

December 2014

FSA1208 Low-Power, Eight-Port, High-Speed Isolation Switch

Features

Low On Capacitance: 6 pF Typical
 Low On Resistance: 15 Ω Typical

Low Power Consumption: 1 A Maximum

■ 10 µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN}=2.3 V, V_{CC}=4.3 V)

■ Wide -3 dB Bandwidth: > 400 MHz

 Packaged in Space-Saving 20-Lead MLP (2.5 x 4.5 mm)

 7.5 kV ESD Rating; >16 kV Power/GND ESD Rating

■ Low C_{OFF} Capacitance: 2.5 pF Typical

Applications

DIMM DDR Memory

Description

The FSA1208 is a low-power, eight-port, high-speed switch. This part is configured as a single-pole, single-throw switch and is optimized for isolating a high-speed source, such as a DDR memory bus. The FSA1208 features an extremely low on capacitance (C_{ON}) of 6 pF Superior channel-to-channel crosstalk minimizes interference.

The FSA1208 contains special circuitry on the A & B pins that allows the device to withstand an over-voltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{CC}). Applications include port isolation and switching in DDR memory modules, portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA1208BQX	F1208	-40 to +85°C	20-Lead, Quad, Molded Leadless Package (MLP), 2.5 x 4.5 mm

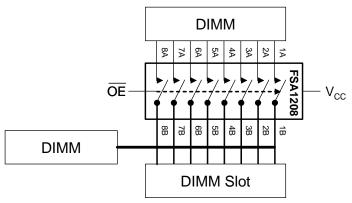
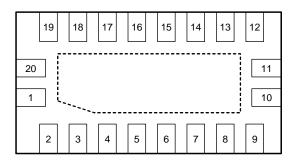



Figure 1. Analog Symbol

Pin Configurations

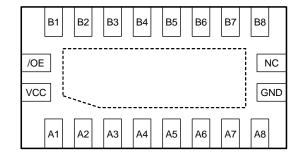


Figure 2. Pin Assignments for MLP (Top Through View)

Pin Definitions

Pin #	Name	Description	
20	/OE	Switch Enable	
2-9	A1-A8	A Side of Bus	
12-19	B8-B1	B Side of Bus	
11	NC	No Connection	
1	VCC	Power	
10	GND	Ground	

Truth Table

/OE	Function
HIGH	Disconnect
LOW	A1-A8=B1-B8

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.50	+5.25	V
V _{CNTRL}	DC Input Voltage (/OE) ⁽¹⁾		-0.50	Vcc	V
V_{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.50	5.25	V
I _{IK}	DC Input Diode Current	-50		mA	
I _{OUT}	DC Output Current			50	mA
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		7.5	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
LGD		Power to GND		16	ΚV
	Charged Device Model, JEDEC: JESD22-C10		2		

Note:

 The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.3	4.3	V
V _{CNTRL} ⁽²⁾	Control Input Voltage (S, /OE)	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	-0.5	Vcc	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Complete	Parameter	Conditions	V 00	T _A =- 40°C to +85°C			Units
Symbol		Conditions	V _{cc} (V)	Min.	Тур.	Max.	Jills
V _{IK}	Clamp Diode Voltage	I _{IN} =-18 mA	2.5			-1.2	V
VIH	Input Voltage High		2.3 to 3.6	1.3			V
VIH	Input Voltage High		4.3	1.7			V
V	Input Voltage Low		2.3 to 3.6			0.5	V
V _{IL}	Input Voltage Low		4.3			0.7	V
I _{IN}	Control Input Leakage	V _{SW} =0 to V _{CC}	4.3	-1		1	μA
l _{OZ}	Off State Leakage	0 ≤ A, B ≤ 3.6 V	4.3	-2		2	μA
D	Switch On Resistance ⁽³⁾	V _{SW} =0 V, I _{ON} =-10 mA Figure 3	2.5		7		Ω
R _{ON}	Switch Off Resistance	V _{SW} =1.8 V, I _{ON} =-10 mA Figure 3	2.5		15		Ω
Icc	Quiescent Supply Current	V _{IN} =0 or V _{CC} , I _{OUT} =0	4.3			1	μA
Ісст	Increase in I _{CC} Current Per Control Voltage and V _{CC}	V _{IN} =1.8 V	2.7			10	μΑ

Note:

AC Electrical Characteristics

All typical values are for V_{CC}=2.5 V at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V (\(\)	T _A =- 40°C to +85°C			Units
	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
t _{on}	Turn-On Time, /OE to Output	R_L =50 Ω , C_L =5 pF V_{SW} =1.8 V Figure 4, Figure 5	2.3 to 3.6		15	34	ns
t _{uff}	Turn-Off Time, /OE to Output	R_L =50 Ω , C_L =5 pF V_{SW} =1.8 V Figure 4, Figure 5	2.3 to 3.6		12	25	ns
t _{ad}	Propagation Delay ⁽⁴⁾	R_L =50 Ω , C_L =5 pF Figure 4, Figure 6	3.3		0.35		ns
O _{IRR}	Off Isolation	R_L =50 Ω, f=400 MHz Figure 11	2.3 to 3.6		-40		dB
Xtalk	Non-Adjacent Channel Crosstalk	R_L =50 Ω, f=100 MHz Figure 12	2.3 to 3.6		-40		dB
BW	0.10.0	R_L =50 Ω , C_L =0 pF Figure 10	2.3 to 3.6		1000		MHz
DVV	-3dB Bandwidth	R_L =50 Ω , C_L =5 pF Figure 10	2.3 10 3.0		750		MHz

Note:

4. Guaranteed by characterization.

^{3.} Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or B ports).

