

October 2014

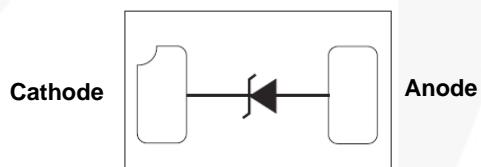
FESD05P30ZL

5 V, 30 pF Unidirectional ESD Protector

Features

- IEC61000-4-2, ± 30 kV Contact, ± 30 kV Air
- IEC61000-4-5, $I_{PP} = 5$ A (8/20 μ s)
- Expanded Working Voltage,
 $V_{RWM} = 5.0$ V $\pm 10\%$ = 5.5 V
- Very Low Clamping Voltage,
 $V_C = 8.8$ V at 5 A (Typical)
- Ultra Small SOD882 Package
- Fits Solder Pad of 0402 and DFN 2L
- RoHS Compliant and Halogen Free
- Qualified with IR Reflow and Wave Soldering

Applications


- Mobile and Portable Devices
- Space Constrained Systems
- USB 5 V Power Protections
- General-Purpose ESD Protection in 5 V Applications

Description

The FESD05P30ZL ESD protector offers break through size and clamping performance. The device is capable of suppressing up to 50 W of 8 x 20 μ sec peak pulse power. It turns on at typical 6.5 V and clamp at 8.8 V in a 5 A surge. It responses fast and effective against to ESD/ Surge events.

The design has been specifically optimized for 5 V applications. It can be operated at 5 V with 10% tolerance. It is also RoHS compliant and Halogen Free.

All this capability is packed into a small, flat package, optimized for space constrained applications with similar XY dimensions to a industrial standard 0402 or SOD923. The FESDxZL family supports a max Z dimension of 0.5 mm. It is therefore specifically designed to support low clearance applications.

Ordering Information

Part Number	Top Mark	Package	Packing Method
FESD05P30ZL	A	SOD882	Tape and Reel

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter		Value	Unit
P_D	Total Power Dissipation		250	mW
ESD	Electrostatic Discharge Capability	IEC61000-4-2 Contact	± 30	kV
		IEC61000-4-2 Air	± 30	
T_J	Operating Junction Temperature Range		-55 to +150	$^\circ\text{C}$
T_{STG}	Storage Temperature Range		-55 to +150	$^\circ\text{C}$

Note:

1. All tests conducted at $T_A = T_J = 25^\circ\text{C}$ unless otherwise noted.

Electrical Breakdown Characteristics^{(2), (3)}

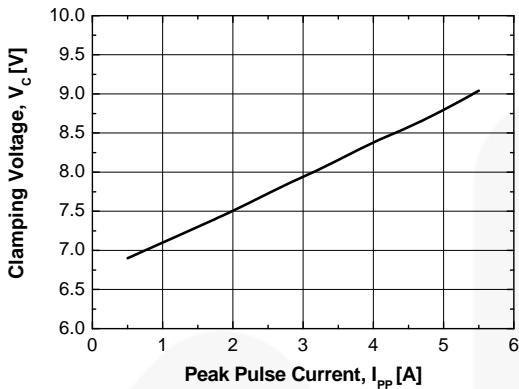
Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{BR}	Breakdown Voltage	$I_T = 1 \text{ mA}$	6.2			V
V_{RWM}	Reverse Standoff Voltage	$I_T = 1 \mu\text{A}$			5.5	V
I_R	Maximum Leakage	$V_R = 5.0 \text{ V}$			0.5	μA

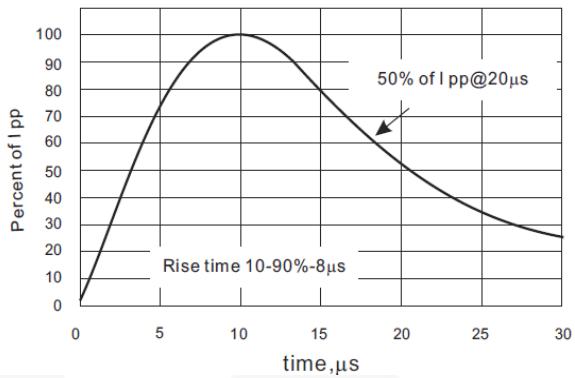
Notes:

2. All tests conducted at $T_A = T_J = 25^\circ\text{C}$ unless otherwise noted.
3. $I_T = 300 \mu\text{sec}$ square wave current pulse.

