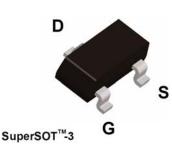
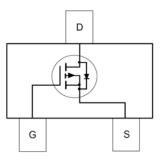


FDN86265P P-Channel PowerTrench[®] MOSFET -150 V, -0.8 A, 1.2 Ω

Features

- Max r_{DS(on)} = 1.2 Ω at V_{GS} = -10 V, I_D = -0.8 A
- Max $r_{DS(on)}$ = 1.4 Ω at V_{GS} = -6 V, I_D = -0.7 A
- Very low RDS-on mid voltage P-channel silicon technology optimised for low Qg
- This product is optimised for fast switching applications as well as load switch applications
- 100% UIL tested
- RoHS Compliant




General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been optimized for the on-state resistance and yet maintain superior switching performance.

Applications

- Active Clamp Switch
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage	-150	V		
V _{GS}	Gate to Source Voltage		±25	V	
	-Continuous	(Note 1a)	-0.8	•	
D	-Pulsed		-5	— A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	6	mJ	
P _D	Power Dissipation	(Note 1a)	1.5	14/	
	Power Dissipation	(Note 1b)	0.6	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

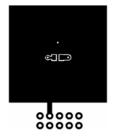
Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	75	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	0/10

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
265	FDN86265P	SSOT-3	7 "	8 mm	3000 units

May 2014


FDN86265P
P-Channel
PowerTrench ⁽⁾
[®] MOSFET

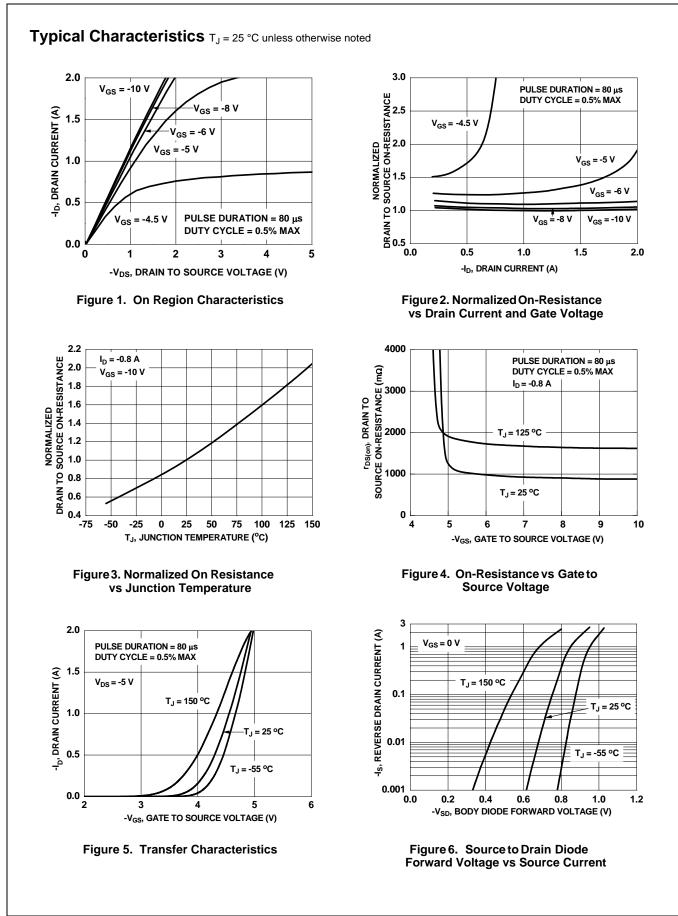
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-150			V
$\Delta BV_{DSS} \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-129		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -120 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	ICTERISTICS (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-2	-3.3	-4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		5		mV/°C
		V _{GS} = -10 V, I _D = -0.8 A		0.85	1.2	
r	Static Drain to Source On Resistance	$V_{GS} = -6 \text{ V}, \text{ I}_{D} = -0.7 \text{ A}$		0.96	1.4	Ω
rDS(on)		V _{GS} = -10 V, I _D = -0.8 A, T _J = 125 °C		1.54	2.2	- 52
9 _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -0.8 \text{ A}$		1.5		S
	Characteristics			450	010	- 5
Ciss	Input Capacitance	V _{DS} = -75 V, V _{GS} = 0 V,		158	210	pF
C _{oss}	Output Capacitance	f = 1 MHz		17	25 5	pF
C _{rss}	Reverse Transfer Capacitance Gate Resistance		0.1	1.6 3.3	6.7	pF Ω
R _g			0.1	5.5	0.7	52
	g Characteristics			6.7	10	
t _{d(on)}	Turn-On Delay Time Rise Time			5.7	12	ns
t _r	Turn-Off Delay Time	$V_{DD} = -75 \text{ V}, \text{ I}_{D} = -0.8 \text{ A},$ $V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		2.2 7.9	10 16	ns
t _{d(off)}	Fall Time	VGS = 10 V, KGEN = 0.12		9.9	20	ns
t _f Q _a	Total Gate Charge	$V_{} = 0 V t_{0} = 10 V$		9.9 2.9	4.1	ns nC
	Gate to Source Gate Charge	$V_{GS} = 0 V \text{ to -10 V}$ $V_{DD} = -75 V,$		0.8	7.1	nC
Q _{gs} Q _{gd}	Gate to Drain "Miller" Charge	I _D = -0.8 A		0.8		nC
Ƴgd	Sate to Brain Willer Onarge			0.0	I	
	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -0.8 A$ (Note 2)		-0.86	-1.3	V

