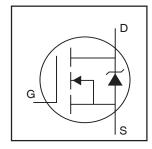
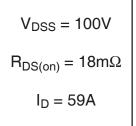
International Rectifier

AUTOMOTIVE GRADE

AUIRF3710Z AUIRF3710ZS


Features


- Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

TO-220AB AUIRF3710Z

D²Pak AUIRF3710ZS

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units	
I _D @ T _C = 25°C Continuous Drain Current, V _{GS} @ 10V		59	Α	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	42		
I _{DM}	Pulsed Drain Current ①	240		
P _D @T _C = 25°C	Maximum Power Dissipation	160	W	
	Linear Derating Factor	1.1	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally limited) 2	170	mJ	
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ®	200		
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α	
E _{AR}	Repetitive Avalanche Energy		mJ	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
-	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 screw ®	10 lbf•in (1.1N•m)		

Thermal Resistance

THO THE TOO TO THE TOO THE								
	Parameter	Тур.	Max.	Units				
$R_{\theta JC}$	Junction-to-Case ®		0.92	°C/W				
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50						
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state)		40					

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise stated)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		14	18	mΩ	V _{GS} = 10V, I _D = 35A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	35			S	$V_{DS} = 50V, I_{D} = 35A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 100V, V_{GS} = 0V$
				250	Ī	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	Ī	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise stated)

		- 0		`		,
Q_g	Total Gate Charge		82	120	nC	$I_D = 35A$
Q_{gs}	Gate-to-Source Charge		19	28		$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		27	40	ĺ	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17		ns	$V_{DD} = 50V$
t _r	Rise Time		77		Ī	$I_D = 35A$
t _{d(off)}	Turn-Off Delay Time		41		Î	$R_G = 6.8\Omega$
t _f	Fall Time		56			V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5		nΗ	Between lead,
						6mm (0.25in.)
Ls	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		2900		рF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		290		ĺ	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		1130			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
C _{oss}	Output Capacitance		170			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		280			$V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$

Diode Characteristics

	Parameter		Тур.	Max.	Units	Conditions
Is	Continuous Source Current			59		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			240		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 35A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C$, $I_F = 35A$, $V_{DD} = 25V$
Q _{rr}	Reverse Recovery Charge		100	160	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.27mH, ⑤ This value determined from sample failure population, R_{G} = 25 $\!\Omega,\,I_{AS}$ = 35A, V_{GS} =10V. Part not recommended for use above this value.
- $\ensuremath{ \mbox{\scriptsize (3)}} \ I_{SD} \leq 35 A, \ di/dt \leq 380 A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_J \le 175$ °C.
- ④ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- ⑤ Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- starting T_J = 25°C, L = 0.27mH, R_G = 25 Ω , I_{AS} = 35A, V_{GS} =10V
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\ensuremath{\$}\xspace$ R $_{\theta}$ is measured at T $_J$ approximately 90°C.
- 9 This is only applied to TO-220AB pakcage.

Qualification Information[†]

Qualification Level		Automotive (per AEC-Q101) ††					
		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moistu	re Sensitivity Level	TO-220AB	N/A				
		D ² PAK	MSL1				
	Machine Model	Class M4					
		AEC-Q101-002					
50 D	Human Body Model	Class H1C					
ESD		AEC-Q101-001					
	Charged Device Model	Class C3					
		AEC-Q101-005					
RoHS Compliant		Yes					

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/
- †† Exceptions to AEC-Q101 requirements are noted in the qualification report.

