

C3D10065ISilicon Carbide Schottky Diode

Z-REC™ RECTIFIER

 \mathbf{V}_{RRM} = 650 V $\mathbf{I}_{F}(\mathbf{T}_{c}=\mathbf{125}^{\circ}\mathbf{C}) = 10 \text{ A}$ \mathbf{Q}_{c} = 25 nC

Features

- 650-Volt Schottky Rectifier
- Ceramic Package provides 2.5kV isolation
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Positive Temperature Coefficient on V_F

Benefits

- Electrically Isolated Package
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

PIN 2O

Package

Applications

- HVAC
- Switch Mode Power Supplies

Part Number	Package	Marking
C3D10065I	Isolated TO-220-2	C3D10065I

Halogen-Free

Maximum Ratings (T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V _{RRM}	Repetitive Peak Reverse Voltage	650	V		
V _{RSM}	Surge Peak Reverse Voltage	650	V		
V _{DC}	DC Blocking Voltage	650	V		
$I_{\scriptscriptstyle \sf F}$	Continuous Forward Current	19 10 8.5	А	T _c =25°C T _c =125°C T _c =135°C	
I _{FRM}	Repetitive Peak Forward Surge Current	28.6 17.7	А	T_c =25°C, t_p =10 ms, Half Sine pulse T_c =110°C, t_p =10 ms, Half Sine pulse	
I _{FSM}	Non-Repetitive Peak Forward Surge Current	80 70	А	T_c =25°C, t_p =10 ms, Half Sine pulse T_c =110°C, t_p =10 ms, Half Sine pulse	
P_{tot}	Power Dissipation	60 26	W	T _c =25°C T _c =110°C	
Т,	Operating Junction Range	-55 to +175	°C		
T_{stg},T_{c}	Storage Temperature and Case Temperature	-55 to +150	°C		
	TO-220 Mounting Torque	1 8.8	Nm lbf-in	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.5 2.0	1.8 2.4	V	$I_F = 10 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 10 \text{ A } T_J = 175^{\circ}\text{C}$	
I _R	Reverse Current	12 24	60 220	μΑ	$V_R = 650 \text{ V } T_J = 25^{\circ}\text{C}$ $V_R = 650 \text{ V } T_J = 175^{\circ}\text{C}$	
Q _c	Total Capacitive Charge	25		nC	$V_R = 650 \text{ V, } I_F = 10 \text{ A}$ $di/dt = 500 \text{ A/}\mu\text{s}$ $T_J = 25^{\circ}\text{C}$	
С	Total Capacitance	480 50 42		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$	

Note:

Thermal Characteristics

Symbol	Parameter	Тур.	Unit
$R_{\theta JC}$	Package Thermal Resistance from Junction to Case	2.6	°C/W

Typical Performance

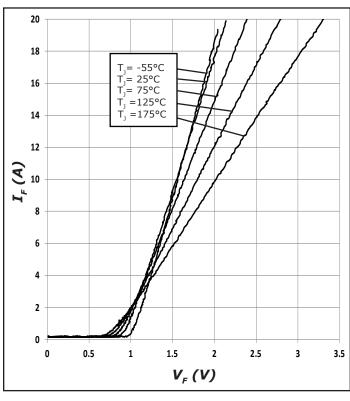


Figure 1. Forward Characteristics

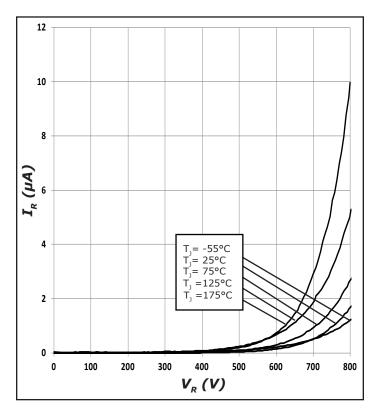
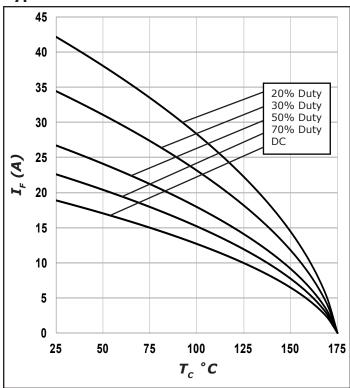



Figure 2. Reverse Characteristics

^{1.} This is a majority carrier diode, so there is no reverse recovery charge.

