
QML CLASS V RS-422 QUADRUPLE DIFFERENTIAL LINE RECEIVER

Check for Samples: AM26LS33A-SP

FEATURES

- AM26LS33A Devices Meet or Exceed the Requirements of ANSI TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendations V.10 and V.11
- ±15-V Common-Mode Range With ±500-mV Sensitivity
- Input Hysteresis . . . 50 mV Typical
- Operate From a Single 5-V Supply
- Low-Power Schottky Circuitry
- 3-State Outputs
- Complementary Output-Enable Inputs
- Input Impedance . . . 12 kΩ Minimum
- Designed to Be Interchangeable With Advanced Micro Device AM26LS33™
- QML-V Qualified, SMD 5962-78020
- Military Temperature Range (-55°C to 125°C)

• Rad-Tolerant: 25 kRad (Si) TID (1)

(1) Radiation tolerance is a typical value based upon initial device qualification with dose rate = 10 mrad/sec. Radiation Lot Acceptance Testing is available - contact factory for details.

DESCRIPTION

The AM26LS33A is a quadruple differential line receiver for balanced and unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. The 3-state outputs permit connection directly to a bus-organized system. Fail-safe design ensures that, if the inputs are open, the outputs always are high.

Compared to the AM26LS33, the AM26LS33A incorporates an additional stage of amplification to improve sensitivity. The input impedance has been increased, resulting in less loading of the bus line. The additional stage has increased propagation delay; however, this does not affect interchangeability in most applications.

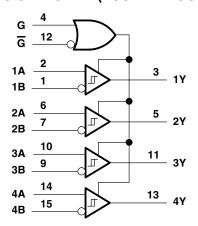
The AM26LS33A is characterized for operation over the temperature range of -55°C to 125°C.

ORDERING INFORMATION(1)

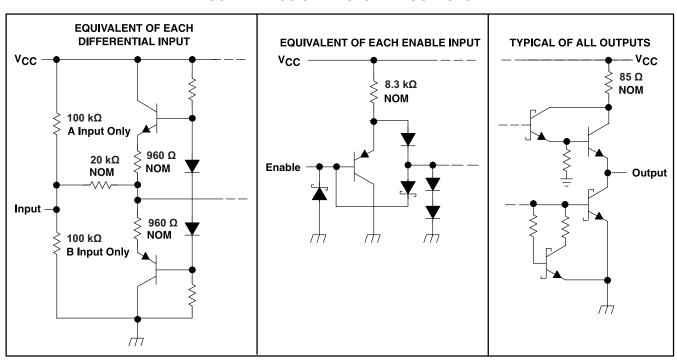
T _A	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	CDIP - J	5962-7802007VEA	5962-7802007VEA

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


INSTRUMENTS

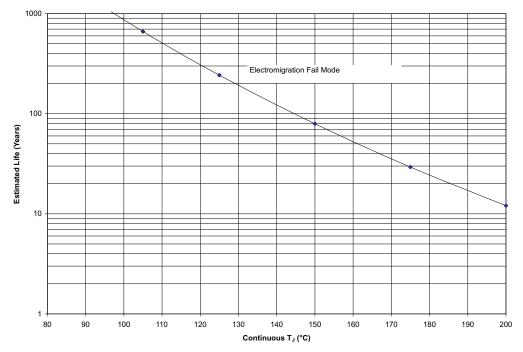
SLLSE22 – FEBRUARY 2010 www.ti.com


Table 1. FUNCTION TABLE Each Receiver

DIFFERENTIAL	ENA	OUTPUT	
A–B	G	G	Y
V >V	Н	X	Н
$V_{ID} \ge V_{IT+}$	X	L	Н
V	Н	X	?
$V_{IT-} \leq V_{ID} \leq V_{IT+}$	X	L	?
V	Н	Χ	L
$V_{ID} \le V_{IT-}$	X	L	L
X	L	Н	Z
Onon	Н	X	Н
Open	X	L	Н

LOGIC DIAGRAM (POSITIVE LOGIC)

SCHEMATICS OF INPUTS AND OUTPUTS



ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN MAX	UNIT
V_{CC}	Supply voltage (2)		7	V
VI	land to the land	Any differential input	±25	
	Input voltage	Other inputs	7	V
V_{ID}	Differential input voltage (3)		±25	V
	Continuous total power dissipation		See Dissipation Ratings Table	
	Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds		300	°C
T _{stg}	Storage temperature range		-65 150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential voltages, are with respect to the network ground terminal.
- (3) Differential voltage values are at the noninverting (A) input terminals with respect to the inverting (B) input terminals.

