

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters:

ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

AS3604 DataSheet

Multi-Standard Power Management Unit

1 General Description

The AS3604 is a highly-integrated CMOS power management device designed specifically for portable devices such as mobile phones, PDAs, CD players, digital cameras and other devices powered by 1-cell lithium-based or 3- to 4-cell nickel-based batteries. It can be used for any mobile phone handset standards such as CDMA, WCDMA, GSM, GPRS, EDGE, UTMS and other Japanese or American standards.

The device incorporates low dropout regulators (LDOs), DC/DC converters, a complete battery charger, and an audio power amplifier onto one die.

The linear analog LDOs feature extremely high performance regarding:

- Noise typ 30µVRMs from 100Hz to 100kHz
- Line/Load Regulation < 1mV static, < 10mV transient
- Power Supply Rejection > 70dB @ 1kHz

The integrated Step Down DC/DC Converter does not require an external Schottky diode yet provides very high efficiency (up to 95%) throughout the whole operating range. It can be either used as a stand-alone device or as a pre-regulator for LDOs to increase overall device efficiency.

A Step Up DC/DC Converter is included to supply power for white LEDs, together with programmable current sources to control LED brightness.

A low-distortion audio power amplifier (1 Watt @ 8Ω) supports handsfree operation and HiFi ring-tones.

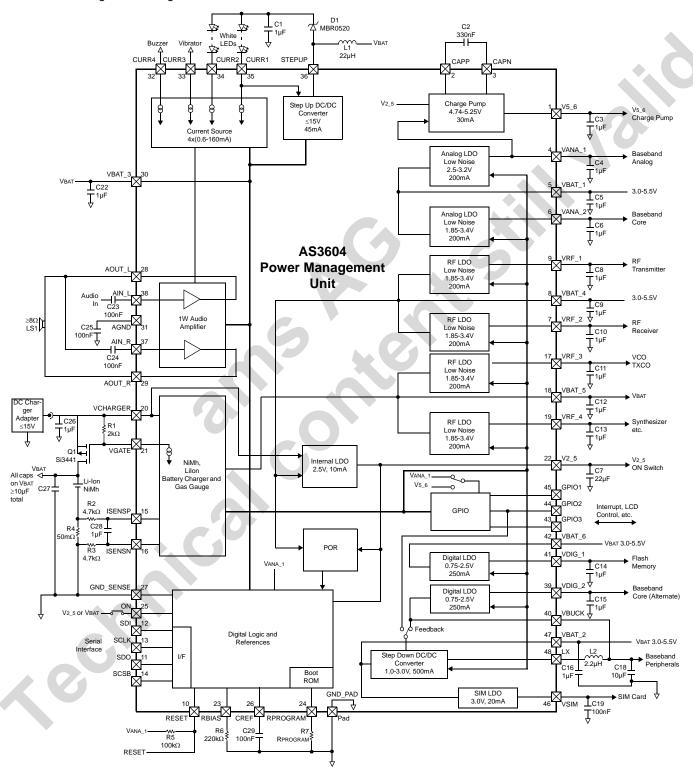
The device also features a chemistry-independent battery charger including automatic trickle charging, gas gauge, and programmable constant voltage and current charging.

The AS3604 is controlled via a serial interface and integrates all necessary system specific functions such as Reset, Watchdog, and Power-On Detection.

Output voltages and start-up timings can be programmed on metal-mask level, by register or by an external resistor.

2 Key Features

- Ten Programmable High Performance LDOs
 - Two Digital Low-Power LDOs (0.75 to 2.5V, 200mA; 250mA up to 1.4V)
 - Three RF Low-Noise LDOs (1.85 to 3.4V, 200mA)
 - Two RF Low-Noise LDOs (1.85 to 3.4V, 150mA; 200mA up to 2.6V)
 - One SIM Low-Power LDO (1.8 to 3.0V, 20mA)
 - One Periphery Low-Noise LDO (2.5 to 3.2V, 200mA)
 - One Low-Power LDO (2.5V, 10mA)


