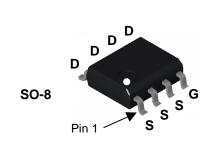
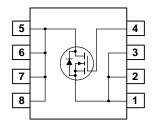
FDS4470

FAIRCHILD Semiconductor

40V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$ and fast switching speed.


Applications

• DC/DC converter

Features

- 12.5 A, 40 V. $R_{\text{DS(ON)}}$ = 9 m Ω @ V_{GS} = 10 V
- Low gate charge (45 nC)
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

125

25

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		40	V
V _{GSS}	Gate-Source Voltage		+30/-20	V
ID	Drain Current – Continuous	(Note 1a)	12.5	A
	– Pulsed		50	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.4	
		(Note 1c)	1.2	
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range	-55 to +175	°C
Therma	I Characteristics			
R _{AIA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W

R_{0JA} Thermal Resistance, Junction-to-Ambient (Note 1c) R_{0JC} Thermal Resistance, Junction-to-Case (Note 1)

Package Marking and Ordering Information

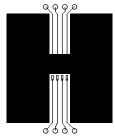
Device Marking	Device	Reel Size	Tape width	Quantity
FDS4470	FDS4470	13"	12mm	2500 units

©2006 Fairchild Semiconductor Corporation

°C/W

°C/W

FDS4470

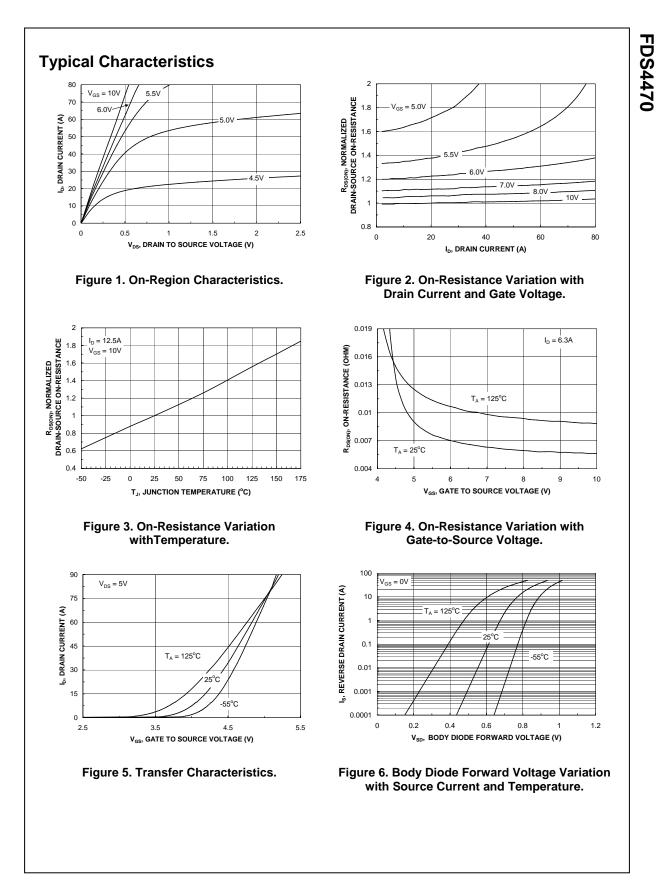

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	Durce Avalanche Ratings (Note 2	2)				
E _{AS}	Drain-Source Avalanche Energy	Single Pulse, V _{DD} =40V, I _D =12.5A			370	mJ
I _{AS}	Drain-Source Avalanche Current				12.5	А
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	40			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		42		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 32 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			1	μΑ
I _{GSSF}	Gate–Body Leakage, Forward	$V_{\text{GS}} = 30 \text{ V}, V_{\text{DS}} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	2	3.9	5	V
$\Delta V_{GS(th)} \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-8		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			6 9	9 14	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	25			A
g fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 12.5 \text{ A}$		45		S
Dvnamio	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$		2659		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		605		pF
C _{rss}	Reverse Transfer Capacitance	1		298		pF
	g Characteristics (Note 2)		1			
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 20 V, I_D = 1 A,$		14	25	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		12	22	ns
t _{d(off)}	Turn–Off Delay Time	1		37	59	ns
t _f	Turn–Off Fall Time			29	46	ns
Qg	Total Gate Charge	$V_{DS} = 20 V$, $I_{D} = 12.5 A$,		45	63	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		11.2		nC
Q _{gd}	Gate-Drain Charge	1		11		nC

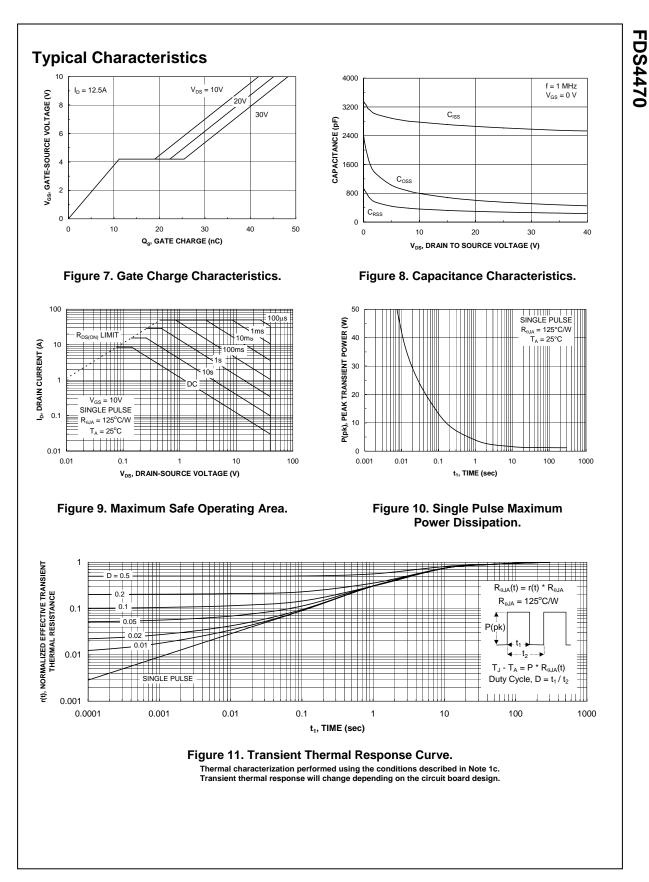
FDS4470

		1	1			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-S	ource Diode Characteristics a	Ind Maximum Ratings				
ls	Maximum Continuous Drain-Source Diode Forward Current				2.1	А
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 12.5 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		33		nS
Q _{rr}	Diode Reverse Recovery Charge		1	39		nC

Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.




b) 105°C/W when mounted on a .04 in² pad of 2 oz copper c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

FDS4470 Rev D1 (W)

FDS4470 Rev D1 (W)

SEMICONDUCTOR

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER [®]	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	VCX™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™	Wire™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	<i>i-L</i> o™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect [™]	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT [®]	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST®	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics [™]	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. A	-	µSerDes™	TruTranslation™	
The Power Franchis	se [®]	ScalarPump™	UHC [®]	
Programmable Activ	o Droop™			

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com