

FEATURES

- Low distortion transformer signal coupling (0.01% max)
- Complete ring detector circuit
- Low power hookswitch
- Electronic inductor/gyrator circuit
- Surge protection
- V.32 bis /V.34 compatible
- PTT and safety regulations in 15 countries
- PC board mountable
- FCC Compatible

APPROVALS

- UL recognized file #: E174201
- BSI certified:
- BS EN 60950: 1992 Certificate # 8123
- BABT recognized; listing pending

DESCRIPTION

Clare's CYG21XX Series DAA modules provide a complete telephone line interface circuit in a small 1.07" x 1.07" x 0.4" package. The modules provide a fast and cost effective solution for designs that require an interface to the telephone line. The CYG2100 is designed to meet PTT and safety regulations in 13 countries.

The CYG2110 and CYG2120 are designed to meet PTT regulations in France and Spain, respectively.

APPLICATIONS

- Home medical devices
- Plant monitoring equipment
- Security/alarm systems
- Utility meters
- Modems
- Voicemail systems
- Vending machines
- Elevator control boxes
- Network routers
- PBX Systems
- PC mother boards
- Telephony applications
- Digital telephone answering machines

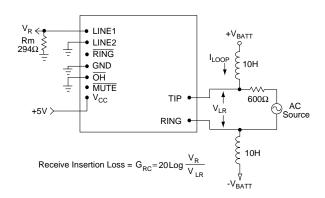
RATINGS (@ 25° C)

Parameter	Min	Тур	Max	Units
Isolation Voltage	-	-	1500	V _{RMS}
Operational Temperature	0	-	70	°C
Storage Temperature	0	-	100	°C
Relative Humidity (Non-Condensing)	10	-	85	%
Soldering Temperature	-	-	260	°C
Tip/Ring Load Current (continuous)	-	-	120	mA
Hookswitch LED Drive Current	-	-	50	mA
Hookswitch LED Reverse Voltage	-	-	5	V
Ring Detect Phototransistor Voltage V _{cc}	-	-	20	V

Note: For Mechanical Dimensions See Pages 408-415

SPECIFICATIONS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Electrical Characteristics					
On-Hook Impedance	@100VDC across pins 5,6 (R,T)	10	-	-	МΩ
Off-Hook Line Leakage Current	@100VDC across pins 5,6 (R,T)	-	-	10	μА
Hookswitch Resistance	-	-	-	35	Ω
Off-Hook Relay Supply Current	@ V _{cc} =5V	7	8	9	mA
Hookswitch Power Source	-	4.75	5.0	20	V
DC Loop Current	-	5	-	120	mA
Mute Relay Supply Current	@ V _{cc} =5V	7	8	9	mA
AC Signal Path Electrical Characteristics					
Return Loss	300-3500Hz	14	25	-	dB
Insertion Loss Transmit Receive	Test Circuit 1 Test Circuit 2		- -	7 7	dB dB
Frequency Response	300-3500Hz	-0.25	-	+0.25	dB
Longitudinal Balance On-Hook Off-Hook	:	60 40	- -	- -	dB dB
Total Harmonic Distortion	@350Hz and -10dBm	-	-	0.01	%
Secondary Load Impedance	Line 1 and Line 2	-	100	-	Ω
Primary Source Impedance	Tip and Ring	-	600	-	Ω
Ring Detection Circuit Characteristics					
Ringing Voltage Detection Range CYG2100, CYG2110 CYG2120	20-150-V _{RMS}	29 28	- -	150 150	V _{RMS}
Ringing Frequency Detection Range	50-70Hz	15	-	70	Hz
Ringer Impedance	25Hz	-	18	-	ΚΩ
RING Output Voltage (Pulsed) Logic '0', Ring present Logic '1', Ring not present	V _{cc} @+5V	- -	- -	0.8 V _{cc}	V
Surge, Transient, and solation Characteristics					
Surge Protection Voltage Tip and Ring	-	-	-	300	V
Isolation Voltage (Pins 1-7 to 10-11)	60 Seconds	-	-	1500	V _{RMS}



TEST CIRCUITS

1. CYG21XX Transmit Insertion Loss

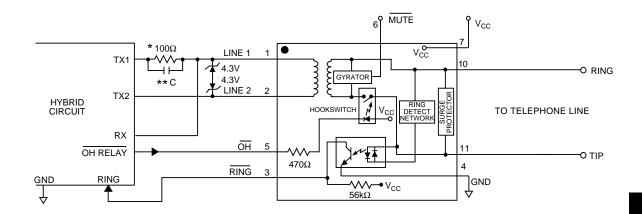
$\begin{array}{c|c} Rm \\ 294\Omega \\ \hline V_T \\ \hline \end{array} \begin{array}{c} LINE1 \\ \hline \\ EINE2 \\ \hline \\ RING \\ \hline \end{array} \begin{array}{c} I_{LOOP} \\ \hline \\ I_{LOOP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{ODP} \\ \hline \end{array} \begin{array}{c} I_{ODP} \\ \hline \\ I_{OD$

2. CYG21XX Receive Insertion Loss

PACKAGE PINOUTS

CYG21XX

LINE 1 LINE 2 RING GND OH MUTE V _{CC}	° 1 ° 2 ° 3 ° 4 ° 5 ° 6 ° 7		11 ° 10 °	TIP RING
		Top View		


CYG21XX Pinouts & Definitions

PIN#	I/O	Name	Function
1	I/O	LINE1	Transformer isolated audio signal coupling path for the telephone line.
2	I/O	LINE2	Transformer isolated audio signal coupling path for the telephone line.
3	0	RING	Active LOW indicates an incoming ring signal. This is pulsed LOW by the AC ring signal at the ring frequency from 15-40Hz.
4	I	GND	Connected to host system ground.
5	I	ОH	Driving this pin LOW asserts the off-hook condition. The hookswitch LED is current limited by an internal 470Ω resistor.
6	1	MUTE	Driving this pin LOW activates the mute relay for pulse dialing. The mute control is activated on or slightly before (tpms max.) the start of the first dial pulse, then kept active until the end (50ms max.) of the last dial pulse. The mute relay LED is current limited by an internal 470Ω resistor.
7	I	V _{cc}	Provides power to the hookswitch LED. Typically +5V for \approx 8mA LED current. LED is current limited by an internal 470 Ω resistor. V _{CC} should not exceed 20V.
11	I/O	RING	Connection to telephone line Ring conductor.
10	I/O	TIP	Connection to telephone line Tip conductor.

Note: For Mechanical Dimensions See Pages 408-415

TYPICAL APPLICATION

 $^{^*}$ UK/Sweden = 350 Ω All other countries = 100 Ω ** Installed for German/Swiss DAA Module

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com