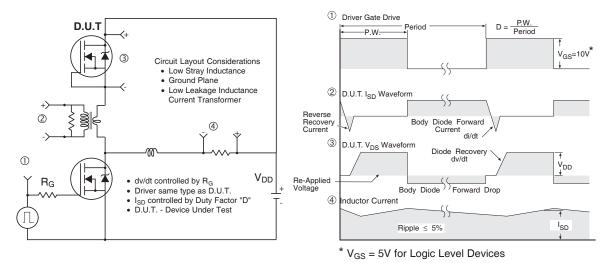


Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

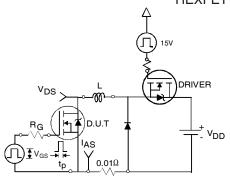


Fig 24a. Unclamped Inductive Test Circuit

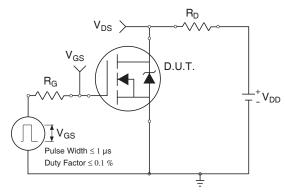


Fig 25a. Switching Time Test Circuit

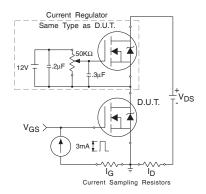


Fig 26a. Gate Charge Test Circuit

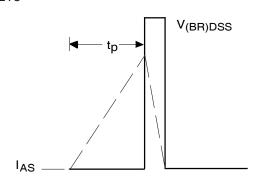


Fig 24b. Unclamped Inductive Waveforms

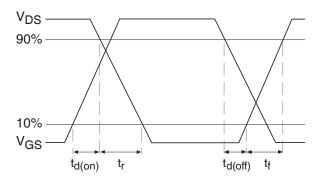


Fig 25b. Switching Time Waveforms

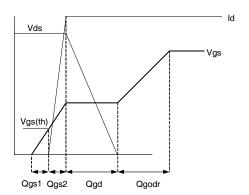
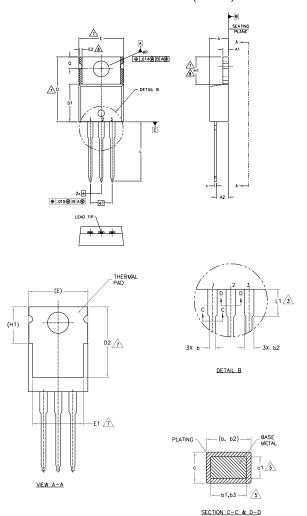
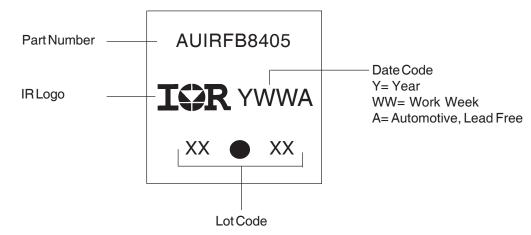



Fig 26b. Gate Charge Waveform

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)



- DIMENSIONING AND TOLERANCING AS PER ASME Y14,5 M- 1994,
 DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS],
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY,
- MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY, DIMENSION B1, B3 & c1 APPLY TO BASE METAL ONLY, CONTROLLING DIMENSION: INCHES. THERMAL PAD CONTIDUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 DIMENSION EX X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIMETERS		INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	3.56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	,115		
b	0.38	1.01	.015	.040		
ь1	0.38	0.97	.015	.038	5	
b2	1.14	1.78	.045	.070		
b3	1,14	1.73	.045	.068	5	
С	0.36	0.61	.014	.024		
c1	0.36	0,56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0,76	-	,030	8	
e	e 2.54 BSC .100 BSC		BSC			
e1	5.08	BSC	.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12,70	14,73	.500	.580		
L1	3,56	4.06	.140	.160	3	
ØΡ	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		

LEAD ASSIGNMENTS HEXFET IGBTs. CoPACK 1.- GATE 2.- COLLECTOR 3.- EMITTER DIODES

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

			Automotive					
		(per AEC-Q101)						
			s part number(s) passed Automotive qualification. IR's sumer qualification level is granted by extension of the higher					
		TO-220	N/A					
	Machine Model	Class M3 (+/- 400V) ^{††}						
		AEC-Q101-002						
	Human Body Model	Class H1C (+/- 2000V) ^{††}						
ESD		AEC-Q101-001						
	Charged Device Model	Class C5 (+/- 2000V) ^{††}						
		AEC-Q101-005						
RoHS Complia	ant	Yes						

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/

^{††} Highest passing voltage.

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLDHEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com