- Programmable High Efficiency DC/DC Converters
 - Step Down: 0.8 to 3.4V, up to 500mA with 2.2MHz Operating Frequency and Small External Coil (2.2µH)
 - Step Up: 15V, 45mA, (for White LEDs)
- Stereo Audio Power Amplifier
 - 0.5W @ 4Ω Stereo; 1W @ 8Ω Bridged
 - Digital Volume Control, 3dB Steps
 - Click- and Pop-Less Start-Up and Power-Down
- Complete Chemistry-Independent Battery Charger
 - Integrated Gas Gauge
 - Automatic Trickle Charging
 - Programmable Constant Current Charging
 - Programmable Constant Voltage Charging
 - Pulse Charging
 - Safety Functions (Low Battery Shutdown)
 - Over- and Under-Temperature Charge Disable
 - Operation without Battery
 - Can Regulate the Current Through the Battery or from the Charger
 - Charger Input Overvoltage Protection (6V)
 - Shutdown even with Connected Charger
 - Charger Resume Operation
 - Charger Interrupts (Inserted, Removed, Overvoltage, Resume)
 - No-Battery Detection
- Momentary Power Loss Detection
 - Battery Supply Short-Interruption Detection (<200ms); (e.g., due to a dropped phone)
- Four Programmable Current Sources
 - 8-Bit (0.625 to 160mA)
 - Buzzer
 - Vibrator
 - LEDs
- Wide Battery Supply Range 3.0 to 5.5V
- Four General Purpose Switches (1Ω and 2Ω)
- Three Programmable General Purpose I/O Pins
- On-Chip Bandgap Tuning for High Accuracy (±1%)
- Integrated Programmable Watchdog (7.5 to 1900ms)
- Programmable Reset (10 to 110ms)
- Shutdown Current typ 7µA (2.5V Always On)
- Overcurrent and Thermal Protection
- 0.35µ CMOS Solution
- 2.1 Watt Power Dissipation @ SCSB = 70°C
- 48-pin, 6x6mm QFN Package (0.4mm pitch)

3 Applications

Multi-standard power management for mobile phones, PDAs, and any other 1-cell Li+ or 3- to 4-cell NiMh powered devices.

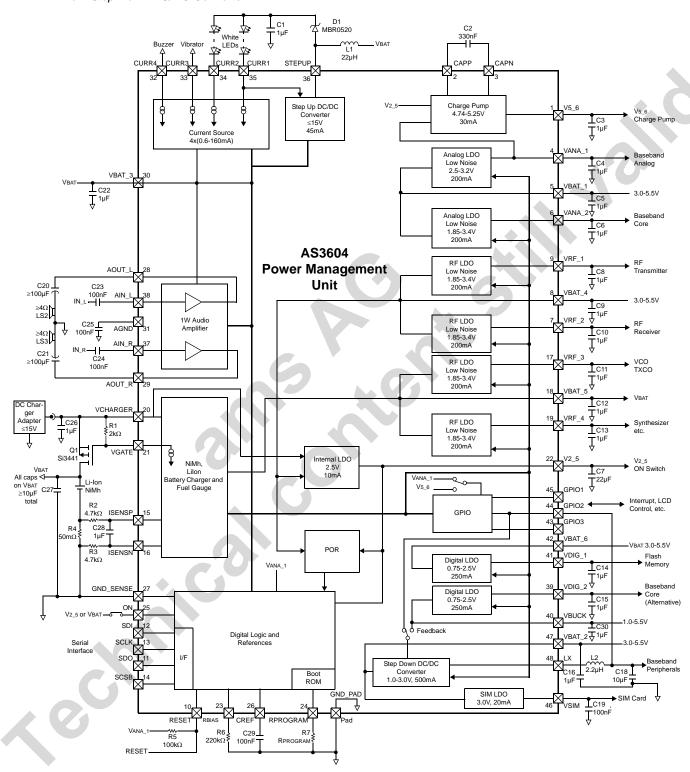

4 Block Diagrams

Figure 1. AS3604 Block Diagram. Option: Audio Amplifier In Differential Mode, Step Down DC/DC Converter as Pre-Regulator for Digital LDOs

Note: Refer to Table 38 on page 74 for specifications of external components.