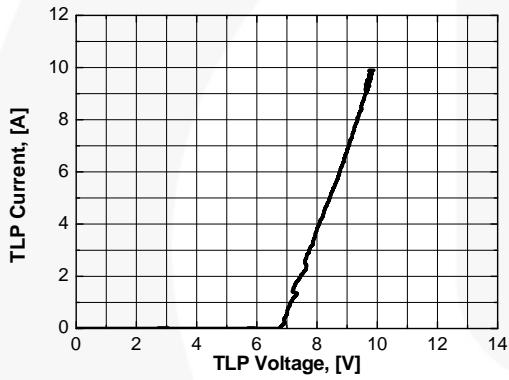
Surge Response Characteristics⁽⁴⁾

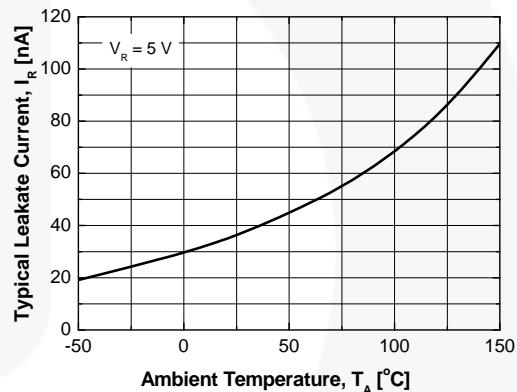

Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
TLP Surge Response						
R_D	Dynamic Resistance	TLP, $t_p = 100 \text{ ns}$, Cathode to Anode		0.31		Ω
8 x 20 μsec Exponential Current Surge Response						
I_{PP}	Test Surge Current	IEC61000-4-5, 8 x 20 μsec Current Surge		5		A
V_C	Clamping Voltage	$I_{PP} = 5 \text{ A}$		8.8		V
R_D	Dynamic Resistance	Calculated at I_{PP}		0.47		Ω
P_{PPM}	Peak Pulse Power	Calculated ($I_{PPM} \times V_C$)		50		W
C_J	Junction Capacitance	$V_R = 0 \text{ V}$, $f = 1 \text{ MHz}$		31	38	pF


Note:

4. All tests conducted at $T_A = T_J = 25^\circ\text{C}$ unless otherwise noted.


Typical Performance Characteristics


Figure 1. Clamping Voltage vs. Peak Pulse Current Power (8 x 20μs waveform)

