

TS3A4741, TS3A4742

SCDS228E -AUGUST 2006-REVISED DECEMBER 2014

TS3A474x 0.9-Ω Low-Voltage Single-Supply 2-Channel SPST Analog Switches

1 Features

- Low ON-State Resistance (R_{on})
 - 0.9-Ω Max (3-V Supply)
 - 1.5-Ω Max (1.8-V Supply)
- 0.4-Ω Max R_{on} Flatness (3-V Supply)
- 1.6-V to 3.6-V Single-Supply Operation
- · Available in SOT-23 and VSSOP Packages
- High Current-Handling Capacity (100 mA Continuous)
- 1.8-V CMOS Logic Compatible (3-V Supply)
- Fast Switching: t_{ON} = 14 ns, t_{OFF} = 9 ns

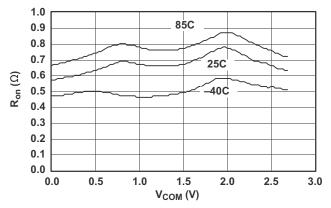
2 Applications

- Power Routing
- · Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- · Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

3 Description

The TS3A4741 and TS3A4742 are bi-directional, 2-channel single-pole/single-throw (SPST) analog switches with low ON-state resistance (R_{on}), low-voltage, that operate from a single 1.6-V to 3.6-V supply. These devices have fast switching speeds, handle rail-to-rail analog signals, and consume very low quiescent power.

The digital logic input is 1.8-V CMOS compatible when using a single 3-V supply.


The TS3A4741 has two normally open (NO) switches, and the TS3A4742 has two normally closed (NC) switches.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
TS3A4741	SOT (8)	2.90 mm × 1.63 mm				
	VSSOP (8)	3.00 mm × 3.00 mm				
TS3A4742	SOT (8)	2.90 mm × 1.63 mm				
15384742	VSSOP (8)	3.00 mm × 3.00 mm				

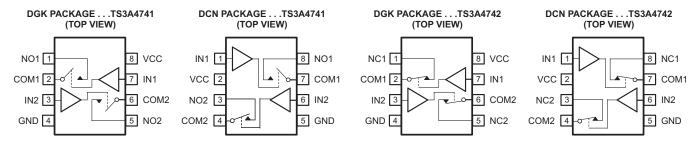
(1) For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

1	Features 1	8.2 Functional Block Diagram 14
2	Applications 1	8.3 Feature Description
3	Description 1	8.4 Device Functional Modes1
4	Revision History2	9 Application and Implementation 15
5	Pin Configuration and Functions 3	9.1 Application Information15
6	Specifications	9.2 Typical Application 1
•	6.1 Absolute Maximum Ratings	10 Power Supply Recommendations 17
	6.2 ESD Ratings	11 Layout 17
	6.3 Recommended Operating Conditions 4	11.1 Layout Guidelines 1
	6.4 Thermal Information	11.2 Layout Example 1
	6.5 Electrical Characteristics (3-V Supply)5	12 Device and Documentation Support 18
	6.6 Electrical Characteristics (1.8-V Supply)	12.1 Related Links 18
	6.7 Typical Characteristics	12.2 Trademarks
7	Parameter Measurement Information 11	12.3 Electrostatic Discharge Caution 1
8	Detailed Description	12.4 Glossary 1
•	8.1 Overview	13 Mechanical, Packaging, and Orderable Information

4 Revision History

Changes from Revision D (June 2014) to Revision E


Page

Submit Documentation Feedback

Copyright © 2006–2014, Texas Instruments Incorporated

5 Pin Configuration and Functions

Pin Functions

	PIN					
NAME	TS3A4	1741	TS3A4742		I/O	DESCRIPTION
	MSOP	SOT	MSOP	SOT		
COM1	2	7	2	7	I/O	Common
COM2	6	4	6	4	I/O	Common
GND	4	5	4	5	_	Ground
IN1	7	1	7	1	I	Digital control to connect COM to NO or NC
IN2	3	6	3	6	I	Digital control to connect COM to NO or NC
NC1	_	_	1	8	I/O	Normally closed
NC2	_	_	5	3	I/O	Normally closed
NO1	1	8	_	_	I/O	Normally open
NO2	5	3	_	_	I/O	Normally open
VCC	8	2	8	2	I	Power supply