Figure 2. AS3604 Block Diagram. Option: Audio Amplifier in Stereo Single-Ended Mode, Digital LDOs Separated from Step Down DC/DC Converter

Note: Refer to Table 38 on page 74 for specifications of external components.

Content

1	General Description	1
2	Key Features	1
3	Applications	1
4	Block Diagrams	2
5	Absolute Maximum Ratings (Non-Operating)	e
	5.1 Operating Conditions	6
6	Detailed Functional Descriptions	7
	6.1 Battery Charger Controller	
	6.2 Step Down DC/DC Converter	24
	6.3 Low Dropout Regulators	30
	6.4 Charge Pump	4
	6.5 Step Up DC/DC Converter	42
	6.6 General Purpose Input/Output	
	6.7 Current Sinks	
	6.8 Audio Amplifier	
7	System Supervisory Functions	
	7.1 Reset	
	7.2 Startup	
	7.3 Protection Functions	
	7.4 Watchdog Block	60
	7.5 Internal Reference Circuits	
	7.6 Low Power Mode	
	7.7 Boot Sequence Detection	
_	7.8 Serial Interface	
	Register Map	
9	Pinout and Packaging	
	9.1 Pin Descriptions	
	9.2 Package Drawings and Markings	
	0 External Parts List	
1′	1 Ordering Information	7
	Ordering miormation	
Ť		

Revision History

Revision	Date	Owner	Description
1.0	23 June 2006	ptr	- Initial release.
1.1	3 March 2007	ptr	- Updated ambient temperature range.
1.11	4 Dec 2008	pkm	- Updated internal LDO supply description
1.2	8 Apr 2009	pkm	- Updated ordering info for AS3604B chip version
1.21	15 Mai 2009	pkm	- Updated abs. max ratings and stand-by current, deleted errata
1.22	21 Aug 2009	pkm	- Updated operating current, SNR and VCHOV

5 Absolute Maximum Ratings (Non-Operating)

Stresses beyond the absolute maximum ratings may cause permanent damage to the AS3604. These are stress ratings only. Functional operation of the device at these or beyond those in Operating Conditions is not implied.

Caution: Exposure to absolute maximum rating conditions may affect device reliability.

Table 1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
VIN_HV	High Voltage Pins	-0.3	18.0	V	Applicable for high voltage pins: VCHARGER, VGATE, and STEPUP
VIN_MV	5V Pins	-0.3	7.0	V	Applicable for pins 5V pins: VBAT_1 - VBAT_6, V5_6, VBUCK, GPIO1 - GPIO3, CURR1 - CURR4, AIN_L, AIN_R, AOUT_L, AOUT_R, VRF_1 - VRF_4 (when not in LDO-mode), ON, and LX
VIN_LV	3.3V Pins	-0.3	5.0	V	Applicable for 3.3V pins: RESET, SCSB, SCLK, SDI, SDO, VANA_1, VANA_2, VSIM, VDIG_1, VDIG_2, CAPN, AGND, ISENSP, ISENSN, V2_5, CREF, RBIAS, and RPROGRAM
lin	Input Pin Current	-25	+25	mA	At 25°C Norm: JEDEC 17
Tstrg	Storage Temperature Range	-55	125	°C	**
	Humidity	5	85	%	Non-condensing
VESD	Electrostatic Discharge	-1000	1000	V	Norm: MIL 883 E Method 3015; ±1000V.
Рт	Total Power Dissipation		2.1	W	TAMB = 70°C
Tmax	Peak Reflow Soldering Temperature		260	°C	T = 20 to 40s, according to the <i>IPC/JEDEC J-STD 020C</i> .