Typical Performance

50.0 40.0 20.0 10.0 20.0 10.0 25 50 75 100 125 150 175 T_c °C

Figure 3. Current Derating

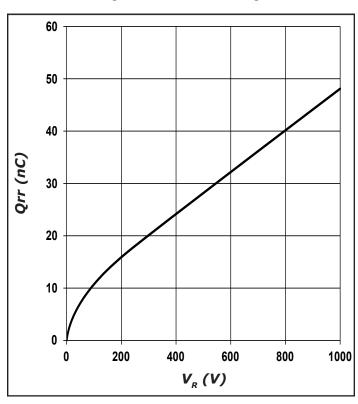


Figure 5. Recovery Charge vs. Reverse Voltage

Figure 4. Power Derating

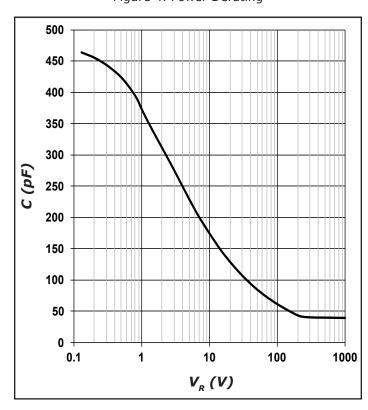


Figure 6. Capacitance vs. Reverse Voltage

Typical Performance

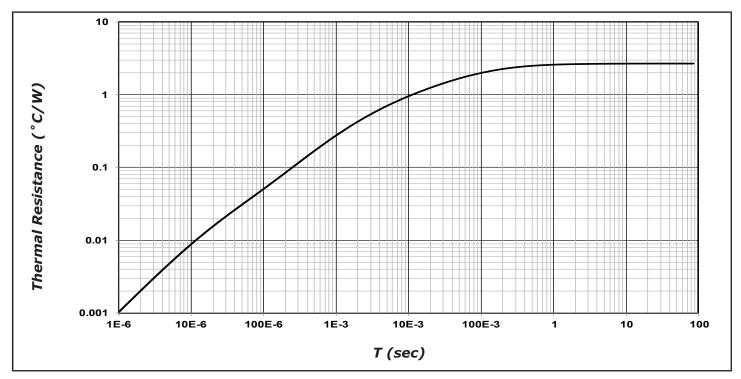
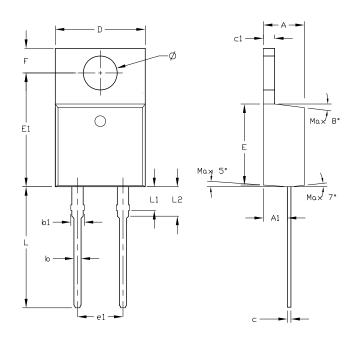


Figure 7. Transient Thermal Impedance

Diode Model

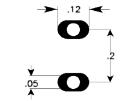

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$Vf_T = V_T + If^*R_T$$

$$V_T = 0.98 + (T_J^* - 1.6^*10^{-3})$$

$$R_T = 0.04 + (T_J^* 0.522^*10^{-3})$$

Note: T_i = Diode Junction Temperature In Degrees Celsius



Package Dimensions

Symbol	Dimension i	n Millimeters	Dimension in Inches		
Syllibol	Min	Max	Min	Max	
Α	4.420	4.720	0.174	0.186	
A1	2.520	2.820	0.099	0.111	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.360	0.460	0.014	0.018	
c1	1.170	1.370	0.046	0.054	
D	9.960	10.250	0.392	0.404	
E	8.990	9.290	0.354	0.366	
E1	12.550	12.850	0.494	0.506	
e1	4.980	5.180	0.196	0.204	
F	2.590	2.890	0.102	0.114	
L	13.080	13.480	0.515	0.531	
L1	2.470	2.870	0.097	0.113	
L2	3.200	3.600	0.126	0.142	
Ø	3.790	3.890	0.149	0.153	
θ1	Max 8°				
θ2	Max 7°				
θ3	Max 5°				
Т	Max 0	.0205	Max	0.52	

Recommended Solder Pad Layout

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Part Number	rt Number Package Marking	
C3D10065I	Isolated TO-220-2	C3D10065I

Note: Recommended soldering profiles can be found in the applications note here: http://www.cree.com/power_app_notes/soldering

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com