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage reference to GND ⁽²⁾		-0.3	4	
$\begin{matrix} V_{NO} \\ V_{COM} \\ V_{IN} \end{matrix}$	Analog and digital voltage		-0.3	V _{CC} + 0.3	V
I _{NO} I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{CC}	-100	100	
I_{CC} I_{GND}	Continuous current through V_{CC} or GND			±100	mA
	Peak current pulsed at 1 ms, 10% duty cycle	COM, V _{NO} , V _{COM}		±200	
T_A	Operating temperature		-40	85	
T_{J}	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage reference to ground	1.6	3.6	V
$V_{NO} \ V_{COM}$	Analog voltage	0	3.6	
V _{IN}	Digital Voltage	0	1.8	

6.4 Thermal Information

		TS3A474x	
THERMAL METRIC ⁽¹⁾		DCN/DGK	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	214.8	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	191.0	
$R_{\theta JB}$	Junction-to-board thermal resistance	113.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	52.4	
ΨЈВ	Junction-to-board characterization parameter	110.2	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ Signals on COM or NO exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics (3-V Supply)(1)(2)

 $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $T_A = -40$ to 85°C, $V_{IH} = 1.4 \text{ V}$, $V_{IL} = 0.5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONS	T _A	MIN	TYP ⁽³⁾	MAX	UNIT
ANALOG SWIT	гсн							
V _{COM} , V _{NO} , V _{NO}	Analog signal range				0		V ₊	V
D	ONI state resistance	$V_{CC} = 2.7 \text{ V}, I_{COM} = -10$	00 mA,	25°C		0.7	0.9	
R _{on}	ON-state resistance	V_{NO} , $V_{NC} = 1.5 \text{ V}$	•	Full			1.1	Ω
AD	ON-state resistance match between	$V_{CC} = 2.7 \text{ V}, I_{COM} = -10$	00 mA,	25°C		0.03	0.05	
ΔR_{on}	channels (4)	V_{NO} , $V_{NC} = 1.5 \text{ V}$		Full			0.15	Ω
D	ON-state resistance flatness ⁽⁵⁾	$V_{CC} = 2.7 \text{ V}, I_{COM} = -10$	00 mA,	25°C		0.23	0.4	Ω
R _{on(flat)}	ON-State resistance nativess V	$V_{NO}, V_{NC} = 1 \text{ V}, 1.5 \text{ V}, 2$	2 V	Full			0.5	
l	NO	$V_{CC} = 3.6 \text{ V}, V_{COM} = 0.3$	3 V, 3 V,	25°C	-2	1	2	nA
I _{NO(OFF)}	OFF leakage current ⁽⁶⁾	$V_{NO} = 3 \text{ V}, 0.3 \text{ V}$		Full	-18		18	IIA
1	COM	$V_{CC} = 3.6 \text{ V}, V_{COM} = 0.3$	3 V, 3 V,	25°C	-2	1	2	nA
ICOM(OFF)	OFF leakage current ⁽⁶⁾	$V_{CC} = 3.6 \text{ V}, V_{COM} = 0.3 \text{ V}, 3 \text{ V}, V_{NO} = 3 \text{ V}, 0.3 \text{ V}$		Full	-18		18	IIA
la accessor	COM	$V_{CC} = 3.6 \text{ V}, V_{COM} = 0.3$	3 V, 3 V,	25°C	-2.5	0.01	2.5	nA
ICOM(ON)	ON leakage current ⁽⁶⁾	$V_{NO} = 0.3 \text{ V}, 3 \text{ V}, \text{ or floa}$	ting	Full	– 5		5	IIA
DYNAMIC								
tou	Turn-on time	$V_{NO}, V_{NC} = 1.5 V, R_{L} =$	50 Ω,	25°C		5	14	ne
t _{ON}	Turr on time	$C_L = 35 \text{ pF}, \text{ See Figure}$	14	Full			15	ns
torr	Turn-off time	$V_{NO}, V_{NC} = 1.5 V, R_{L} =$	50 Ω,	25°C		4	9	ns
toff	Turr on time	$C_L = 35 \text{ pF}, \text{ See Figure}$	= 35 pF, See Figure 14				10	
Q_C	Charge injection	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, See Figure 15		25°C		3		pC
C _{NO(OFF)}	NO OFF capacitance	f = 1 MHz, See Figure 1	6	25°C		23		Į.
$C_{\text{COM(OFF)}}$	COM OFF capacitance	f = 1 MHz, See Figure 1	6	25°C		20		pF
C _{COM(ON)}	COM ON capacitance	f = 1 MHz, See Figure 1	6	25°C		43		
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON		25°C		125		MHz
•	OFF : (7)	$R_L = 50 \Omega, C_L = 5 pF,$	f = 10 MHz	0500		-40		JD.
O _{ISO}	OFF isolation (7)	See Figure 17	f = 1	25°C		-62		dB
			MHz			-02		
		D 5000 5 = 5	f = 10 MHz			-73		
X_{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$, See Figure 17	f = 1	25°C				dB
			MHz			- 95		
			R _L = 32			0.04%		
THD	Total harmonic distortion	f = 20 Hz to 20 kHz,	Ω	25°C		0.0470		i
	V _{COM} = 2 V _{P-P} $R_L = 600$ Ω				0.003%			
DIGITAL CONT	TROL INPUTS (IN1, IN2)							
V _{IH}	Input logic high			Full	1.4			V
V _{IL}	Input logic low			Full			0.5	V
L	Input lookage current	\/. = 0 or \/		25°C		0.5	1	nΛ
I _{IN}	Input leakage current	$V_I = 0$ or V_{CC}		Full	-20		20	nA
SUPPLY								_