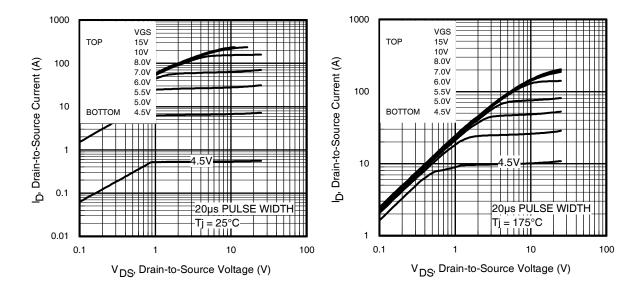


Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

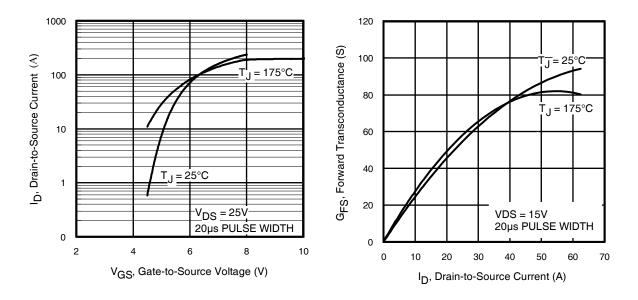
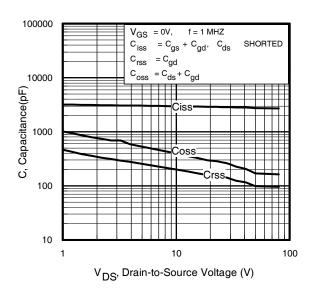
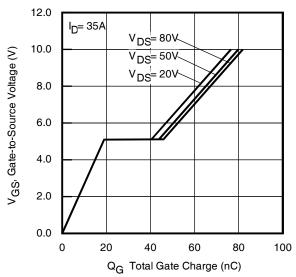




Fig 3. Typical Transfer Characteristics

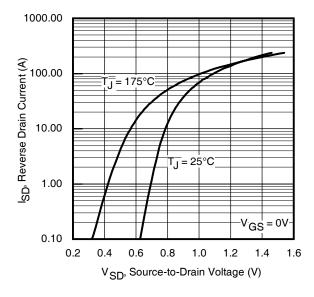

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

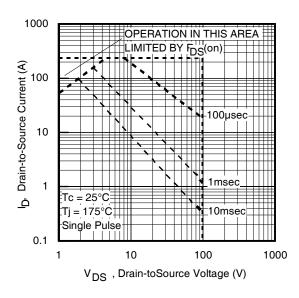
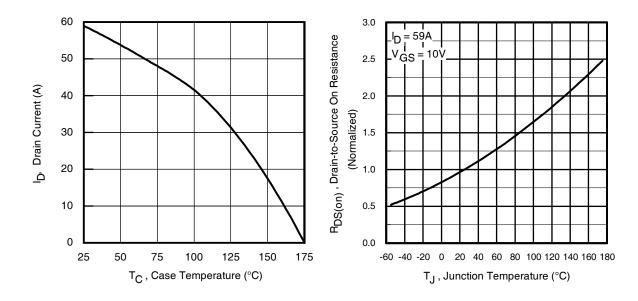



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

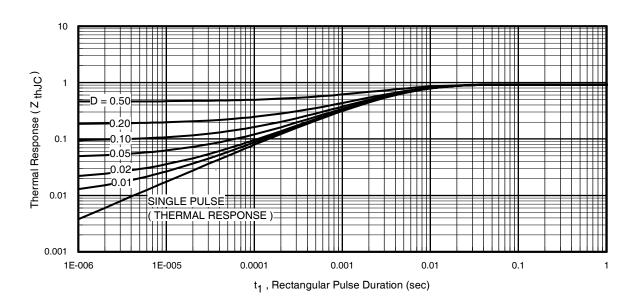


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

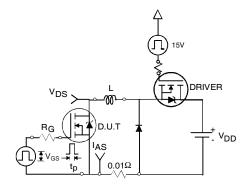


Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

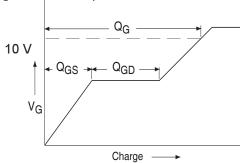


Fig 13a. Basic Gate Charge Waveform

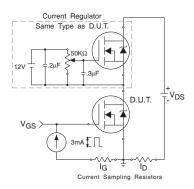
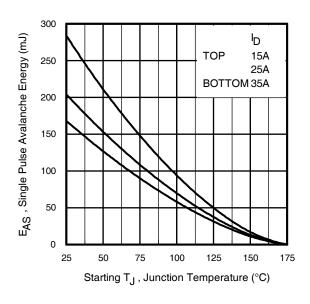



