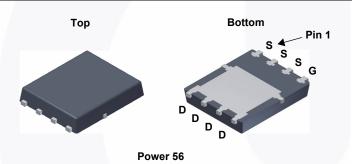


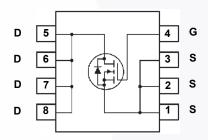
November 2013

FDMS030N06B

N-Channel PowerTrench[®] MOSFET 60 V, 100 A, 3 m Ω

Features


- $R_{DS(on)}$ = 2.4 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 50 A
- Advanced Package and Silicon Combination for Low R_{DS(on)} and High Efficiency
- · Fast Switching Speed
- · 100% UIL Tested
- · RoHS Compliant


Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench® process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- · Battery Protection Circuit
- · Motor drives and Uninterruptible Power Supplies
- · Renewable system

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FDMS030N06B	Unit	
V _{DSS}	Drain to Source Voltage			60	V	
V _{GSS}	Gate to Source Voltage			±20	V	
	Drain Current	- Continuous (T _C = 25°C)	(Note1)	100	۸	
Drain Current	- Continuous (T _A = 25°C)	(Note 2a)	22.1	Α		
I _{DM}	Drain Current	- Pulsed	(Note 3)	400	Α	
E _{AS}	Single Pulsed Avalanche Energ	у	(Note 4)	248	mJ	
D	Dawer Dissination	(T _C = 25°C)		104	W	
P _D Power Dissipation		(T _A = 25°C)	(Note 2a)	2.5	W	
T _J , T _{STG}	Operating and Storage Tempera	ature Range		-55 to +150	οС	

Thermal Characteristics

Symbol	Parameter	FDMS030N06B	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.2	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max. (Note 2a) 50		30/00

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS030N06B	FDMS030N06B	Power 56	13 "	12 mm	3000 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Parameter	Test Conditions	Min.	Тур.	Max.	Unit
cteristics					
Drain to Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0\text{V}$	60	-	-	V
Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.03	-	V/°C
Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V	-	-	1	μΑ
Gate to Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA
	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	Cteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$ Zero Gate Voltage Drain Current $V_{DS} = 48 V$, $V_{GS} = 0 V$	Cteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0V$ 60 Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$ - Zero Gate Voltage Drain Current $V_{DS} = 48 V$, $V_{GS} = 0 V$ -	Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ 60 - Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to 25°C - 0.03 Zero Gate Voltage Drain Current $V_{DS} = 48 V$, $V_{GS} = 0 V$ - -	

On Characteristics

$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$	2.5	3.3	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$	-	2.4	3.0	$m\Omega$
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 50 A	-	119	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	.,	-	5685	7560	pF
C _{oss}	Output Capacitance	V _{DS} = 30 V, V _{GS} = 0 V f = 1 MHz	-	1720	2290	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1011 12	-	59	-	pF
C _{oss} (er)	Engry Releted Output Capacitance	V _{DS} = 30 V, V _{GS} = 0 V	-	2504	-	pF
Q _{g(tot)}	Total Gate Charge at 10V		-\	75	-	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DS} = 30 \text{ V}, I_{D} = 50 \text{ A}$	- \	30	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{GS} = 0 V to 10 V		14	-	nC
V _{plateau}	Gate Plateau Volatge	(Note 5)	-	5.4	-	V
Q _{sync}	Total Gate Charge Sync.	V _{DS} = 0 V, I _D = 50 A	-	66.2	-	nC
Q _{oss}	Output Charge	V _{DS} = 30 V, V _{GS} = 0 V	-	174	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	1.05	-	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	39	88	ns
t _r		$V_{DD} = 30 \text{ V}, I_{D} = 50 \text{ A}$	-	20	50	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{G} = 4.7 Ω	-	52	114	ns
t _f	Turn-Off Fall Time	(Note 5)	-	16	42	ns

Drain-Source Diode Characteristics

I_S	Maximum Continuous Drain to Source Diode Forward Current		-	-	100	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	400	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 50 A	-	-	1.25	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 50 A	-	71	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	85	-	nC

- 1. Silicon limited I_D rating = 147 A.
 2. R_{6JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on $\,a\,$ minimum pad of 2 oz copper.

