COMPLIANT

High-Speed, Low ron, SPDT Analog Switch

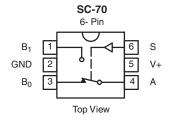
(2:1 Multiplexer)

DESCRIPTION

The DG2307 is a single-pole-double-throw switch/2:1 mux designed for 2 to 5.5 V applications. Using Vishay Siliconix proprietary sub-micro CMOS process, the DG2307 achieves low on-resistance, low power consumption. It is 1.6 V TTL logic compatible across the operation voltage range. With its low $r_{\mbox{\scriptsize ON}}$ and low parasitic capacitance character, it is ideal for clock signal and high speed data stream switching. It has low insertion lost and negligible propagation delay.

The DG2307 can handle both analog and digital signals and permits signals to be transmitted in either direction. When Bn pin is at off status, the path will have a high impedance with respect to the output. Break before make is guaranteed.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100 % matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.


FEATURES

- Operates From Single 2 ~ 5.5 V
- SC70-6 Package
- 5 Ω Switch Connection Between Ports
- Minimal Propagation Delay
- TTL Compatible Input Level
- · RoHS Compliant

APPLICATIONS

- · Cellular Phones
- PDAs
- GPS
- MP3
- Data Acquisition

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: G1

TRUTH TABLE					
Logic Input (S)	Function				
0	B ₀ Connected to A				
1	B ₁ Connected to A				

ORDERING INFORMATION						
Temp Range	Package Part Number					
- 40 to 85 °C	SC70-6	DG2307DL-T1-E3				

Document Number: 73361 S-70852-Rev. B, 30-Apr-07

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS					
Parameter		Limit	Unit		
Reference V+ to GND		- 0.3 to + 6	V		
S, A, B ^a		- 0.3 to (V+ + 0.3 V)	V		
Continuous Current (Any terminal)		± 50	A		
Peak Current (Pulsed at 1 ms, 10 % duty cycle)		± 200	mA mA		
Storage Temperature	(D Suffix)	- 65 to 150	°C		
Power Dissipation (Packages) ^b	6-Pin SC70 ^c	250	mW		

Notes:

- a. Signals on A, or B or S exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 3.1 mW/°C above 70 °C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS									
		Test Conditions Otherwise Unless Specified			Limits - 40 to 85 °C				
Parameter	Symbol	V+ = 3.0 V,	$V_S = 0.25 \text{ V to } 0.7 \text{ V+}^e$	Temp ^a	Min ^b	Typ ^c	Max ^b	Unit	
DC Characteristics									
High Level Input Voltage	V_{SH}	V+	= 2.3 to 5.5 V	Full	0.7 V+			V	
Low Level Input Voltage	V_{SL}	V+	= 2.3 to 5.5 V	Full			0.3 V+	ľ	
			$V_{BN} = 0 \text{ V}, I_{A} = -30 \text{ mA}$	Full		4	6		
On Desistance	В	V+ = 4.5 V	V _{BN} = 2.3 V, I _A = - 30 mA	Full		9	12	1	
On Resistance R _{ON}	LON	R _{ON}	V _{BN} = 0 V, I _A = - 24 mA	Full		6	9		
	V+ = 3.0 V	V _{BN} = 1.5 V, I _A = - 24 mA	Full		13.5	20	Ω		
On Resistance Matching	A.D.	V+ = 4.5 V, V _{BN} = 0 V, I _A = - 30 mA		Room		0.32			
Between Channels	ΔR_{ON}	$V+ = 3.0 \text{ V}, V_{BN} = 0 \text{ V}, I_{A} = -24 \text{ mA}$		Room		0.31			
Input Leakage Current	Is	V+ = 5.5 V, V _A = 5.5 V		Room Full	- 0.1 - 1.0		0.1 - 1.0		
Off Stage Switch Leakage	I _{BN(off)}	$V+ = 5.5 \text{ V}, V_A/V_B = 0 \text{ V}/5.5 \text{ V}$		Room Full	- 0.1 - 1.0		0.1	μΑ	
On State Switch Leakage	I _{BN(on)}	$V+ = 5.5 \text{ V}, V_A/V_B = 0 \text{ V}/5.5 \text{ V}$		Room Full	- 0.1 - 1.0		0.1 - 1.0		
Power Supply									
Power Supply Range	V+			Full	2		5.5		
Quiescent Supply Current	l+	$V+ = 5.5 \text{ V}, V_A = V_B = V+ \text{ or GND}$		Room Full			1 10	μΑ	