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Submit Documentation Feedback

Parts are tested at 85°C and specified by design and correlation over the full temperature range.

⁽³⁾ Typical values are at $V_{CC} = 3 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

 $[\]Delta R_{on} = R_{on(max)} - R_{on(min)}$ Flatness is defined as the difference between the maximum and minimum value of r_{on} as measured over the specified analog signal

Leakage parameters are 100% tested at the maximum-rated hot operating temperature and specified by correlation at $T_A = 25$ °C. OFF isolation = $20_{log}10$ (V_{COM}/V_{NO}), $V_{COM} = output$, $V_{NO} = input$ to OFF switch

Electrical Characteristics (3-V Supply)⁽¹⁾⁽²⁾ (continued)

 V_{CC} = 2.7 V to 3.6 V, T_A = -40 to 85°C, V_{IH} = 1.4 V, V_{IL} = 0.5 V (unless otherwise noted)

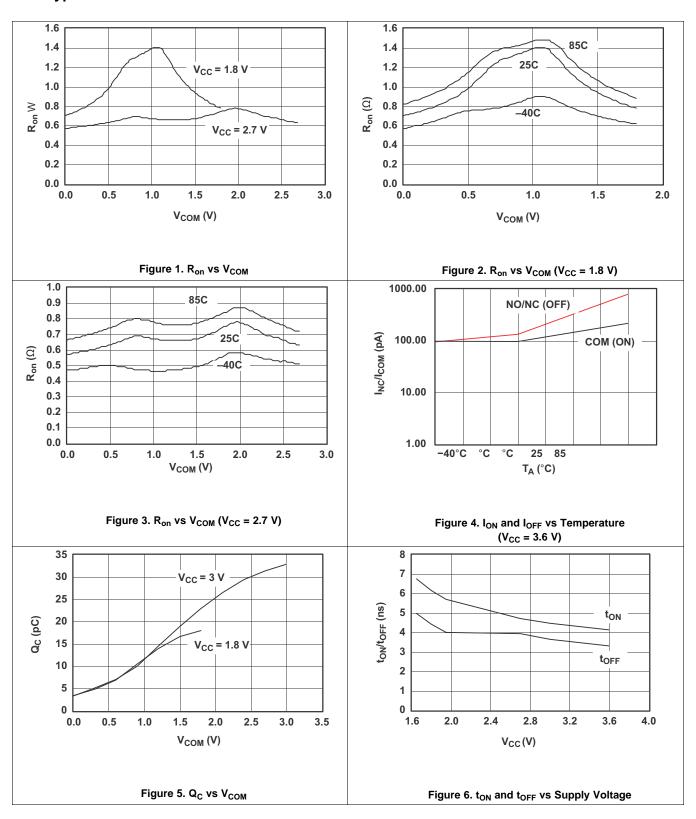
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP ⁽³⁾ MAX	UNIT
V_{CC}	Power-supply range			2.7	3.6	٧
	Decition and the second	$V_{CC} = 3.6 \text{ V}, V_{IN} = 0 \text{ or } V_{CC}$	25°C		0.075	
ICC	Positive-supply current		Full		0.75	μΑ