5.1 Operating Conditions

Table 2. Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VHV	High Voltage	0.0		15.0	V	Pins VCHARGER, VGATE and STEPUP
VBAT	Battery Voltage	3.0	3.6	5.5	٧	For pins VBAT_1 - VBAT_6. During startup from ext. battery charger adapter, the battery voltage can be below 3.0V.
VANA_1	Periphery Supply Voltage (for RESET and SPI pins)	2.5	Boot ROM	3.2	٧	Internally generated from VANA_1.
Von	Activation voltage for ON pin	1.75	V2_5	VBAT	V	
V2_5	Voltage on Pin V2_5	2.4	2.5	2.6	>	Internally generated.
V5_6	Output Voltage of Charge Pump	5.0	5.2	5.6	٧	2 x VANA_1
Тамв	Ambient Temperature	-40	25	85	٥C	
Іват	Operating Current		195	260	μA	Normal operating current. With bit low_power_on (page 62) = 0; only VANA_1 active, no additional external loads.
ILOWPOWER	Low-Power Mode Current Consumption		110		μA	With bit low_power_on (page 62) = 1; only VANA_1 active, no additional external loads.
IPOWEROFF	Power-Off Mode Current Consumption		13	20	μΑ	With bit power_off (page 57) = 1; only V2_5 is active in power off mode. not tested, guaranteed by design

6 Detailed Functional Descriptions

6.1 Battery Charger Controller

The AS3604 can serve as a standalone Battery Charger Controller supporting rechargeable lithium-ion (Li+), lithium-polymer (LiPo) and 3- or 4-cell nickel metal-hydride (NiMh) batteries.

The main features of the Battery Charger Controller are:

- Constant Voltage Charge Mode Described on page 9
- Pulse Charge Mode Described on page 11
- Battery Presence Detection Described on page 14
- Operation Without Battery Described on page 14
- Charge Controller Bypass Described on page 14
- Overvoltage and Undervoltage Supervision Described on page 15

Figure 3. Battery Charger Controller Block Diagram

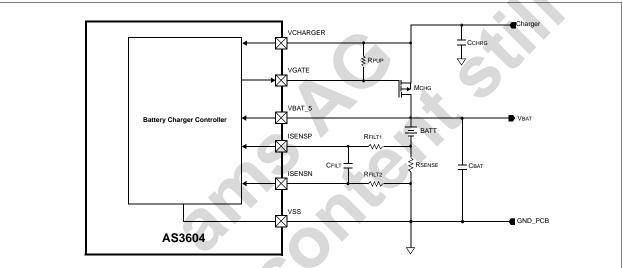


Table 3. Battery Charger Controller Components

Symbol	Parameter	Value	Notes
Мснв	P-Channel MOSFET	Si3441BDV, Si8401DB or similar	The maximum power dissipation of this transistor is not limited by the AS3604.
Rpup	Pull-Up Resistor	2KΩ ± 5%	
RSENSE	Current Sense Resistor	$50m\Omega \pm 1\%$, 125mW for IVBAT,DC < 1.5A	e.g. Vishay Dale WSL0805
RFILT1,2	Filter Resistor	47KΩ ± 1%	Can be omitted if Gas Gauge functionality
CFILT	Filter Capacitor	100nF ± 20%, X5R or X7R Dielectric	is not used (RFILT1,2 = 0Ω)
Cchrg	Bypass Capacitor on pin VCHARGER	1μF ± 20%, X5R or X7R Dielectric	
Сват	Minimum Total Capacitance Parallel to Battery	10μF	

Table 4. Battery Charger Controller Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Notes	
VCHDET	Charger Detection Threshold. VCHARGER - VBAT_5: Charger On	50	75	105	mV	Hysteresis = (VCHDET - VCHMIN)<	
VCHMIN	Charger Detection Threshold. VCHARGER - VBAT_5: Charger Off	5	20	35	mV	40mV	
VCHREG	Bootstrap Regulator Voltage	2.4	2.5	2.6	V	VCHARGER > 5V	
Vсноvн	VOLIA DOED Occurrents on Detection	6.2	6.45	6,71	.,	Monitor voltage on VCHARGER and	
Vсноv	VCHARGER Overvoltage Detection	5,81	6.05	6,29	V	disable charging if this voltage is exceeded.	
Vuvlo	Lindonvoltage Leekeut Threehold		3.1		V	VBAT rising	
VUVLO	Undervoltage Lockout Threshold		2.8		V	VBAT falling	
Vovio	Overvoltage Leekeut Threshold		5.5		V	VBAT rising	
VOVLO	Overvoltage Lockout Threshold		5.4		V	VBAT falling	
		4.14	4.20	4.26		Li+ Battery: BatType (page 20) = 0, Li4v2 (page 20) = 1	
VCHOFF	Charge Termination Threshold		4.1	4.15	V	Li+ Battery: BatType = 0 , Li4v2 = 0 . From -5 to +50°C	
		5.44	5.5	5.6		NiMh Battery: BatType = 1	
VNOBATDET	No-Battery Detection Threshold and Charger Resume Detection Threshold		3.644		V	DisOWB (page 21) = 0	