SPECIFICATIONS								
		Test Conditions Otherwise Unless Specified V+ = 3.0 V, V _S = 0.25 V to 0.7 V+ ^e			-	Limits 40 to 85 °	°C	
Parameter	Symbol			Temp ^a	Min ^b	Typ ^c	Max ^b	Unit
AC Electrical Characteristics								•
		V _A = 0 V	V+ = 2.3 to 2.7 V	Full		1.2		
Prop Delay Time ^f	t _{PHL} /t _{PLH}		V+ = 3.0 to 3.6 V	Full		0.8		
			V+ = 4.5 to 5.5 V	Full		0.3		
		$V_{LOAD} = 2 \times V + \text{ for } t_{PZL}$ $V_{LOAD} = 0 \text{ V for } t_{PZH}$	V+ = 2.3 to 2.7 V	Room Full		5.9 6.2		
Output Enable Time ^f	t _{PZL} /t _{PZH}		V+ = 3.0 to 3.6 V	Room Full		4.1 4.5		
			V+ = 4.5 to 5.5 V	Room Full		2.6 2.9		ns
Output Disable Time ^f t _{Pl}		$V_{LOAD} = 2 \times V + \text{ for } t_{PLZ}$ $V_{LOAD} = 0 \text{ V for } t_{PHZ}$ $V_{+} = 0$	V+ = 2.3 to 2.7 V	Room Full		5.9 6.2		
	t _{PLZ} /t _{PHZ}		V+ = 3.0 to 3.6 V	Room Full		4.1 4.5		
			V+ = 4.5 to 5.5 V	Room Full		2.6 2.9		
		V+ = 2.3 to 2.7 V		Full	0.5			
Break-Before-Make Time ^d	t _{BBM}	V+ = 3.0 to 3.65 V		Full	0.5			
		V+ = 4.5 t		Full	0.5			
Charge Injection ^d	Q	$C_L = 0.1 \text{ nF, } V_{GEN} = 0 \text{ V}$	V+ = 5 V	Room		7		рС
Charge Injection	Q	$R_{GEN} = 0 \Omega$	V+ = 3.3 V	Room		3		ρΟ
Analog Switch Characteristics	s							
Off Isolation ^d	OIRR	V+ = 5 V, R ₁ = 50) O f = 10 MHz	Room		- 57.6		dB
Crosstalk ^d	X _{TALK}	V+ = 5 V, TiL = 50	7 52, 1 — 10 IVII IZ	Room		- 58.7		ub
- 3 db Bandwidth ^d	BW	$R_L = 50 \Omega$		Room		250		MHz
Capacitance								
Control Pin Capacitance ^d	C _{IN}	V+ = 0 V		Room		4.9		
B Port Off Capacitance ^d	C _{IO-B}			Room		6.5		ne.
A Port Capacitance When Switch Enable ^d	C _{IO-A(on)}	V+ = 5 V		Room		18.5		. pF

Notes:

- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, nor subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Guaranteed by design and not production tested. The bus switch propagation delay is a function of the RC time constant contributed by the on-resistance and the specified load capacitance with an ideal voltage source (zero output impedance) driving the switch.

