

High voltage high and low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ±50 V/nsec in full temperature range
- Driver current capability:
 - 400 mA source
 - 650 mA sink
- Switching times 70/40 nsec rise/fall with 1 nF load
- 3.3 V, 5 V, 15 V CMOS/TTL input comparators with hysteresis and pull-down
- Internal bootstrap diode
- · Outputs in phase with inputs
- · Deadtime and interlocking function

Applications

- Home appliances
- · Industrial applications and drives
- Motor drivers
 - DC, AC, PMDC and PMAC motors
- Induction heating
- HVAC
- Factory automation
- Lighting applications
- Power supply systems

Description

The L6388E is a high voltage gate driver, manufactured with the BCD™ "offline" technology, and able to drive a half-bridge of power MOS/IGBT devices. The high-side (floating) section is enabled to work with voltage rail up to 600 V. Both device outputs can sink and source 650 mA and 400 mA respectively and cannot be simultaneously driven high thanks to an integrated interlocking function. Further prevention from outputs cross conduction is guaranteed by the deadtime function.

The L6388E device has two input and two output pins, and guarantees the outputs switch in phase with inputs. The logic inputs are CMOS/TTL compatible (3.3 V, 5 V and 15 V) to ease the interfacing with controlling devices.

The bootstrap diode is integrated in the driver allowing a more compact and reliable solution.

The L6388E device features the UVLO protection on both supply voltages (V_{CC} and V_{boot}) ensuring greater protection against voltage drops on the supply lines.

The device is available in a DIP-8 tube and SO-8 tube, and tape and reel packaging options.

Table 1. Device summary

Part number	Package	Packaging
L6388E	DIP-8	Tube
L6388ED	SO-8	Tube
L6388ED013TR	SO-8	Tape and reel

Contents L6388E

Contents

1	Block diagram	3
2	Electrical data	4
	2.1 Absolute maximum ratings	4
	2.2 Thermal data	4
	2.3 Recommended operating conditions	4
3	Pin connection	5
4	Electrical characteristics	6
	4.1 AC operation	6
	4.2 DC operation	6
5	Waveform definitions	8
6	Input logic	9
7	Bootstrap driver	9
	C _{BOOT} selection and charging	9
8	Typical characteristics 1	2
9	Package information	4
10	Revision history1	6

L6388E Block diagram

1 Block diagram

BOOTSTRAP DRIVER 8 Vboot Cboot H.V. UV DETECTION UV DETECTION HVG R DRIVER LOGIC HVG R S LEVEL HIN (OUT SHOOT THROUGH PREVENTION SHIFTER TO LOAD 6 5 LVG LIN LVG DRIVER 4 GND

Figure 1. Block diagram

Electrical data L6388E

2 Electrical data

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Cumbal	Downworten.	Val	11	
Symbol	Parameter	Min.	Max.	Unit
V _{out}	Output voltage	V _{boot} -18	V _{boot}	V
V _{cc}	Supply voltage	- 0.3	18	V
V _{boot}	Floating supply voltage	- 0.3	618	V
V_{hvg}	High-side gate output voltage	V _{out} -0.3	V _{boot}	V
V _{Ivg}	Low-side gate output voltage	-0.3	V _{cc} +0.3	V
V _i	Logic input voltage	-0.3	V _{cc} +0.3	V
dV _{out} /dt	Allowed output slew rate		50	V/ns
P _{tot}	Total power dissipation (T _J = 85 °C)	750	750	mW
T _j	Junction temperature	150	150	°C
T _s	Storage temperature	-50	150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	SO-8	DIP-8	Unit
R _{th(JA)}	Thermal resistance junction-to-ambient	150	100	°C/W

2.3 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{out}	6	Output voltage		(1)		580	V
V _{BS} ⁽²⁾	8	Floating supply voltage		(1)		17	V
f _{sw}		Switching frequency	HVG, LVG load C _L = 1 nF			400	kHz
V _{cc}	3	Supply voltage				17	V
T _J		Junction temperature		-45		125	°C

^{1.} If the condition V_{boot} - V_{out} < 18 V is guaranteed, V_{out} can range from -3 to 580 V.

^{2.} $V_{BS} = V_{boot} - V_{out}$.