- ${\it 3. Repetitive\ rating: pulse-width\ limited\ by\ maximum\ junction\ temperature.}$
- 4. L = 0.3 mH, I_{AS} = 40.7 A, V_{DD} = 50 V, V_{GS} = 10 V, starting T_J = 25°C.
- 5. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics 200 100 ID, Drain Current[A] V_{GS} = 15.0V 10.0V 8.0V 7.0V 6.5V *Notes: 6.0V 1. 250µs Pulse Test

2. $T_C = 25^{\circ}C$

0.05

0.1

Figure 3. On-Resistance Variation vs. **Drain Current and Gate Voltage**

V_{DS}, Drain-Source Voltage[V]

5.5V

5.0V

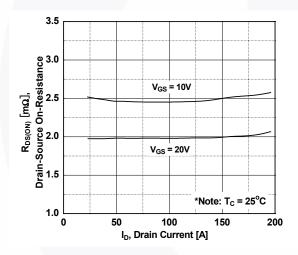


Figure 5. Capacitance Characteristics



Figure 2. Transfer Characteristics

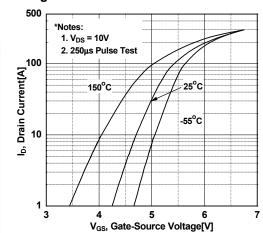


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

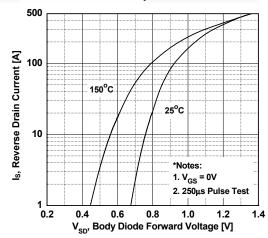
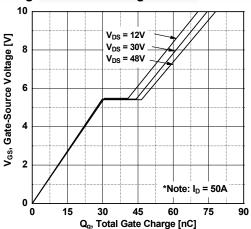



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

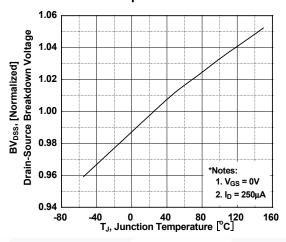


Figure 9. Maximum Safe Operating Area

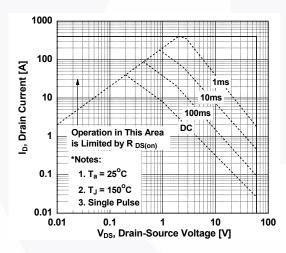


Figure 11. Eoss vs. Drain to Source Voltage

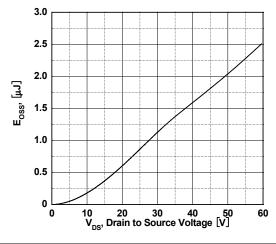


Figure 8. On-Resistance Variation vs. Temperature

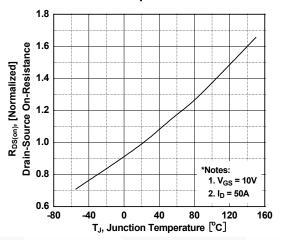


Figure 10. Maximum Drain Current vs. Case Temperature

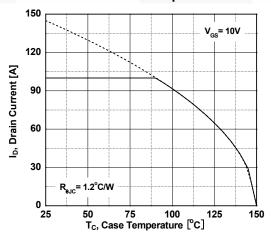
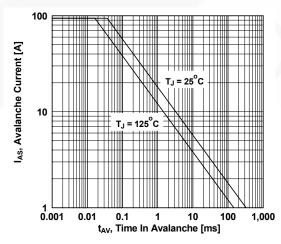



Figure 12. Unclamped Inductive Switching Capability

Typical Performance Characteristics (Continued)