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy vs. Drain Current

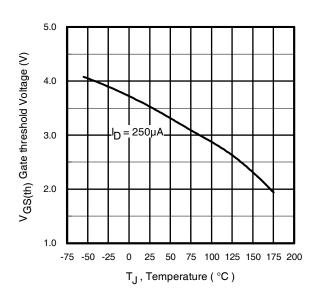


Fig 14. Threshold Voltage vs. Temperature

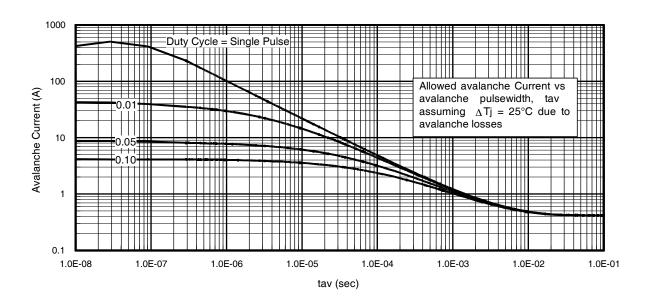
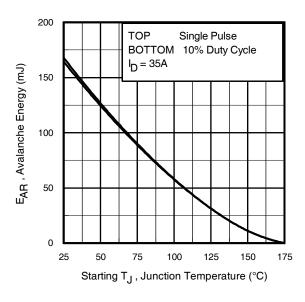



Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).

t_{av =} Average time in avalanche.

 $D = Duty cycle in avalanche = t_{av} \cdot f$

 $Z_{th,IC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \triangle T / \, Z_{thJC} \\ I_{av} &= 2\triangle T / \, [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

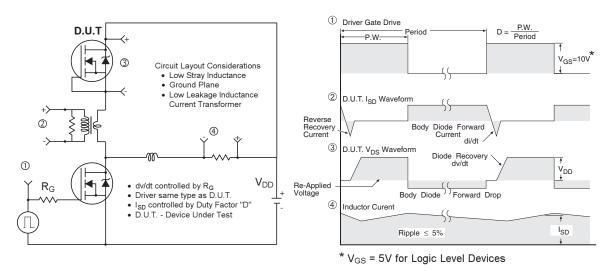


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

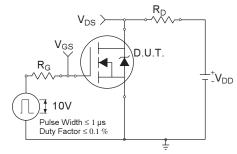


Fig 18a. Switching Time Test Circuit

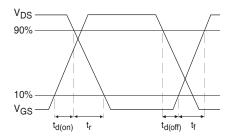
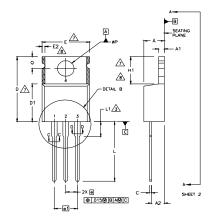
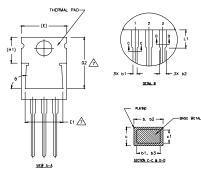




Fig 18b. Switching Time Waveforms

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

SYMBOL

A1 A2 b b1 b2 b3

c c1

D D1 D2 E E1

e e1 H1 L L1 øP Q

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M— 1994, DIMENSIONIS ARE SHOWN IN INCHES [MILLIMETERS], LEAD DIMENSION AND FINISH UNCONTROLLED IN L1, DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY, DIMENSION 1 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION : INCHES.

 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.

MAX

4.82

2.92

1.01

0.96

1,77

0,61

16,51

9.02 12.88

10.66

8,89

6.35

3.42

INCHES

MAX.

.055

.040

.070

.355 .420 .350

.250

.135

4,7 7

7,8

MIN.

