

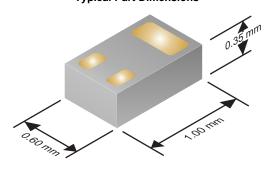
CSD13381F4

SLPS448C - JULY 2013 - REVISED OCTOBER 2014

CSD13381F4 12 V N-Channel FemtoFET™ MOSFET

Features

- Low On-Resistance
- Low Q_q and Q_{qd}
- Low Threshold Voltage
- Ultra-Small Footprint (0402 Case Size)
 - 1.0 mm × 0.6 mm
- Ultra-Low Profile
 - 0.35 mm Height
- Integrated ESD Protection Diode
 - Rated >4 kV HBM
 - Rated >2 kV CDM
- Lead and Halogen Free
- **RoHS Compliant**


2 Applications

- Optimized for Load Switch Applications
- Optimized for General Purpose Switching **Applications**
- Single-Cell Battery Applications
- Handheld and Mobile Applications

3 Description

This 140 mΩ, 12 V N-channel FemtoFET™ MOSFET technology is designed and optimized to minimize the footprint in many handheld and mobile applications. This technology is capable of replacing standard small signal MOSFETs while providing at least a 60% reduction in footprint size.

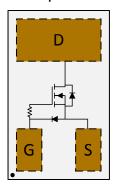
Typical Part Dimensions

Product Summary

T _A = 25°	°C	TYPICAL VA	UNIT	
V_{DS}	Drain-to-Source Voltage 12		٧	
Q_g	Gate Charge Total (4.5 V)	1060		pC
Q_{gd}	Gate Charge Gate-to-Drain	140		рС
		V _{GS} = 1.8 V	310	mΩ
R _{DS(on)}	Drain-to-Source On-Resistance	$V_{GS} = 2.5 \text{ V}$	170	mΩ
		V _{GS} = 4.5 V 140		mΩ
V _{GS(th)}	Threshold Voltage	0.85		V

Ordering Information⁽¹⁾

Device	Qty	Media	Package	Ship
CSD13381F4	3000	7-Inch	Femto (0402) 1.0 mm x	Tape and
CSD13381F4T	250	Reel	0.6 mm SMD Lead Less	Reel


(1) For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

$T_A = 25$	°C unless otherwise stated	VALUE	UNIT
V _{DS}	Drain-to-Source Voltage	12	V
V _{GS}	Gate-to-Source Voltage	8	V
I_D	Continuous Drain Current, T _A = 25°C ⁽¹⁾	2.1	Α
I _{DM}	Pulsed Drain Current, T _A = 25°C ⁽²⁾	7	Α
1	Continuous Gate Clamp Current	35	m ^
l _G	Pulsed Gate Clamp Current ⁽²⁾	350	mA
P_D	Power Dissipation ⁽¹⁾	500	mW
ESD	Human Body Model (HBM)	4	kV
Rating	Charged Device Model (CDM)	2	kV
T _J , T _{stg}	Operating Junction and Storage Temperature Range	-55 to 150	°C
E _{AS}	Avalanche Energy, single pulse I_D = 7.4 A, L = 0.1 mH, R_G = 25 Ω	2.7	mJ

- (1) Typical $R_{\theta JA} = 90^{\circ}\text{C/W}$ on 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu pad on a 0.06 inch (1.52 mm) thick FR4 PCB.
- (2) Pulse duration ≤300 µs, duty cycle ≤2%

Top View

Table of (Contents
------------	----------

1	Features 1		6.1 Trademarks
2	Applications 1		6.2 Electrostatic Discharge Caution
	Description 1		6.3 Glossary
	Revision History2	7	Mechanical Data
	Specifications		7.1 Mechanical Dimensions
Ŭ	5.1 Electrical Characteristics		7.2 Recommended Minimum PCB Layout
6	5.2 Thermal Information		7.4 CSD13381F4 Embossed Carrier Tape Dimensions
6	· · · · · · · · · · · · · · · · · · ·		Dimensions

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (February 2014) to Revision C Corrected timing V _{DS} to read 6 V Changes from Revision A (November 2013) to Revision B Added I _G parameter Lowered I _{DSS} limit Lowered I _{GSS} limit Changes from Original (July 2013) to Revision A Updated device ordering information Changed test voltage conditions	Page
Corrected timing V _{DS} to read 6 V	3
Changes from Revision A (November 2013) to Revision B	Page
Lowered I _{DSS} limit	3
Lowered I _{GSS} limit	3
Changes from Original (July 2013) to Revision A	Page
Changed test voltage conditions	3
Changed Figure 4 Gate Charge graph	5