6.6 Electrical Characteristics (1.8-V Supply)(1) (2)

 $V_{cc} = 1.65 \text{ V}$ to 1.95 V, $T_{A} = -40 \text{ to } 85^{\circ}\text{C}$, $V_{IJ} = 1 \text{ V}$, $V_{IJ} = 0.4 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	T _A	MIN	TYP ⁽²⁾	MAX	UNIT
ANALOG SV	WITCH			, ,				
V _{COM} , V _{NO} , V _{NC}	Analog signal range				0		V ₊	V
R _{on}	ON-state resistance	$V_{CC} = 1.8 \text{ V}, I_{COM} = -10 \text{ V}_{NO}, V_{NC} = 0.9 \text{ V}$	0 mA,	25 °C Full		1	1.5	Ω
ΔR _{on}	ON-state resistance match between channels ⁽¹⁾	$V_{CC} = 1.8 \text{ V}, I_{COM} = -10$	0 mA,	25 °C		0.09	0.15	Ω
	ON-state resistance flatness (3)	$V_{NO}, V_{NC} = 0.9 \text{ V}$ $V_{CC} = 1.8 \text{ V}, I_{COM} = -10 \text{ V}$	0 mA,	Full 25 °C		0.7	0.25	Ω
R _{on(flat)}	ON-State resistance natiress ($0 \le V_{NO}, V_{NC} \le V_{CC}$		Full			1.5	12
I _{NO(OFF)}	NO OFF leakage current ⁽⁴⁾	$V_{CC} = 1.95 \text{ V}, V_{COM} = 0$ $V_{NO} = 1.8 \text{ V}, 0.15 \text{ V}$	0.15 V, 1.65 V,	25 °C Full	-1 -10	0.5	10	nA
I _{COM(OFF)}	COM OFF leakage current ⁽⁴⁾	V _{CC} = 1.95 V, V _{COM} = 0 V _{NO} , = 1.8 V, 0.15 V	0.15 V, 1.65 V,	25 °C Full	-1 -10	0.5	1	nA
I _{COM(ON)}	COM ON leakage current ⁽⁴⁾	$V_{CC} = 1.95 \text{ V}, V_{COM} = 0.000 \text{ V}$ $V_{NO} = 0.15 \text{ V}, 1.65 \text{ V}, 0.000 \text{ V}$		25 °C	-1	0.01	1	nA
. ,	ON leakage culterit	V _{NO} = 0.13 V, 1.03 V, 0	i iloating	Full	-3		3	
t _{ON}	Turn-on time	V _{NO} , V _{NC} = 1.5 V, R _L =	50 Ω,	25 °C		6	18	ns
t _{OFF}	Turn-off time	$C_L = 35 \text{ pF}$, See Figure V_{NO} , $V_{NC} = 1.5 \text{ V}$, $R_L =$	50 Ω,	Full 25 °C		5	20 10	ns
WFF	rum on une	C _L = 35 pF, See Figure 14		Full			12	113
Q_C	Charge injection	V _{GEN} = 0, R _{GEN} = 0, C _L See Figure 15	= 1 nF,	25 °C		3.2		рC
C _{NO(OFF)}	NO OFF capacitance	f = 1 MHz, See Figure 1		25 °C		23		-
C _{COM(OFF)}	COM OFF capacitance	f = 1 MHz, See Figure 1		25 °C		20		pF
C _{COM(ON)}	COM ON capacitance	f = 1 MHz, See Figure 1	6	25 °C		43		
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON		25 °C		123		MHz
O _{ISO}	OFF isolation ⁽⁵⁾	$R_L = 50 \Omega$, $C_L = 5 pF$, See Figure 17	f = 10 MHz f = 100 MHz	25 °C		-61 -36		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$, See Figure 17	f = 10 MHz f = 100 MHz	25 °C		-95 -73		dB
THD	Total harmonic distortion	f = 20 Hz to 20 kHz, V _{COM} = 2 V _{P-P}	$R_L = 32 \Omega$ $R_I = 600 \Omega$	25 °C		0.14%		
DIGITAL CO	ONTROL INPUTS (IN1, IN2)		· ·L					
V _{IH}	Input logic high			Full	1			
V _{IL}	Input logic low			Full			0.4	V
I _{IN}	Input leakage current	V _I = 0 or V _{CC}		25 °C Full	-10	0.1	5 10	nA
SUPPLY		l		-				<u> </u>
V _{CC}	Power-supply range				1.65		1.95	V
I _{CC}	Positive-supply current	V _I = 0 or V _{CC}		25 °C Full			0.05	μΑ