- A. See datasheet for absolute maximum and minimum recommended operating conditions.
- B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

Figure 1. AM26LS33A 16/J Package Operating Life Derating Chart

SLLSE22 - FEBRUARY 2010 www.ti.com

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.5	5	5.5	V
V _{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			8.0	V
V_{IC}	Common-mode input voltage			±15	V
I _{OH}	High-level output current			-440	μΑ
I _{OL}	Low-level output current			8	mA
T _A	Operating free-air temperature	-55		125	°C

ELECTRICAL CHARACTERISTICS

over recommended ranges of V_{CC} , V_{IC} , and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_O = V_{OH} min$, $I_{OH} = -440 \mu A$ -15 V \leq VIC \leq 15 V				0.5	V
V _{IT-}	Negative-going input threshold voltage	$V_{O} = 0.45 \text{ V}$, $I_{OL} = 8 \text{ mA}$ -15 V \leq VIC \leq 15 V		-0.5 ⁽²⁾			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})				50		mV
V_{IK}	Enable-input clamp voltage	$V_{CC} = 4.5 V,$	$I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High-level output voltage	$V_{CC} = 4.5 \text{ V}, V_{ID} = 1 \text{ V}, V_{IG} = 0.8 \text{ V}, I_{OH} = -440 \mu\text{A}$		2.5			V
.,	Low-level output voltage	$V_{CC} = 4.5 \text{ V}, V_{ID} = -1 \text{ V},$	I _{OL} = 4 mA			0.4	V
V _{OL}	Low-level output voltage	$V_{I(G)} = 0.8 \text{ V}$	I _{OL} = 8 mA			0.45	V
	Off-state		V _O = 2.4 V			20	
l _{OZ}	(high-impedance state) output current	V _{CC} = 5.5 V	V _O = 0.4 V			-20	μΑ
	Line input current	V _I = 15 V,	Other input at -10 V to 15 V			1.2	A
I _I		$V_I = -15 \text{ V},$	Other input at -15 V to 10 V			-1.7	mA
I _{I(EN)}	Enable input current	V _I = 5.5 V, V _{CC} = 5.5 V				100	μΑ
I _H	High-level enable current	V _I = 2.7 V, V _{CC} = 5.5 V				20	μΑ
IL	Low-level enable current	V _I = 0.4 V, V _{CC} = 5.5 V				-0.36	mA
rį	Input resistance	$V_{IC} = -15 \text{ V to } 15 \text{ V},$	One input to ac ground	12	15		kΩ
los	Short-circuit output current (3)	$V_{CC} = MAX$, $V_{ID} = 1$ V, $V_{O} = 0$ V		-15		-85	mA
I _{CC}	Supply current	V _{CC} = MAX, data inputs = GND,	All outputs disabled		52	70	mA

