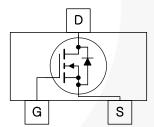


October 2014


BSS123L N-Channel Logic Level Enhancement Mode Field Effect Transistor


Features

- 0.17 A, 100 V, $R_{DS(ON)}$ = 6 Ω at V_{GS} = 10 V $R_{DS(ON)}$ = 10 Ω at V_{GS} = 4.5 V
- High Density Cell Design for Low R_{DS(ON)}
- Rugged and Reliable
- Compact Industry Standard SOT-23 Surface Mount Package
- · Very Low Capacitance
- · Fast Switching Speed

Description

This N-channel enhancement mode field effect transistor is produced using high cell density, trench MOSFET technology. This product minimizes on-state resistance while providing rugged, reliable and fast switching performance. This product is particularly suited for low-voltage, low-current applications such as small servo motor control, power MOSFET gate drivers, logic level transistor, high speed line drivers, power management/power supply and switching applications.

Ordering Information

Part Number	Marking	Package	Packing Method	
BSS123L	SB	SOT-23 3L	Tape and Reel	

1

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter		Value	Unit
V _{DSS}	Drain-Source Voltage		100	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Maximum Drain Current	Continuous	0.17	А
	Maximum Diam Current	Pulsed	0.68	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16 inch from Case for 10 Seconds			°C

Thermal Characteristics

Values are at T_A = 25°C unless otherwise noted.

Symbol	Parameter	Value	Unit
P _D	Maximum Power Dissipation ⁽¹⁾	0.36	W
	Derate Above 25°C	2.8	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	380	°C/W

Note:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 380°C/W when mounted on a minimum pad.

Scale 1: 1 on letter size paper

ESD Rating(2)

Symbol	Parameter	Value	Unit
HBM	Human Body Model per ANSI/ESDA/JEDEC JS-001-2012	50	V
CDM	CDM Charged Device Model per JEDEC C101C >2000		V

Note:

2. ESD values are in typical, no over-voltage rating is implied, ESD CDM zap voltage is 2000 V maximum.

Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Off Charac	teristics			•	II.		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100	103		V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		100		mV/°C	
	·	V _{DS} = 100 V, V _{GS} = 0 V		0.027	1		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 125^{\circ}\text{C}$		0.159	60	μΑ	
		V _{DS} = 20 V, V _{GS} = 0 V		0.07	10	nA	
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V		0.036	50		
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V		-0.019	-50	nA	
On Charac	teristics ⁽³⁾			ı			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	1.405	2	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C		-2.82		mV/°C	
		V _{GS} = 10 V, I _D = 0.17 A		2.98	6		
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 0.17 A		3.17	10	Ω	
		$V_{GS} = 10 \text{ V}, I_D = 0.17 \text{ A},$ $T_J = 125^{\circ}\text{C}$		5.63	12		
I _{D(ON)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	0.680	0.735		Α	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 0.17 A	0.08	2.13		S	
Dynamic C	haracteristics				ı		
C _{iss}	Input Capacitance			21.5		pF	
C _{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		3.52		pF	
C _{rss}	Reverse Transfer Capacitance	1 - 1.0 WH 12		1.67		pF	
R_{G}	Gate Resistance	V _{GS} = 15 V, V _{GS} = 1.0 MHz		7.18		Ω	
Switching	Characteristics ⁽³⁾		-/	ı	ı		
t _{d(on)}	Turn-On Delay			2.2	3.4	ns	
t _r	Turn-On Rise Time	V _{DD} = 30 V, I _D = 0.28 A,	/-	1.7	18	ns	
t _{d(off)}	Turn-Off Delay	V_{GS} = 10 V, R_{GEN} = 6 Ω		5.9	31	ns	
t _f	Turn-Off Fall Time			5.6	5	ns	
Qg	Total Gate Charge			0.793	2.5	nC	
Q _{gs}	Gate-Source Charge	V _{DS} = 25 V, I _D = 0.22 A, V _{GS} = 10 V		0.092		nC	
Q _{gd}	Gate-Drain Charge	VGS - 10 V		0.171	7/1	nC	
	rce Diode Characteristics and Ma	ximum Ratings		•			
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 440 mA ⁽¹⁾		0.867	1.3	V	
T _{rr}	Diode Reverse Recovery Time	1 - 0 2 A diE/dt - 100 A/v.S		11.9		ns	
Qrr	Diode Reverse Recovery Charge	$I_F = 0.2 \text{ A, diF/dt} = 100 \text{ A/}\mu\text{S}$		1.3		nC	

Note:

3. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2.0%.