L6388E Pin connection

3 Pin connection

Figure 2.Pin connection (top view)

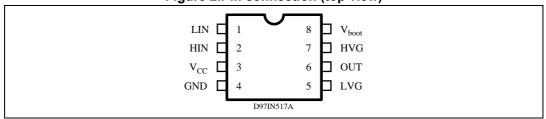


Table 5. Pin description

No.	Pin	Туре	Function
1	LIN	I	Low-side driver logic input
2	HIN	I	High-side driver logic input
3	V _{cc}	Р	Low-voltage power supply
4	GND	Р	Ground
5	LVG ⁽¹⁾	0	Low-side driver output
6	OUT	Р	High-side driver floating reference
7	HVG ⁽¹⁾	0	High-side driver output
8	V _{boot}	Р	Bootstrap supply voltage

^{1.} The circuit guarantees 0.3 V maximum on the pin (at Isink = 10 mA). This allows the omission of the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

Electrical characteristics L6388E

4 Electrical characteristics

 $(V_{CC} = 15 \text{ V}; T_J = 25 ^{\circ}\text{C}).$

4.1 AC operation

Table 6. AC operation electrical characteristics

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{on}	1 vs. 5	High/low-side driver turn-on propagation delay	V _{out} = 0 V		225	300	ns
t _{off}	2 vs. 7	High/low-side driver turn-off propagation delay	V _{out} = 0 V		160	220	ns
t _r	5, 7	Rise time	C _L = 1000 pF		70	100	ns
t _f	5, 7	Fall time	C _L = 1000 pF		40	80	ns
DT	5, 7	Deadtime		220	320	420	ns

4.2 DC operation

Table 7. DC operation electrical characteristics

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Low sup	Low supply voltage section						
V _{ccth1}		V _{cc} UV turn-on threshold		9.1	9.6	10.1	V
V _{ccth2}		V _{cc} UV turn-off threshold		7.9	8.3	8.8	V
V _{cchys}		V _{cc} UV hysteresis		0.9			V
I _{qccu}	3	Undervoltage quiescent supply current	V _{cc} ≤ 9 V		250	330	μА
I _{qcc}		Quiescent current	V _{cc} = 15 V		350	450	μΑ
R _{DS(on)}		Bootstrap driver on resistance ⁽¹⁾	V _{cc} ≥ 12.5 V		125		Ω
Bootstra	pped	supply voltage section					
V _{BSth1}		V _{BS} UV turn-on threshold		8.5	9.5	10.5	V
V _{BSth2}		V _{BS} UV turn-off threshold		7.2	8.2	9.2	V
V _{BShys}	8	V _{BS} UV hysteresis		0.9			V
I _{QBS}		V _{BS} quiescent current	HVG ON			250	μΑ
I _{LK}		High-voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600 \text{ V}$			10	μΑ
High/low	-side	driver					
I _{so}	<i>-</i> 7	Source short-circuit current	$V_{IN} = V_{ih} (t_p < 10 \mu s)$	300	400		mA
I _{si}	5, 7	Sink short-circuit current	$V_{IN} = V_{il} (t_p < 10 \ \mu s)$	500	650		mA

Table 7. DC operation electrical characteristics (continued)

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Logic inp	outs						
V _{il}		Low logic level input voltage				1.1	V
V_{ih}	1, 2	High logic level input voltage		1.8			V
I _{ih}	1, 2	High logic level input current	V _{IN} = 15 V		20	70	μА
l _{il}		Low logic level input current	V _{IN} = 0 V	-1			μА

^{1.} $R_{DS(on)}$ is tested in the following way:

$$\mathsf{R}_{\mathsf{DSON}} = \frac{(\mathsf{V}_{\mathsf{CC}} \!-\! \mathsf{V}_{\mathsf{CBOOT1}}) \!-\! (\mathsf{V}_{\mathsf{CC}} \!-\! \mathsf{V}_{\mathsf{CBOOT2}})}{\mathsf{I}_1(\mathsf{V}_{\mathsf{CC}}, \!\mathsf{V}_{\mathsf{CBOOT1}}) \!-\! \mathsf{I}_2(\mathsf{V}_{\mathsf{CC}}, \!\mathsf{V}_{\mathsf{CBOOT2}})}$$

where:

 I_1 is pin 8 current when $V_{CBOOT} = V_{CBOOT1}$, I_2 when $V_{CBOOT} = V_{CBOOT2}$.