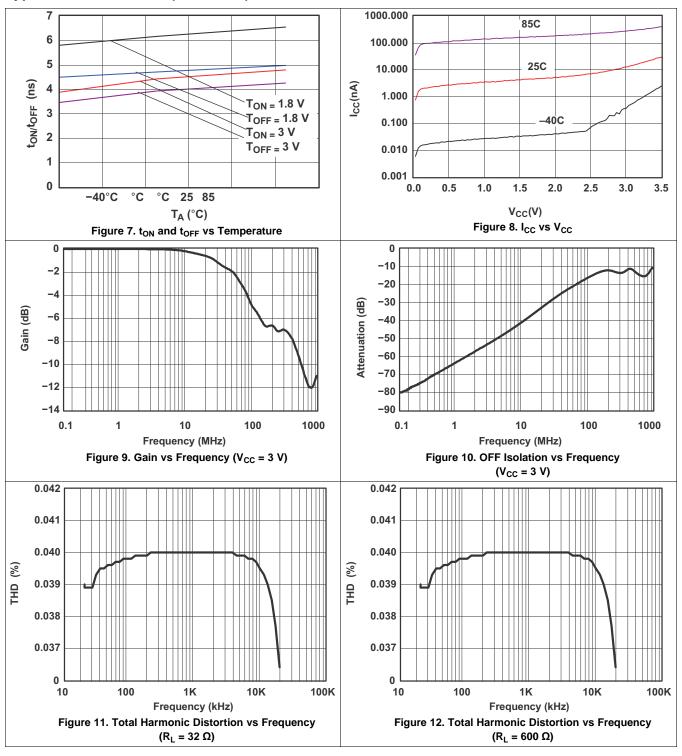
Submit Documentation Feedback


 ⁽¹⁾ ΔR_{on} = R_{on(max)} - R_{on(min)}
 (2) Typical values are at T_A = 25°C.
 (3) Flatness is defined as the difference between the maximum and minimum value of r_{on} as measured over the specified analog signal

Leakage parameters are 100% tested at the maximum-rated hot operating temperature and specified by correlation at T_A = 25°C.

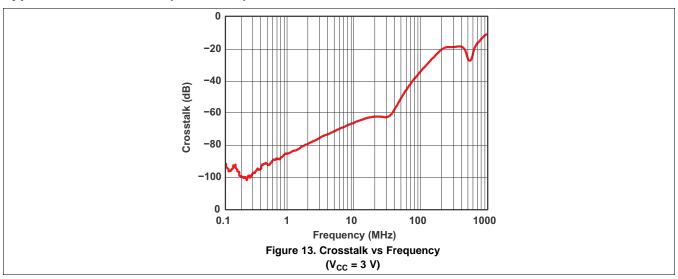
OFF isolation = $20_{log}10$ (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to OFF switch

6.7 Typical Characteristics


Product Folder Links: TS3A4741 TS3A4742

Submit Documentation Feedback

Copyright © 2006–2014, Texas Instruments Incorporated



Typical Characteristics (continued)

Typical Characteristics (continued)