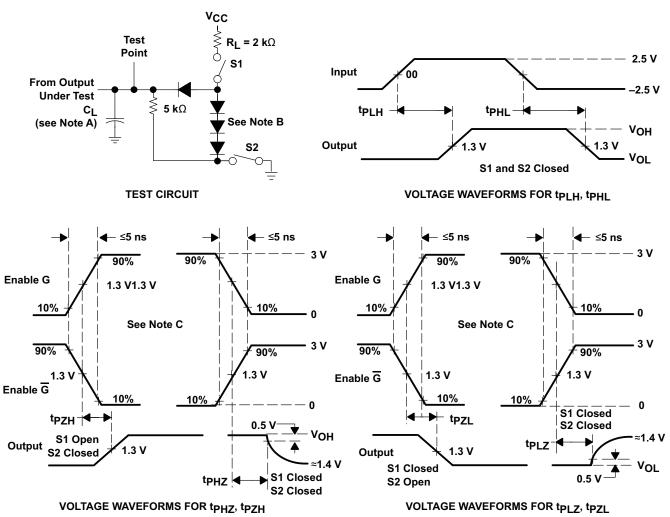
Submit Documentation Feedback

 ⁽¹⁾ All typical values are at V_{CC} = 5 V, T_A = 25°C, and V_{IC} = 0.
 (2) The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.

Not more than one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

SWITCHING CHARACTERISTICS

 V_{CC} = 5 V, over operating free-air temperature (unless otherwise noted)


	PARAMETER	TEST	TEST CONDITIONS			MAX	UNIT	
	Propagation delay time, low-to-high-level	C _L = 15 pF,	See Figure 2		20	35	20	
t _{PLH}	output	C _L = 15 pr,	$T_A = -55$ °C to 125°C			53	ns	
	Propagation delay time, high-to-low-level	C 15 pF	See Figure 2		22	35	20	
t _{PHL}	output	$C_L = 15 pF,$	$T_A = -55$ °C to 125°C			53	ns	
	Output enable time to high level	C _L = 15 pF,	See Figure 2		17	25	ns	
t _{PZH}			$T_A = -55$ °C to 125°C			38		
	Output anable time to law lavel	C 15 pF	See Figure 2		20	25		
t _{PZL}	Output enable time to low level	$C_L = 15 \text{ pF},$	$T_A = -55$ °C to 125°C			38	ns	
	Output disable time from high level	0 45 -5	See Figure 2		21	30		
t _{PHZ}	Output disable time from high level	$C_L = 15 pF,$	$T_A = -55$ °C to 125°C			45	ns	
t _{PLZ}	Output disable time from law laws	0 45 -5	See Figure 2		30	40	20	
	Output disable time from low level	$C_L = 15 \text{ pF},$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			60	ns	

⁽¹⁾ All typical values are at V_{CC} = 5 V, T_A = 25°C, and V_{IC} = 0.

SLLSE22 – FEBRUARY 2010 www.ti.com

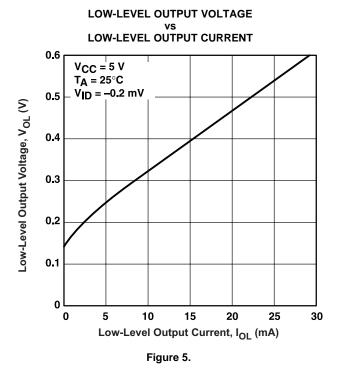
PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. All diodes are 1N3064 or equivalent.

C. Enable G is tested with \overline{G} high; \overline{G} is tested with G low.

Figure 2. Test Circuit and Voltage Waveforms


TYPICAL CHARACTERISTICS

HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT 5 $V_{ID} = 0.2 V$ $T_{\Delta} = 25^{\circ}C$ High-Level Output Voltage, VOH (V) 3 V_{CC} = 5.25 V V_{CC} = 5 V 2 V_{CC} = 5.5 V V_{CC} = 4.75 V 1 V_{CC} = 4.5 V 0 -10 -20 -30 -40 -50

 $\ensuremath{^{\dagger}}\ensuremath{\,\text{V}_{CC}}\xspace = 5.5\ \mbox{V}$ and $\ensuremath{\,\text{V}_{CC}}\xspace = 4.5\ \mbox{V}$ applies to M-suffix devices only.

High-Level Output Current, IOH (mA)

Figure 3.