Figure 13. Transient Thermal Response Curve

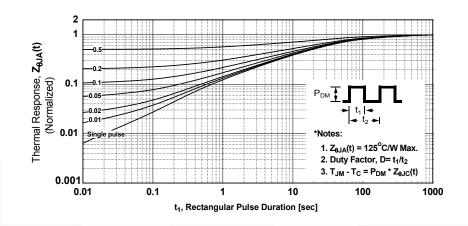


Figure 14. Gate Charge Test Circuit & Waveform

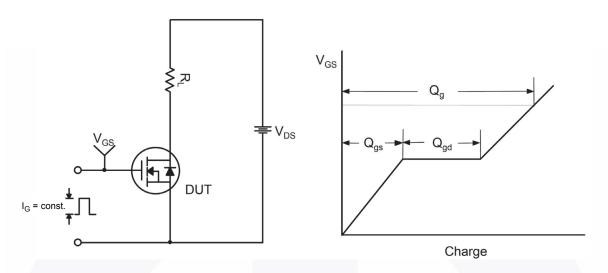


Figure 15. Resistive Switching Test Circuit & Waveforms

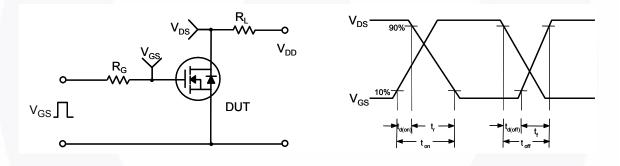
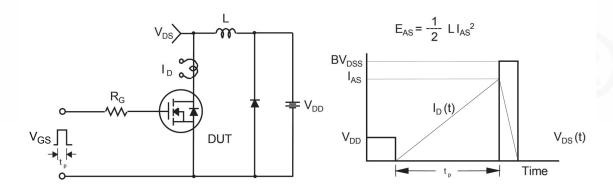



Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

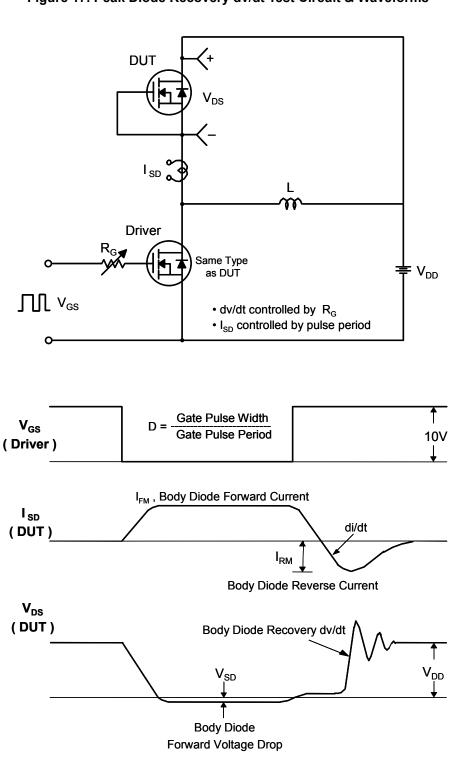
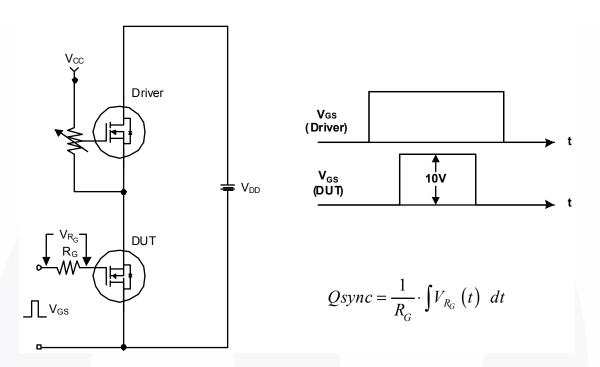



Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Figure 18. Total Gate Charge Qsync. Test Circuit & Waveforms

Mechnical Dimensions

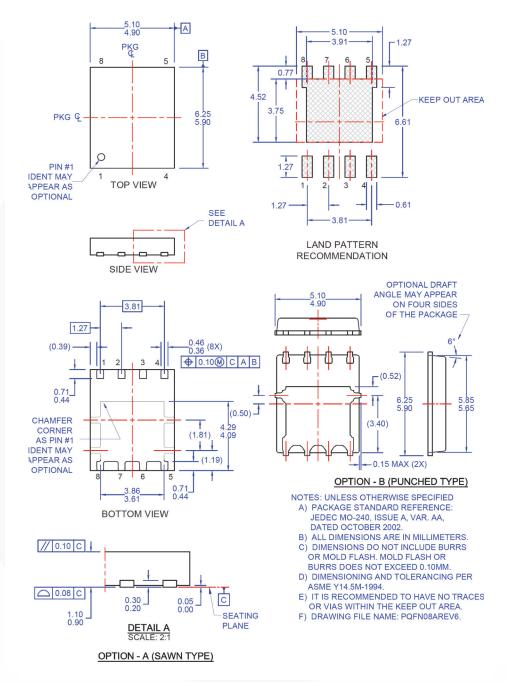


Figure 19. 8LD, PQFN, JEDEC MO-240 AA, 5.0X6.0MM

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN PQOAM-008

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$

CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

ESBC™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™

Green FPS™ e-Series™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder and Better™

MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™

MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

Sync-Lock™ SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC[®] Ultra FRFET™ UniFFT™ VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 166

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com