Submit Documentation Feedback

Copyright © 2006–2014, Texas Instruments Incorporated

7 Parameter Measurement Information

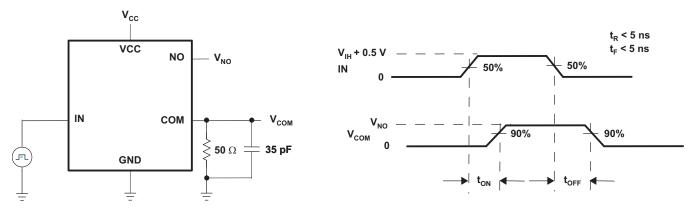
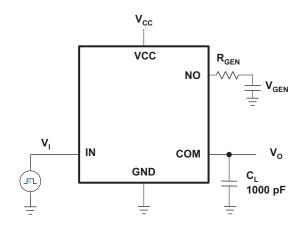



Figure 14. Switching Times

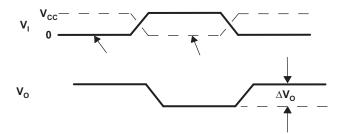


Figure 15. Charge Injection (Q_C)

Parameter Measurement Information (continued)

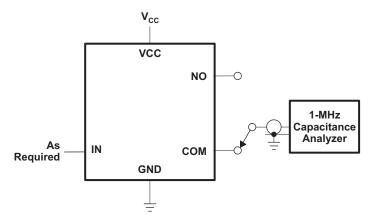
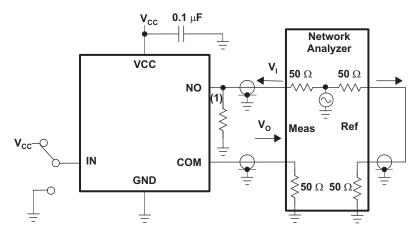
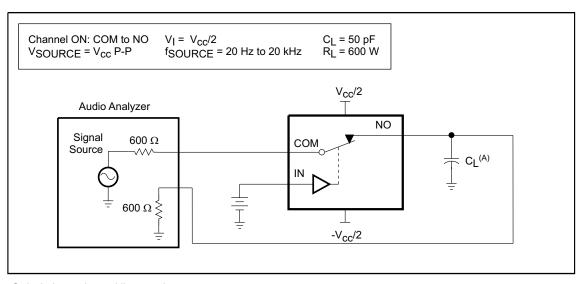



Figure 16. NO and COM Capacitance

Measurements are standardized against short at socket terminals. OFF isolation is measured between COM and OFF terminals on each switch. Bandwidth is measured between content of terminals on each switch. Signal (1) Add 50-Ω termination for the content of the content direction through switch is reversed; worst values are recorded.


OFF isolation = 20 $\log V_0/V_1$

OFF isolation

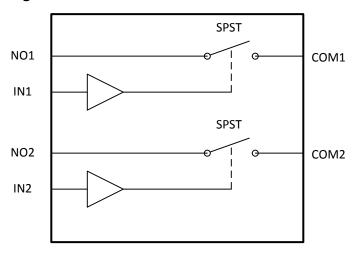
Figure 17. OFF Isolation, Bandwidth, and Crosstalk

Parameter Measurement Information (continued)

A. C_L includes probe and jig capacitance.

Figure 18. Total Harmonic Distortion (THD)

8 Detailed Description


8.1 Overview

The TS3A4741 and TS3A4742 are bi-directional, 2-channel single-pole/single-throw (SPST) analog switches with low ON-state resistance (R_{on}), low-voltage, that operate from a single 1.6-V to 3.6-V supply. These devices have fast switching speeds, handle rail-to-rail analog signals, and consume very low quiescent power.

The digital logic input is 1.8-V CMOS compatible when using a single 3-V supply.

The TS3A4741 has two normally open (NO) switches, and the TS3A4742 has two normally closed (NC) switches.

8.2 Functional Block Diagram

8.3 Feature Description

The TS3A4741 and TS3A4742 has a low on resistance and high current handling capability up to 100 mA continuous current so it can be used for power sequencing and routing with minimal losses. The switch is also bidirectional with fast switching times in the 10 ns range which allows data acquisition and communication between multiple devices.

With a 3-V supply these devices are compatible with standard 1.8-V CMOS logic.