Typical Performance Characteristics

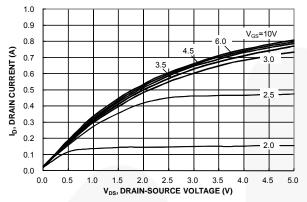
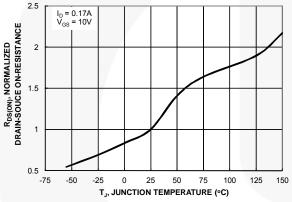



Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

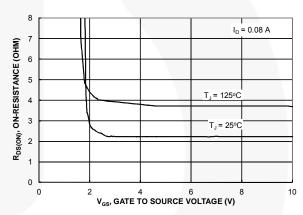
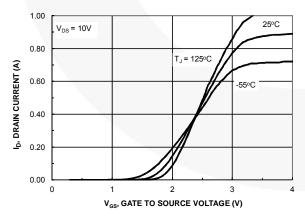



Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

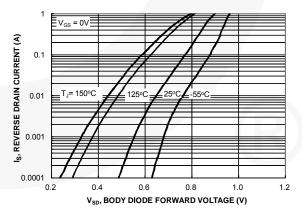


Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Performance Characteristics (Continued)

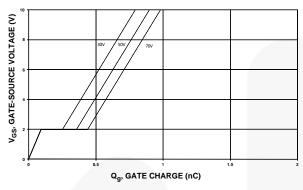


Figure 7. Gate Charge Characteristics

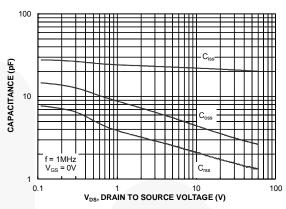
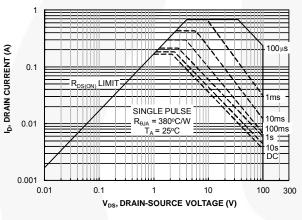



Figure 8. Capacitance Characteristics

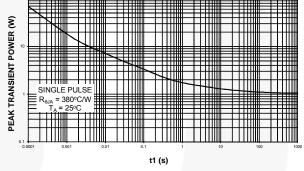


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

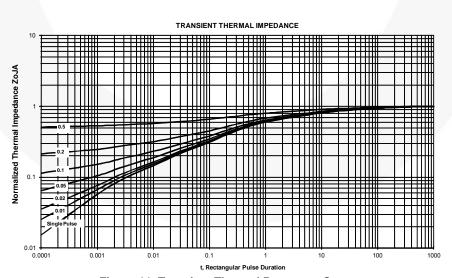
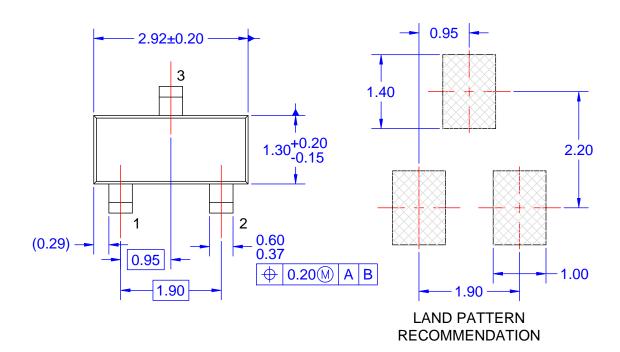
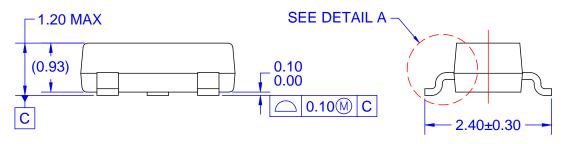
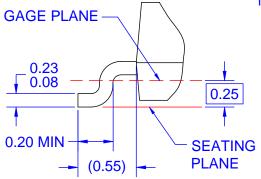





Figure 11. Transient Thermal Response Curve.

NOTES: UNLESS OTHERWISE SPECIFIED

- A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- E) DRAWING FILE NAME: MA03DREV10

DETAIL A
SCALE: 2X

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ FRFET® Awinda[®]

AX-CAP®* Global Power ResourceSM

BitSiC™ GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ CROSSVOLT™ GTO™ CTL^{TM} IntelliMAX™

Current Transfer Logic™ ISOPLANAR™ **DEUXPEED®** Making Small Speakers Sound Louder

Dual Cool™ and Better™ EcoSPARK® MegaBuck™

EfficientMax™ MIČROCOUPLER™ ESBC™ MicroFET™ MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ MotionGrid® FACT® MTi[®] MTx®

MVN® mWSaver® FPS™ OptoHiT™ OPTOLOGIC®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

QFET OS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* uSerDes™

UHC'

Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童™

DISCLAIMER

FastvCore™

FFTBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 172

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com