6.1.1 Low-Current Trickle Charge Mode

Low-Current Trickle Charge mode is initiated when an external battery charger has been detected, bit chDet (page 19) = 1, and the battery voltage is below the VUVLO threshold; bits ChAct (page 19) and Trickle (page 19) will be set. In Trickle Charge mode the charge current will be limited to the value specified by Trickle Current (page 21) to prevent undue stress on either the battery or the Battery Charger in case of deeply discharged batteries.

Once VUVLO has been exceeded, the Battery Charger will terminate Trickle Charge mode (charger must not be disabled between trickle and constant current (fast) charging), reset bits **ChAct** and **Trickle**, and switch on the device.

The trickle charge is terminated in any case after approximately 60 minutes (as it is assumed that the battery is damaged in this case)

6.1.2 Constant Current Charge Mode

Constant Current mode is initiated by setting bit ChEn (page 20) and resetting bit Fast (page 20). Bit ChAct (page 19) is set automatically when the Battery Charger starts. Charge current will be limited to the value specified by bit Constant Current (page 21) by the Battery Charger Controller.

6.1.3 Charging Nickel-based Batteries

For nickel-based batteries (NiMh), BatType (page 20) must be 1 (see Figure 4 on page 9). The endpoint detection ($\Delta V/\Delta t$) must be performed by the host controller. It must turn off the charger duly to avoid overcharging. In any case, when the battery voltage exceeds the charge termination threshold (typ. 5.5V), the charger will be turned off and bit EOC (page 20) will be set.

6.1.4 Charging Lithium-based Batteries

For lithium-based batteries (Lithium-Ion, Lithium-Polymer), BatType (page 20) must be 0. Additionally, bit Li4v2 (page 20) can select between coke- and graphite-anode, setting different charge termination thresholds (typ. 4.1 or 4.2V). The charger is designed to charge 1-cell lithium-based batteries independently, using Trickle Charge, Constant Current, Constant Voltage, or Pulse Charge modes.

When the battery voltage exceeds the charge termination threshold during Constant Current mode, it automatically continues charging with either Constant Voltage mode, bit **Pulse** (page 20), or Pulse Charge mode, **Pulse**, and terminates when the end-of-charge conditions are met (see Figure 5 on page 11 and Figure 6 on page 13).

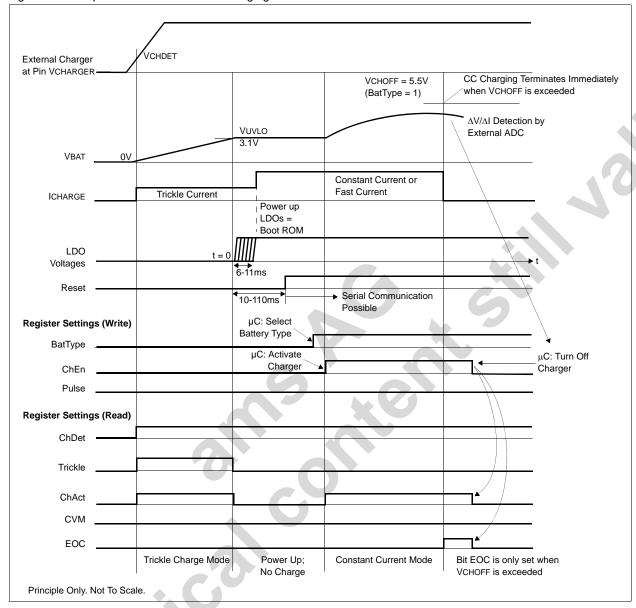


Figure 4. Startup and Constant Current Charging of Nickel-based Batteries

6.1.5 Fast Charge Mode

As an alternative to Constant Current mode, Fast Charge mode may be selected. The charge current will not be controlled in this mode and is only limited by the external battery charger adapter.