.020

.015

.045

,014

.560

.330

.380

.139

.100

MILLIMETERS

MIN,

3.56

0.51

0.38

0,38

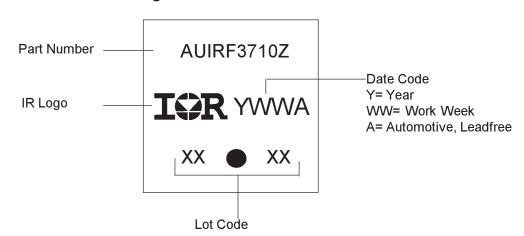
1,15

0.36

8.38 12.19

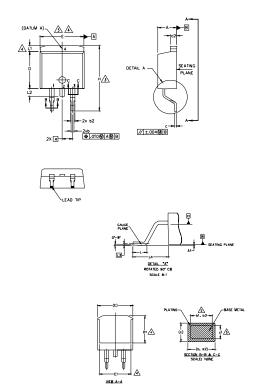
9,66

8,38


2.54

LEAD ASSIGNMENTS HEXFET

- 1,- GATE 2,- DRAIN 3,- SOURCE


- DIODES
- 1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

D²Pak Package Outline (Dimensions are shown in millimeters (inches))

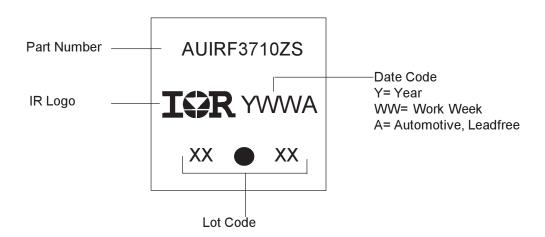
- 1, DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3) DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7, CONTROLLING DIMENSION; INCH,
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M B O L			Ŋ			
B	MILLIM	ETERS	INC	HES	NOTES	
L	MIN. MAX.		MIN.	MAX.	S	
Α	4.06	4.83	.160	.190		
Α1	0,00	0.254	.000	.010		
b	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	5	
b2	1,14	1,78	.045	.070		
ь3	1,14	1,73	.045	.068	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1,14	1,65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270		4	
Ε	9.65	10.67	.380	.420	3,4	
E1	6,22	-	.245		4	
е	2.54	BSC	.100	.100 BSC		
Н	14.61	15.88	.575	.625		
L	1,78	2.79	.070	,110		
L1	-	1,65	-	.066	4	
L2	1.27	1.78	-	.070		
L3	0.25	BSC	.010 BSC			
L4	4.78	5.28	.188	.208		

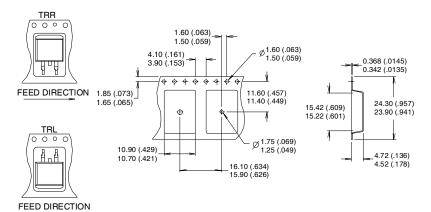
LEAD ASSIGNMENTS

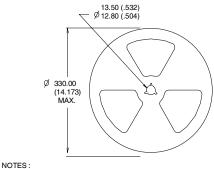
HEXFET

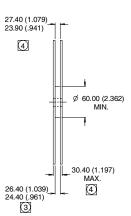
1.- GATE 2. 4.- DRAIN 3.- SOURCE


IGBTs, CoPACK

1.- GATE 2. 4.- COLLECTOR 3.- EMITTER


DIODES


- * PART DEPENDENT.


D²Pak Part Marking Information

D²Pak Tape & Reel Infomation

COMFORMS TO EIA-418.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION MEASURED @ HUB.
INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Ordering Information

Base part number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRF3710Z	TO-220	Tube	50	AUIRF3710ZS
AUIRF3710ZS	D2Pak	Tube	50	AUIRF3710ZS
AUIRF3710ZS		Tape and Reel Left	800	AUIRF3710ZSTRL
AUIRF3710ZS		Tape and Reel Right	800	AUIRF3710ZSTRR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com