8.4 Device Functional Modes

Table 1. Function Table

IN	NO to COM, COM to NO (TS3A4741)	NC to COM, COM to NC (TS3A4742)
L	OFF	ON
Н	ON	OFF

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Analog signals that range over the entire supply voltage (V_{CC} to GND) of the TS3A4741 and TS3A4742 can be passed with very little change in R_{on} (see *Typical Characteristics*). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

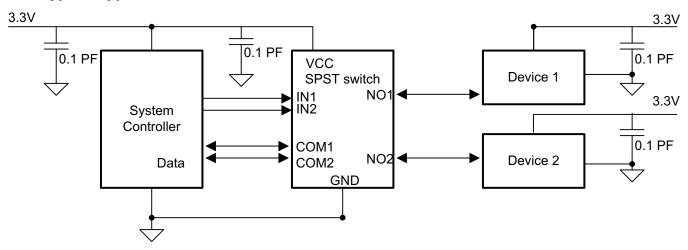


Figure 19. Typical Application Schematic

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are within the specified ranges to ensure proper performance.

9.2.2 Detailed Design Procedure

The TS3A474x can be properly operated without any external components. However, TI recommends that unused pins should be connected to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends that the digital control pins (INx) be pulled up to V_{CC} or down to GND to avoid undesired switch positions that could result from the floating pin.

Typical Application (continued)

9.2.3 Application Curve

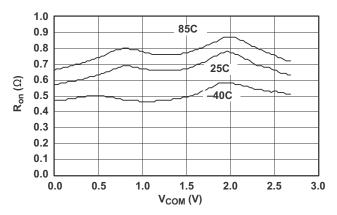
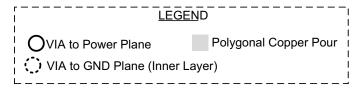


Figure 20. R_{on} vs V_{COM} ($V_{CC} = 2.7 \text{ V}$)

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VCC on first, followed by NO, NC, or COM.


Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A $0.1-\mu F$ capacitor, connected from VCC to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example

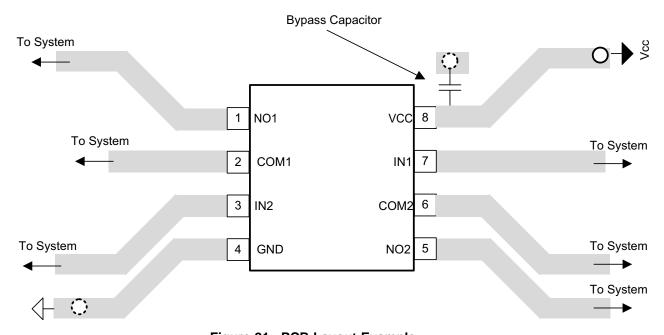


Figure 21. PCB Layout Example

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TS3A4741	Click here	Click here	Click here	Click here	Click here
TS3A4742	Click here	Click here	Click here	Click here	Click here

12.2 Trademarks

All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

21-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS3A4741DCNR	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(8BLO ~ 8BLR)	Samples
TS3A4741DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	JYR	Samples
TS3A4742DCNR	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	8BPR	Samples
TS3A4742DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	L7R	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

21-Jul-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

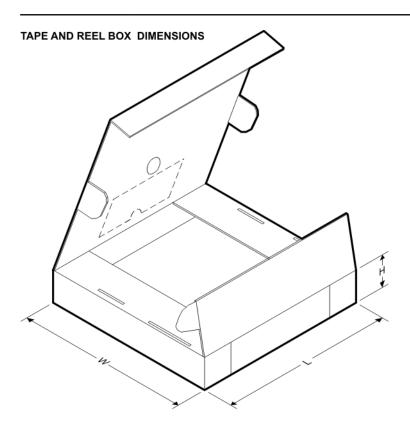
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 21-Jul-2014