Submit Documentation Feedback

5 Specifications

5.1 Electrical Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC	CHARACTERISTICS					
BV _{DSS}	Drain-to-Source Voltage	V _{GS} = 0 V, I _{DS} = 250 μA	12			V
I _{DSS}	Drain-to-Source Leakage Current	V _{GS} = 0 V, V _{DS} = 9.6 V			100	nA
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS} = 4 V			50	nA
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{DS} = V_{GS}, I_{DS} = 250 \mu A$	0.65	0.85	1.10	V
		V _{GS} = 1.8 V, I _{DS} =0.5 A		310	400	mΩ
R _{DS(on)}	Drain-to-Source On-Resistance	V _{GS} = 2.5 V, I _{DS} =0.5 A		170	225	mΩ
	Christanee	V _{GS} = 4.5 V, I _{DS} = 0.5 A		140	180	mΩ
g_{fs}	Transconductance	V _{DS} = 6 V, I _{DS} = 0.5 A		3.2		S
DYNAMI	C CHARACTERISTICS					
C _{iss}	Input Capacitance		155		200	pF
C _{oss}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 6 \text{ V}, $ f = 1 MHz		47 2.5		pF
C _{rss}	Reverse Transfer Capacitance	J = 1 Wil 12			3.3	pF
R_G	Series Gate Resistance			23		Ω
Qg	Gate Charge Total (4.5 V)			1060	1400	рС
Q _{gd}	Gate Charge Gate-to-Drain	V 0V I 05 A		140		рС
Q_{gs}	Gate Charge Gate-to-Source	$V_{DS} = 6 \text{ V}, I_{DS} = 0.5 \text{ A}$	0.65 0.85 310 170 140 3.2 155 47 2.5 23 1060		рС	
Q _{g(th)}	Gate Charge at V _{th}				рС	
Q _{oss}	Output Charge	V _{DS} = 6 V, V _{GS} = 0 V		1120		рС
t _{d(on)}	Turn On Delay Time			3.7		ns
t _r	Rise Time	$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V},$		1.5		ns
t _{d(off)}	Turn Off Delay Time	$I_{DS} = 0.5 \text{ A,R}_{G} = 2 \Omega$		1.5 11.0		ns
t_f	Fall Time			3.8		ns
DIODE C	HARACTERISTICS				•	
V _{SD}	Diode Forward Voltage	I _{SD} = 0.5 A, V _{GS} = 0 V		0.73	0.9	V
Q _{rr}	Reverse Recovery Charge	V 6 V I 0 5 A di/dt 200 A/··-		1550		рС
t _{rr}	Reverse Recovery Time	V_{DS} = 6 V, I _F = 0.5 A, di/dt = 300 A/µs		6		ns

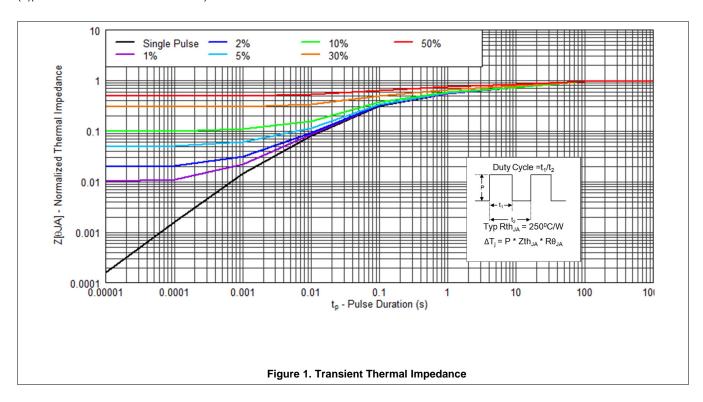
5.2 Thermal Information

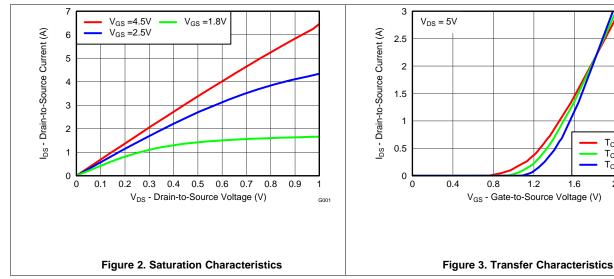
(T_A = 25°C unless otherwise stated)

	THERMAL METRIC	TYPICAL VALUES	UNIT
_	Junction-to-Ambient Thermal Resistance ⁽¹⁾	90	9 0 AA4
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance (2)	250	°C/W

⁽¹⁾ Device mounted on FR4 material with 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu.