Vishay Siliconix

LOGIC DIAGRAM (POSITIVE LOGIC)

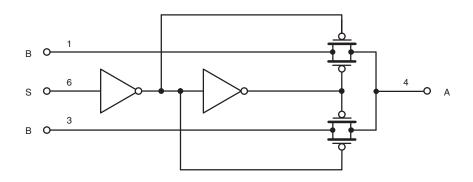
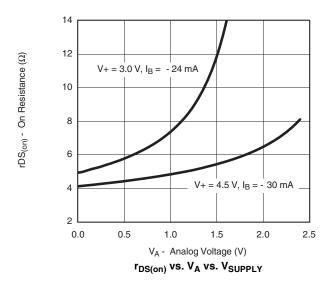
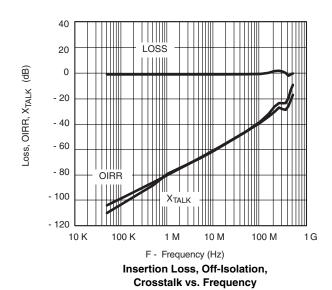
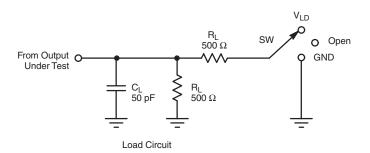




Figure 1.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

AC LOADING AND WAVEFORMS

TEST	SW
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V_{LD}
t _{PHZ} /t _{PZH}	GND

Figure 2. AC Test Circuit

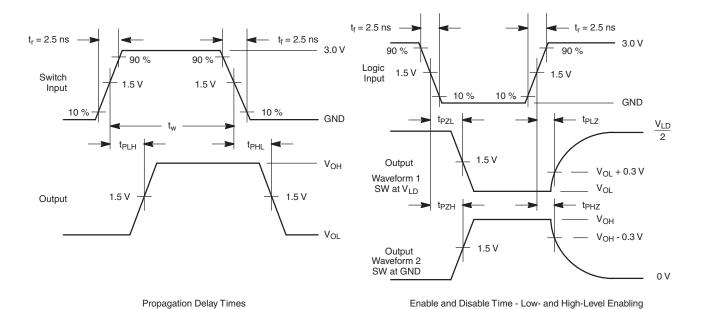
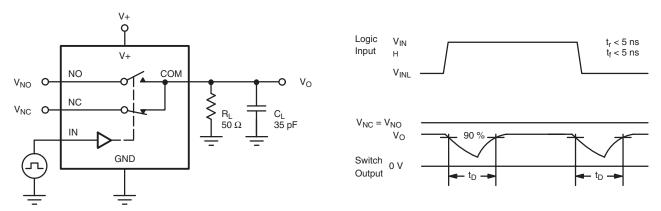


Figure 3. AC Waveforms


Notes

- a. $\ensuremath{C_L}$ includes probe and jig capacitance.
- b. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- c. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- d. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$.
- e. The outputs are measured one at a time with one transition per measurement.
- f. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- g. $t_{\mbox{\scriptsize PZL}}$ and $t_{\mbox{\scriptsize PZH}}$ are the same as $t_{\mbox{\scriptsize dis}}$
- h. t_{PLH} and t_{PHL} are the same as t_{dis} .
- i. $V_{LD} = 2 V +$.

Vishay Siliconix

VISHAY.

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

Figure 4. Break-Before-Make Interval

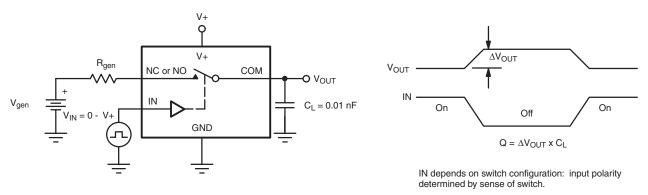


Figure 5. Charge Injection

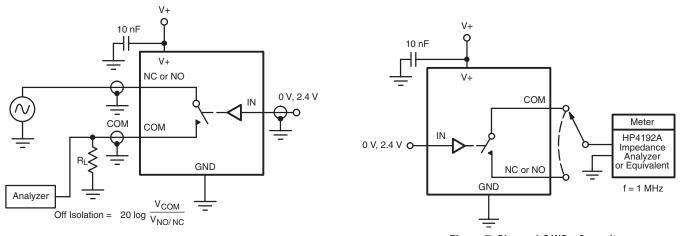


Figure 6. Off-Isolation

Figure 7. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73361.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com