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

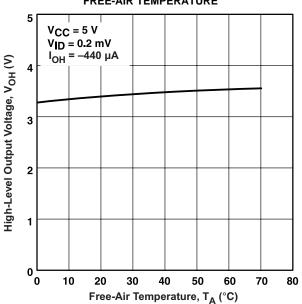
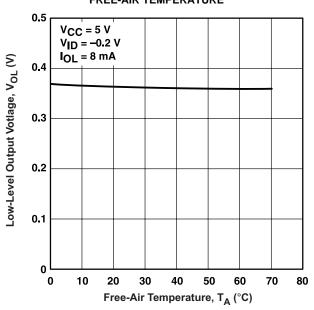
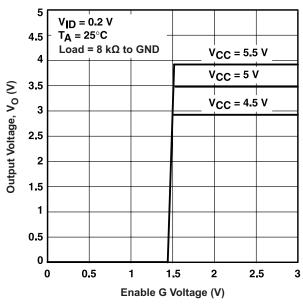
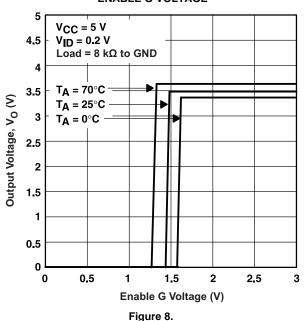


Figure 4.

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE




Figure 6.



TYPICAL CHARACTERISTICS (continued)

OUTPUT VOLTAGE vs ENABLE G VOLTAGE

Figure 7.

OUTPUT VOLTAGE vs ENABLE G VOLTAGE

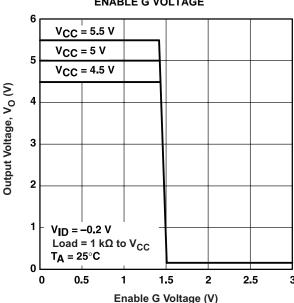


Figure 9.

OUTPUT VOLTAGE vs ENABLE G VOLTAGE

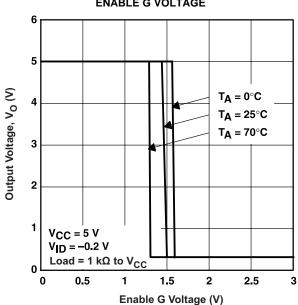
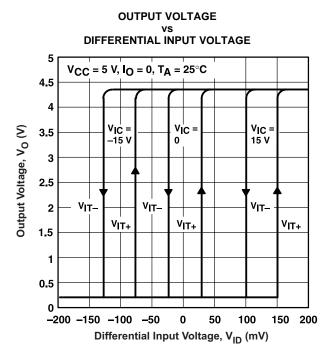
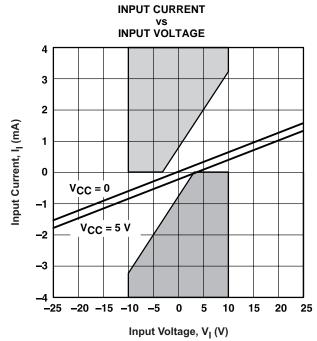




Figure 10.

TYPICAL CHARACTERISTICS (continued)

The unshaded area shows requirements of paragraph 4.2.1 of ANSI Standards EIA/TIA-422-B and EIA/TIA-423-B.

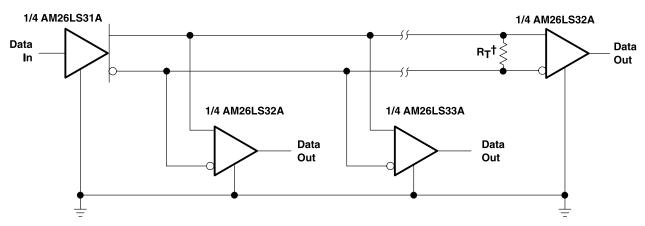

Figure 12.

Figure 11.

SLLSE22 – FEBRUARY 2010 www.ti.com

APPLICATION INFORMATION

[†]R_T equals the characteristic impedance of the line.

Figure 13. Circuit with Multiple Receivers

29-Aug-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-7802007VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AM26LS33A-SP:

Catalog: AM26LS33A

Military: AM26LS33AM

NOTE: Qualified Version Definitions:

29-Aug-2012

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts	Applications	
udia	ununu ti oom/oudio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com