Fast Charge mode is initiated by setting bits ChEn (page 20) and Fast (page 20). Bit ChAct (page 19) is set when the Battery Charger has started.

End of Charge

In Fast Charge mode, the same charge termination thresholds apply as for Constant Current mode. Additionally, depending on bit **Fast (page 20)**, the current during pulse charging is either the selected constant current or maximum. Charging will resume if the battery voltage drops below VNOBATDET.

6.1.6 Constant Voltage Charge Mode

Constant Voltage mode is initiated and bit CVM (page 19) will be set when threshold VCHOFF (page 8) has been exceeded for the first time (no debounce filter) and bit Pulse (page 20) is not set.

The charge controller will regulate the battery voltage to a value set by bit **Li4v2** (page 20). To enable operation of the device without a battery connected to the system it is necessary that the charger is not disabled between the moment when the VCHOFF threshold is exceeded for the first time and the beginning of constant voltage charge mode.

- During Constant Voltage mode, the charge current will decrease and eventually drop below the value set by Trickle Current (page 21). If the measured charge current is less than or equal to Trickle Current, charging is terminated and bit EOC is set. Charging will resume if the battery voltage drops below VNOBATDET.
 If the battery has been removed during constant voltage charging the EOC condition and the no battery condition will probably conflict. To be able to properly detect the EOC state the EOC condition has to be dominant over the no battery condition.
- If the battery voltage (VBAT_5) drops below VNOBATDETECT (page 8) (signal resume starts pulsing), e.g. if the battery is removed after charging is finished, EOC (page 20) will be cleared (after debounce time) and the battery charger controller will resume in constant voltage mode to enable operation of the device without battery. This only works if bit CVM (page 19) remains set when bit EOC is set, otherwise the comparators that are required for operation without battery are gated.

Three scenarios are possible at this point:

- If a battery is connected the charge current will now be high and charging will return to constant current charging.
- 2. No battery is connected and no current will flow through the sense resistor. Now the no battery condition is detected properly.
- 3. The battery was connected and is disconnected. No current will flow through the sense resistor and the no battery condition is detected properly.
 In summary: When charging is resumed after an EOC state either a (dis)charge current will be measured and the charge controller will return to constant current mode or no current will be measured and a "no battery" condition is indicated. To be able to handle supply voltage spikes caused by e.g. battery bouncing when the
 - the charge controller will return to constant current mode or no current will be measured and a "no battery" condition is indicated. To be able to handle supply voltage spikes caused by e.g. battery bouncing when the system is heavily shaken the VNOBATDETECT detection has to be debounced for 1 current measurement cycle before **EOC** is cleared. After the debounce time is over additional pulses must occur during the next current measurement cycle to clear **EOC**. The no battery status is indicated with bit **NoBat** (page 20).

If the battery is replaced after charging is finished and the charge current exceeds the value set by **Constant Current (page 21)**, the charge controller will clear bit **CVM** and return to Constant Current or Fast Charge mode, depending on bit **Fast (page 20)**.

Notes:

- 1. Bit CVM will be ambiguous if bit Fast is set.
- 2. EOC will only be entered if bit AutoChgTerm (page 21) is set (default = 0).