Copyright © 2013–2014, Texas Instruments Incorporated


Submit Documentation Feedback

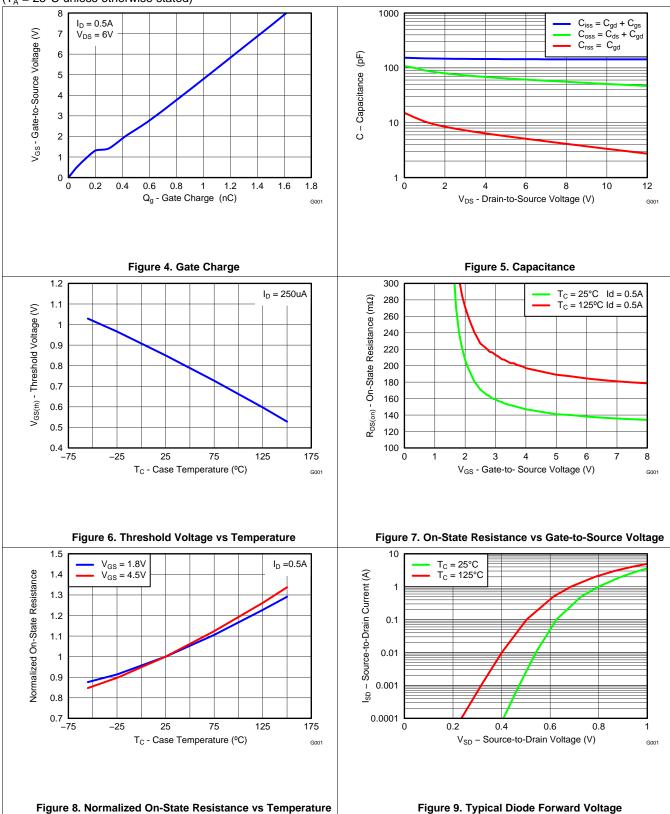

⁽²⁾ Device mounted on FR4 material with minimum Cu mounting area.

5.3 Typical MOSFET Characteristics

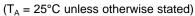
(T_A = 25°C unless otherwise stated)

Submit Documentation Feedback

Copyright © 2013–2014, Texas Instruments Incorporated


 $T_C = 125$ °C

 $T_C = 25$ °C $T_C = -55$ °C


Typical MOSFET Characteristics (continued)

(T_A = 25°C unless otherwise stated)

Typical MOSFET Characteristics (continued)

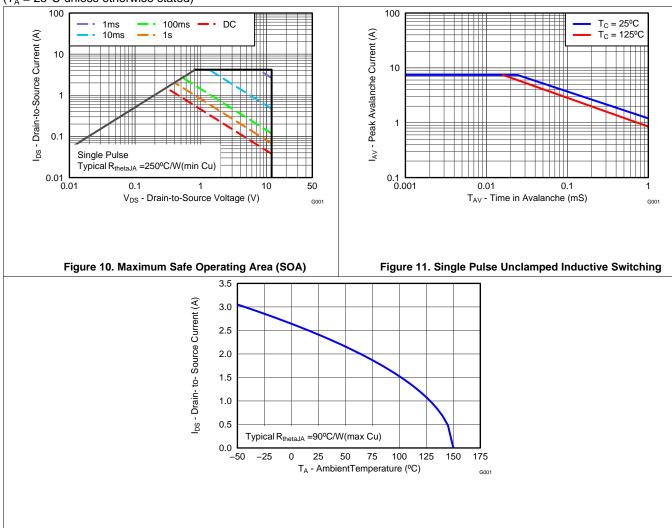


Figure 12. Maximum Drain Current vs Temperature

6 Device and Documentation Support

6.1 Trademarks

FemtoFET is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

6.2 Electrostatic Discharge Caution

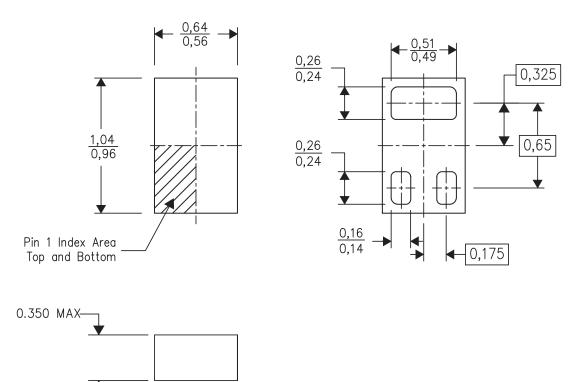
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.3 Glossary

SLYZ022 — TI Glossary.