Waveform definitions L6388E

5 Waveform definitions

Figure 3. Deadtime time waveform definition

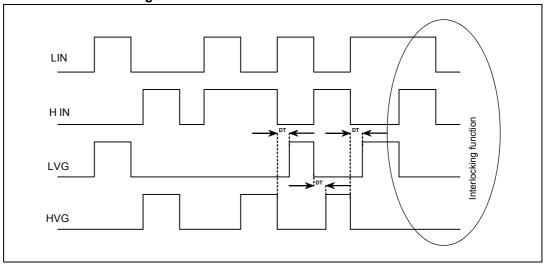
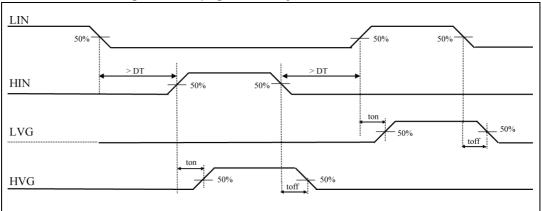



Figure 4. Propagation delay waveform definition

L6388E Input logic

6 Input logic

Input logic is provided with an interlocking circuitry which avoids the two outputs (LVG, HVG) being active at the same time when both the logic input pins (LIN, HIN) are at a high logic level. In addition, to prevent cross conduction of the external MOSFETs, after each output is turned off, the other output cannot be turned on before a certain amount of time (DT) (see *Figure 3*).

7 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 5* a). In the L6388E device, a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure 5* b. An internal charge pump (*Figure 5* b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid an undesirable turn-on.

CBOOT selection and charging

To choose the proper C_{BOOT} value, the external MOSFET can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOSFET total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It must be:

E.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop is 300 mV

If HVG must be supplied for a long period, the $C_{\mbox{\footnotesize{BOOT}}}$ selection must also take the leakage losses into account.

E.g.: HVG steady-state consumption is typical 250 μ A, so, if HVG T_{ON} is 5 ms, C_{BOOT} must supply 1.25 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1.25 V.

The internal bootstrap driver offers important advantages: the external fast recovery diode can be avoided (it usually has a high leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and, at the same time, the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it must be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS $R_{DS(on)}$ (typical value: 125 Ω). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency.

Bootstrap driver L6388E

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 2

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOSFET, $R_{DS(on)}$ is the on-resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOSFET with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 μs .

In fact:

Equation 3

$$V_{drop} \,=\, \frac{30nC}{5\mu s} \cdot 125\Omega \sim 0.8V$$

 V_{drop} should be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

10/17 DocID13991 Rev 4

L6388E Bootstrap driver

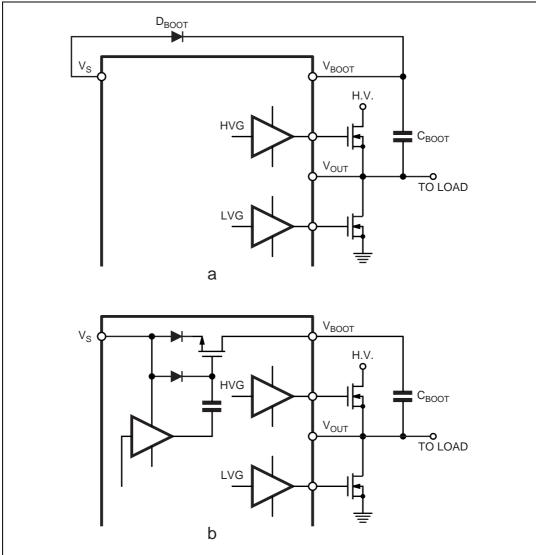


Figure 5. Bootstrap driver

8 Typical characteristics

Figure 6. Typical rise and fall times vs. load capacitance

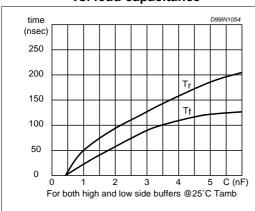


Figure 7. Quiescent current vs. supply voltage

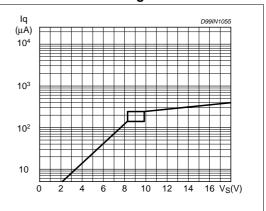


Figure 8. V_{BOOT} UV turn-on threshold vs. temperature

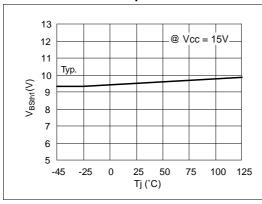


Figure 9. V_{CC} UV turn-off threshold vs. temperature

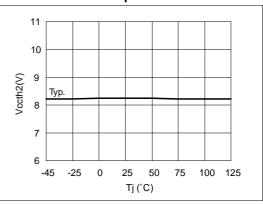


Figure 10. V_{BOOT} UV turn-off threshold vs. temperature

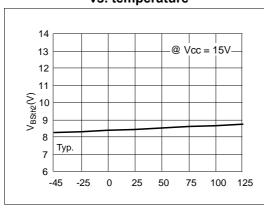
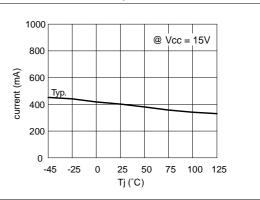
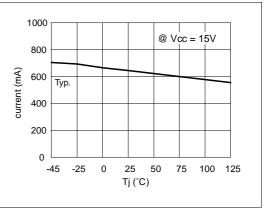



Figure 11. Output source current vs. temperature



12/17 DocID13991 Rev 4

Figure 12. V_{CC} UV turn-on threshold vs. temperature

13 12 11 Vccth1(V) 10 Тур. 9 8 7 50 75 100 125 -45 -25 25 Tj (°C)

Figure 13. Output sink current vs. temperature

Package information L6388E

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

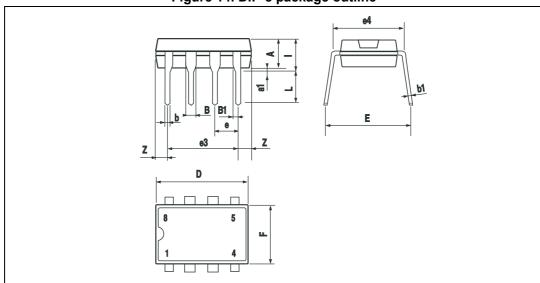


Figure 14. DIP-8 package outline

Table 8. DIP-8 package mechanical data

Cumbal		Dimensions (mm)	
Symbol	Min.	Тур.	Max.
А		3.32	
a1	0.51		
В	1.15		1.65
b	0.356		0.55
b1	0.204		0.304
D			10.92
E	7.95		9.75
е		2.54	
e3		7.62	
e4		7.62	
F			6.6
I			5.08
L	3.18		3.81
Z			1.52

14/17 DocID13991 Rev 4

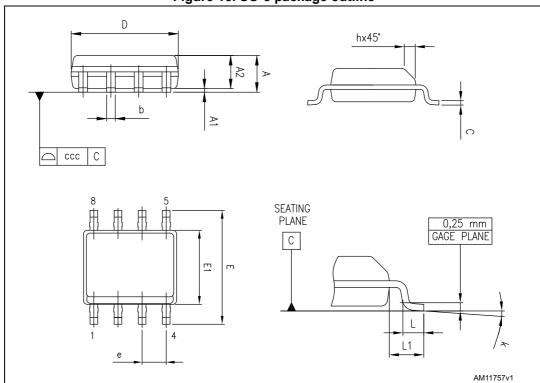


Figure 15. SO-8 package outline

Table 9. SO-8 package mechanical data

Complete		Dimensions (mm)				
Symbol	Min.	Тур.	Max.			
А			1.75			
A1	0.10		0.25			
A2	1.25					
b	0.28		0.48			
С	0.17		0.23			
D	4.80	4.90	5.00			
E	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е		1.27				
h	0.25		0.50			
L	0.40		1.27			
L1		1.04				
k	0°		8°			
ccc			0.10			

Revision history L6388E

10 Revision history

Table 10. Document revision history

Date	Revision	Changes
11-Oct-2007	1	First release
29-Feb-2012	2	Updated <i>Table 2</i> , <i>Table 7</i> and <i>Section</i> . DIP-8 mechanical data and package dimensions have been updated. SO-8 mechanical data and package dimensions have been updated.
31-Jan-2013	3	Update note in Section 2.1.
19-Jun-2014	4	Added Section: Applications on page 1. Updated Section: Description on page 1 (replaced by new description). Updated Table 1: Device summary on page 1 (moved from page 17 to page 1, renamed title of Table 1). Updated Figure 1: Block diagram on page 3 (moved from page 1 to page 3, added Section 1: Block diagram on page 3). Updated Section 2.1: Absolute maximum ratings on page 4 (removed note below Table 2: Absolute maximum ratings). Updated Table 5: Pin description on page 5 (added "Type" for several pins). Updated Section 9: Package information on page 14 (added/updated titles, reversed order of Figure 14 and Table 8, Figure 15 and Table 9, minor modifications). Minor modifications throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com