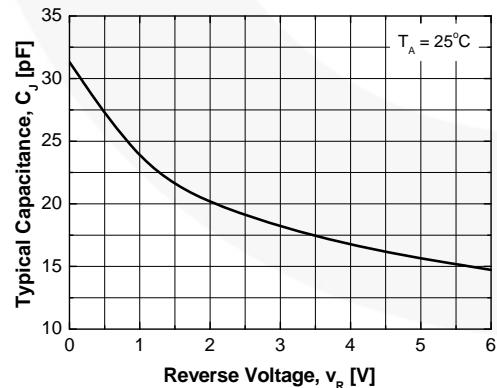

Figure 2. 8 x 20 μsec Pulse Waveform

Figure 3. Transmission Line Pulsing (TLP) Plot

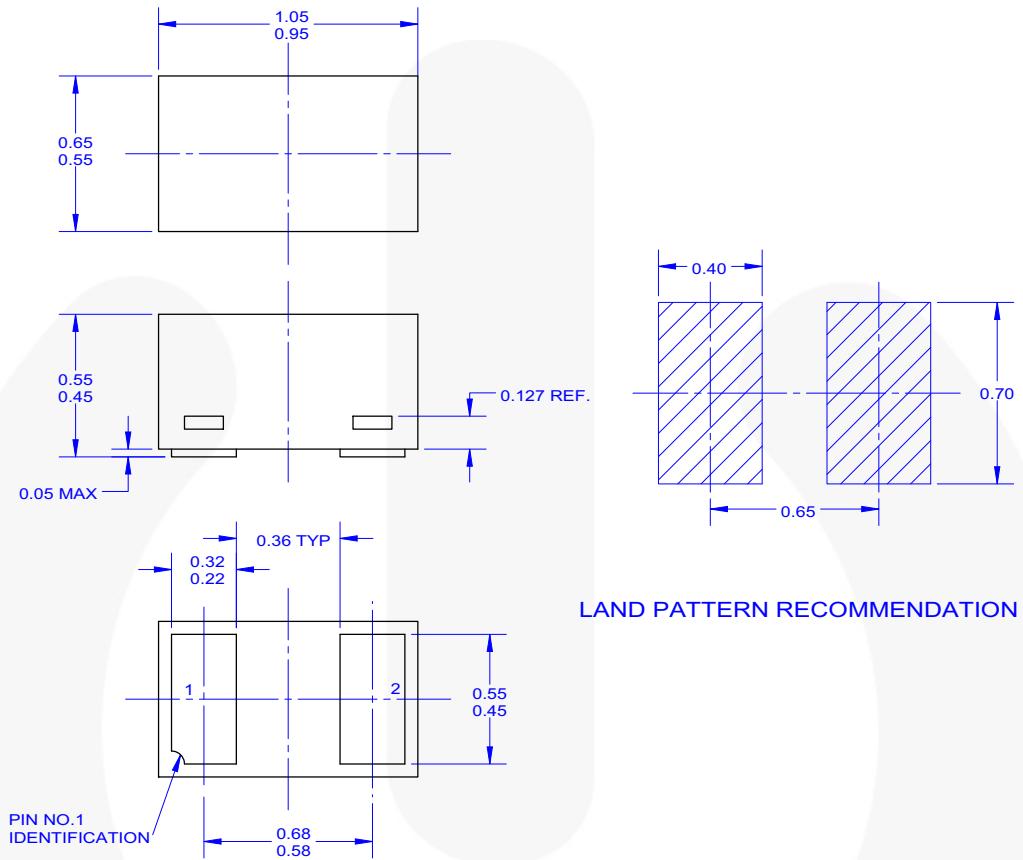


Figure 4. Leakage Current vs. Temperature

Figure 5. Typical Capacitance

Physical Dimension

NOTES: UNLESS OTHERWISE SPECIFIED
 A) NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
 AND TIE BAR EXTRUSIONS.
 D) FSC DERIVED LANDPATTERN RECOMMENDATION
 E) DRAWING NUMBER AND REVISION:MKT-SOD88202A REV1.

Figure 6. 2-LEAD, SOD882, 0.60 x 1.00 MM BODY, 0.65 MM PITCH

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Awinda®
AX-CAP®
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
 Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™
OptoHiTT™

F-PFS™
FRFET®
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid®
MTI®
MTx®
MVN®
mWSaver®
OptoHiTT™

PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
 Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

 SYSTEM GENERAL®
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TransiC™
TriFault Detect™
TRUECURRENT®
μSerDes™
 μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™
仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT [HTTP://WWW.FAIRCHILDSEMI.COM](http://WWW.FAIRCHILDSEMI.COM). FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I71

AMEYA360

Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd
Minhang District, Shanghai , China

➤ Sales :

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

➤ Customer Service :

Email service@ameya360.com

➤ Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com