High-Speed-Related AC Electrical Characteristics

Symbol	Parameter	Conditions	V (V)	T _A =- 40°C to +85°C			l Inito
Symbol	Farameter		V _{cc} (V)	Min.	Тур.	Max.	Units
t _{SK(O)}	Channel-to-Channel Skew ⁽⁵⁾	C _L =5 pF	3.3		40	80	ps
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁵⁾	C _L =5 pF	3.3		15	40	ps
t _{SK(PKG)}	Package-to-Package Skew ⁽⁵⁾	C _L =5 pF	3.3		60	100	ps

Note:

5. Guaranteed by characterization.

Capacitance

Symbol	Parameter	Canditions	T _A =- 40°C to +85°C			Unito
	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =0.2 V, f=1 MHz		2.0		
Con	D+/D- On Capacitance	V _{CC} =2.5 V, /OE=0 V, f=1 MHz Figure 9		6.0		pF
C _{OFF}	D1n, D2n Off Capacitance	V _{CC} and /OE=2.5 V, f=1 MHz Figure 8		2.5		

Test Diagrams

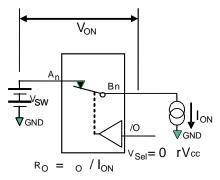
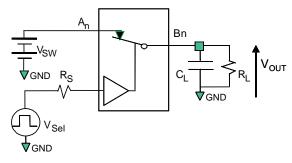



Figure 3. On Resistance

 R_L , R_S , and C_L are functions of the application environment (see AC tables for specific values). C_L includes test fixture and stray capacitance.

Figure 4. AC Test Circuit Load

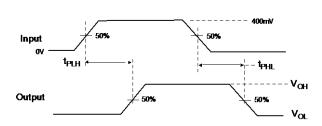


Figure 6. Propagation Delay $(t_{ry}t_o - 500ps)$

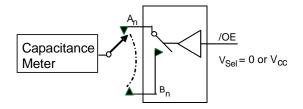


Figure 8. Channel Off Capacitance

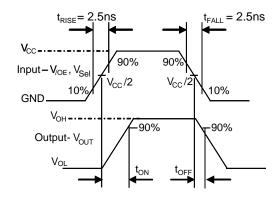


Figure 5. Turn-On / Turn-Off Waveforms

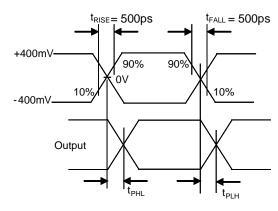


Figure 7. Intra-Pair Skew Test tSK(P)

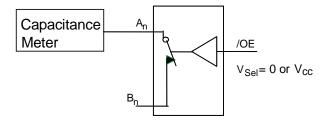


Figure 9. Channel On Capacitance

Test Diagrams (Continued)

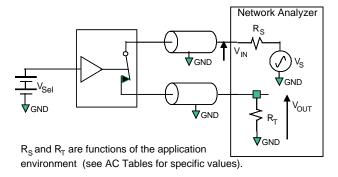


Figure 10. Bandwidth

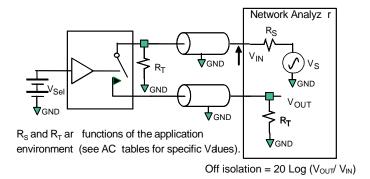


Figure 11. Channel Off Isolation

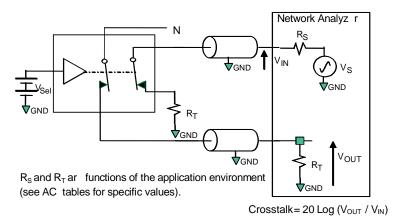
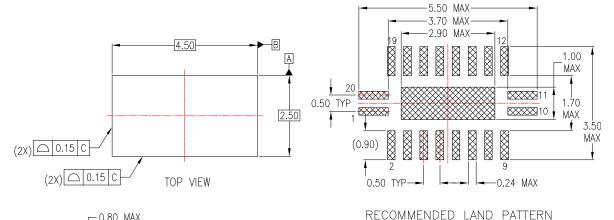
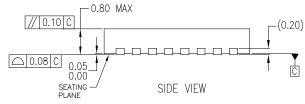
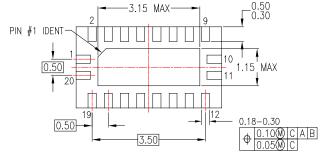





Figure 12. Non-Adjacent Channel-to-Channel Crosstalk

Physical Dimensions

NOTES:

BOTTOM VIEW

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP20BrevA

Figure 13. 20-Lead, Molded Leadless Package (MLP)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower¹ FRFET® AttitudeEngine™ Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™ Gmax™ CorePOWER™ GTO™ CROSSVOLT™ IntelliMAX™

CTL™ ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED[®] and Better[⊤] Dual Cool™ MegaBuck™

EcoSPARK®

MIČROCOUPLER™ EfficientMax™ MicroFET[™] ESBC™ MicroPak™ MicroPak2™ MillerDrive™ Fairchild® Motion Max™ Fairchild Semiconductor® Motion Grid® FACT Quiet Series™ MTi[®] FACT⁰ MTx® FAST[®] MVN® Fast∨Core™ mWSaver® FETBench™ OptoHiT™ **FPS™** OPTOLOGIC®

OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ Tran SiC™ TriFault Detect™

SYSTEM GENERAL®

uSerDes™ UHC[®]

TRUECURRENT®*

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XST Xsens™ 仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy, Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Delinition of Terris		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
,		

Rev. 173

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com