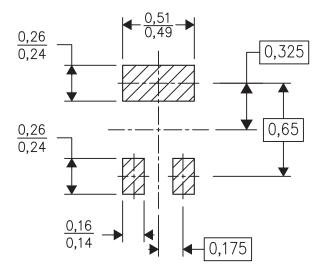
This glossary lists and explains terms, acronyms, and definitions.

Copyright © 2013–2014, Texas Instruments Incorporated

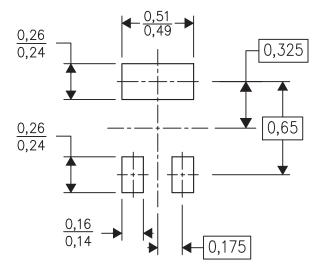

Submit Documentation Feedback

7 Mechanical Data

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

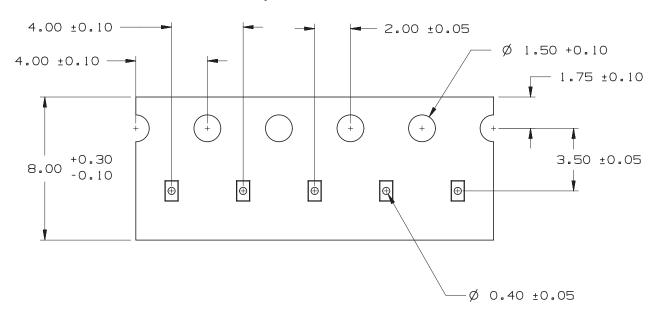

7.1 Mechanical Dimensions

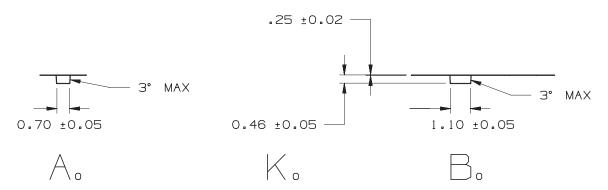
- (1) All linear dimensions are in millimeters (dimensions and tolerancing per AME T14.5M-1994).
- (2) This drawing is subject to change without notice.
- (3) This package is a PB-free solder land design.



7.2 Recommended Minimum PCB Layout

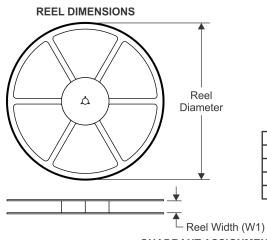
(1) All dimensions are in millimeters.

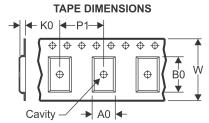

7.3 Recommended Stencil Pattern



(1) All dimensions are in millimeters.

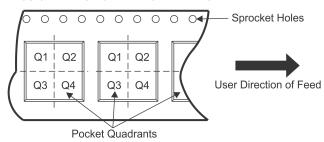
7.4 CSD13381F4 Embossed Carrier Tape Dimensions



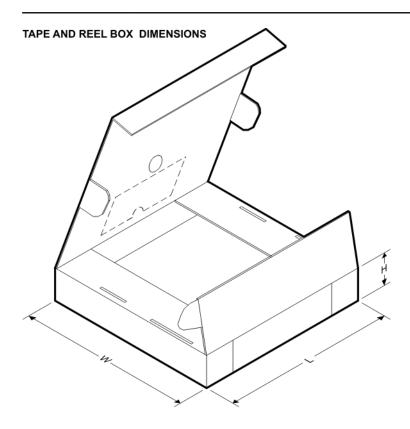

(1) Pin 1 is oriented in the top-right quadrant of the tape enclosure (quadrant 2), closest to the carrier tape sprocket

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Sep-2014


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD13381F4	PICOST AR	YJC	3	3000	180.0	8.4	0.7	1.1	0.46	4.0	8.0	Q2

www.ti.com 29-Sep-2014

*All dimensions are nominal

Device	Package Type	Package Drawing Pi		SPQ	Length (mm)	Width (mm)	Height (mm)
CSD13381F4	PICOSTAR	YJC	3	3000	182.0	182.0	17.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com