Electrical Characteristics $T_J = 25 \text{ °C}$ unless otherwise noted

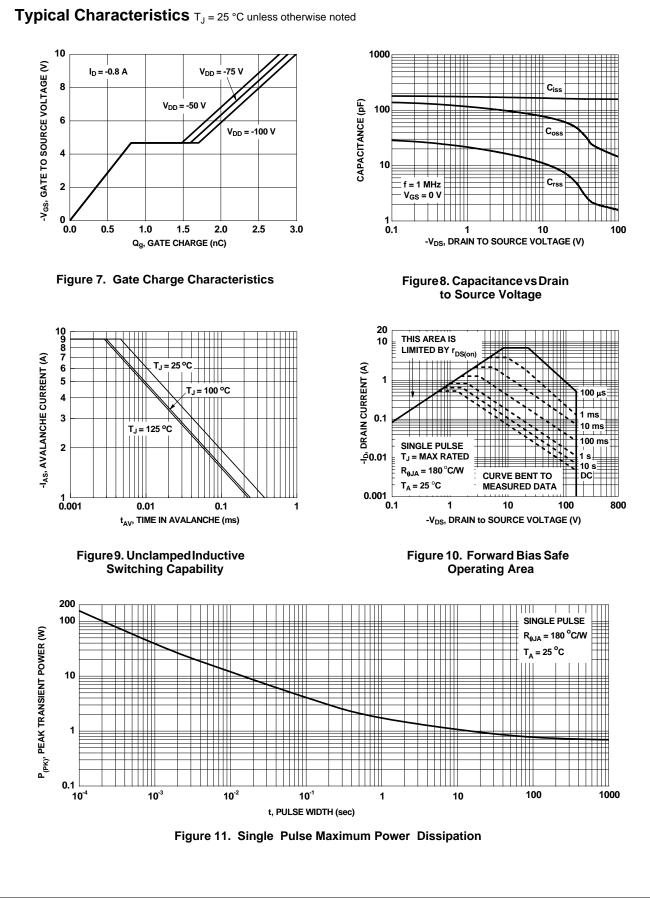
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -0.8 A$ (Note 2)	-0.86	-1.3	V
t _{rr}	Reverse Recovery Time	In = -0.8 A. di/dt = 100 A/us		ns	
Q _{rr}	Reverse Recovery Charge	$T_{F} = -0.6 \text{ A}, \text{ avat} = 100 \text{ A/}\mu\text{s}$	70	112	nC

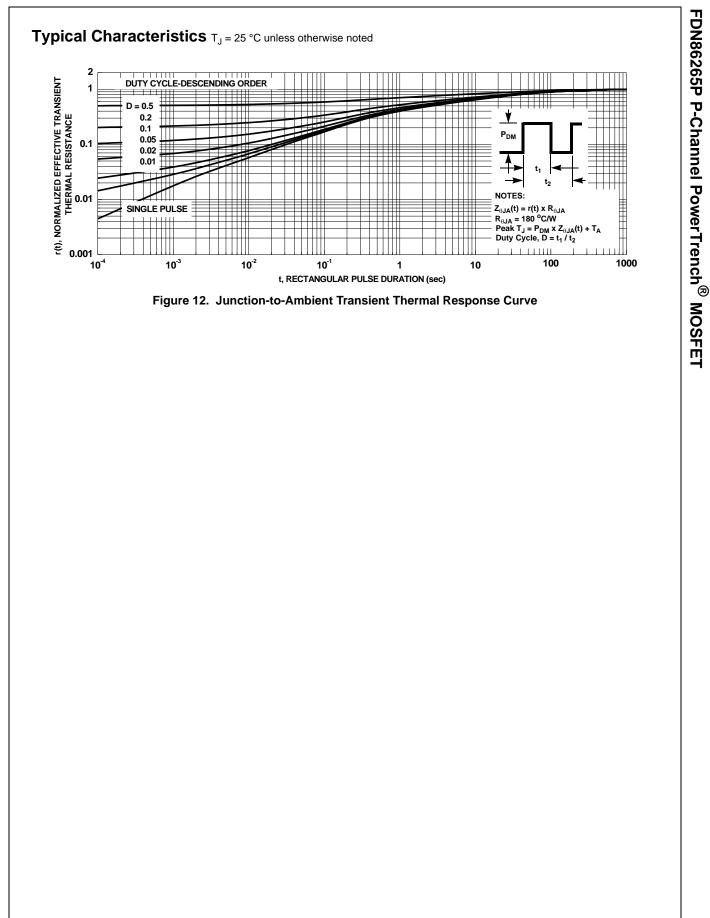
Notes: 1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


a) 80 °C/W when mounted on a 1 in² pad of 2 oz copper

3. Starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = -2 A, V_{DD} = -150 V, V_{GS} = -10 V. 100% test at L = 0.1 mH, I_{AS} = -9 A.




b) 180 °C/W when mounted on a minimum pad.

2

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com