TAPE AND REEL INFORMATION

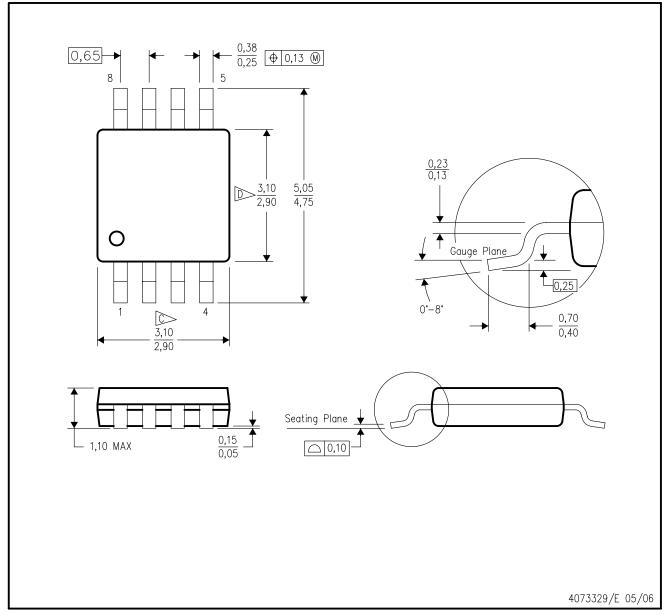
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficults are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A4741DCNR	SOT-23	DCN	8	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS3A4741DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS3A4742DCNR	SOT-23	DCN	8	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS3A4742DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 21-Jul-2014

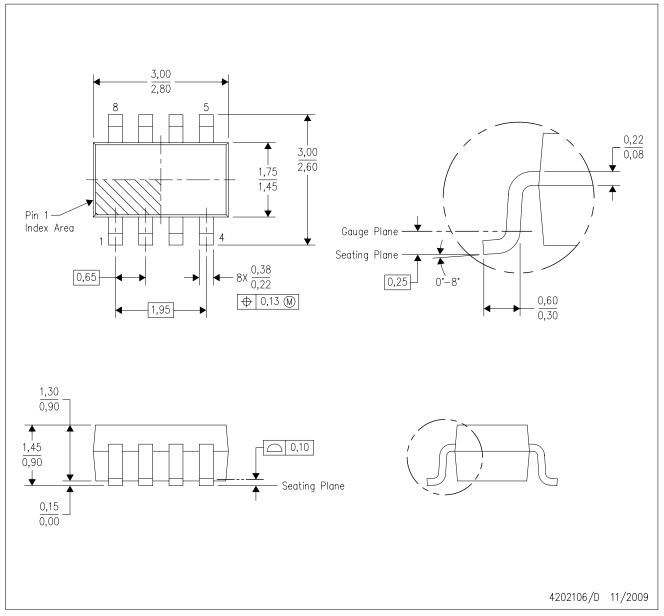


*All dimensions are nominal

7 till difficilities die freminial								
Device	Device Package Type		Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TS3A4741DCNR	SOT-23	DCN	8	3000	202.0	201.0	28.0	
TS3A4741DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	
TS3A4742DCNR	SOT-23	DCN	8	3000	202.0	201.0	28.0	
TS3A4742DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0	

DGK (S-PDSO-G8)

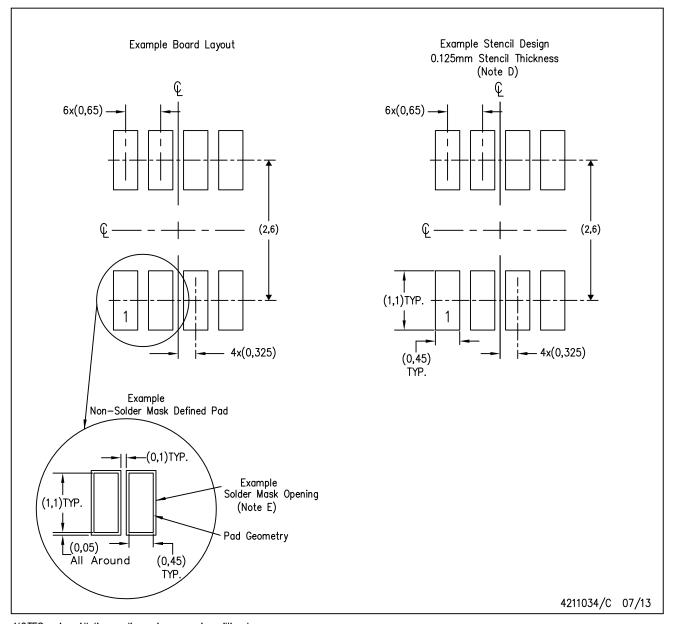
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com