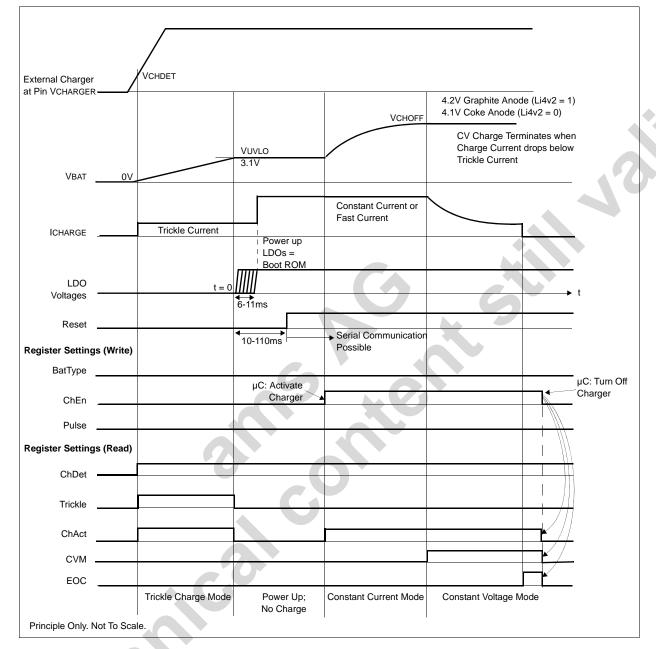


Figure 5. Startup and Constant Voltage Charging of Lithium-based Batteries

6.1.7 Pulse Charge Mode

Pulse Charge mode is initiated and bit CVM (page 19) will be set when the VCHOFF (page 8) threshold has been exceeded for the first time and bit Pulse (page 20) is set. If the battery voltage is below the VCHOFF threshold, the Battery Charger will be enabled for a minimum on-time specified by bit TPON (page 21).

If the battery voltage drops below VCHOFF at the end of the minimum on-time, the Battery Charger will remain switched on until the battery voltage exceeds VCHOFF. The Battery Charger will then be disabled for at least the minimum off-time specified by bit **TPOFF** (page 21), and the Battery Charger will only be switched on again when the battery voltage falls below VCHOFF. In any case, whenever the instantaneous battery voltage exceeds the overvoltage lockout threshold VOVLO, charging is disabled immediately.

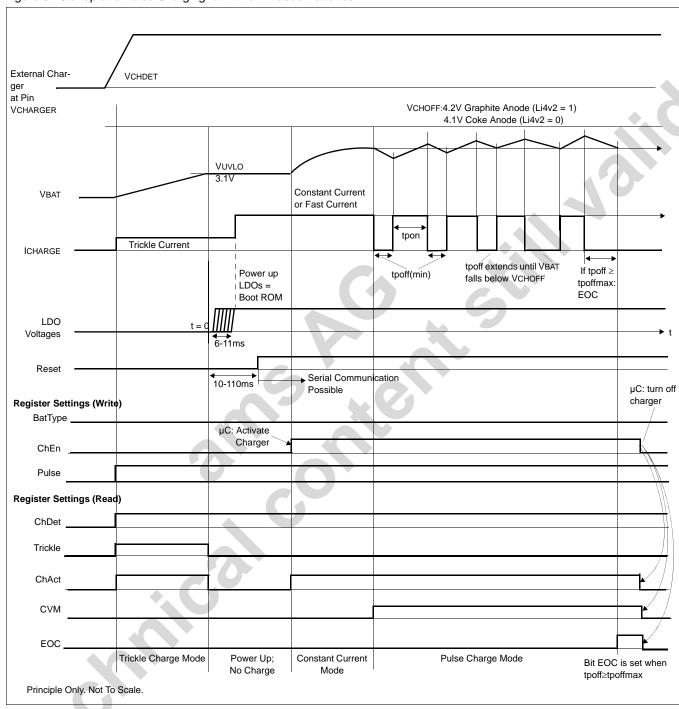
Data Sheet Battery Charger Controller

During on-pulses, the charge current will be limited to the value set by **Constant Current (page 21)** if bit **Fast (page 20)** = 0. If bit **Fast** = 1, the charger transistor Q1 (page 2) will be fully on and the charge current during on-pulses will only be limited by the external charge adapter.

At the beginning of a Pulse Charge cycle, the Battery Charger will operate at a duty cycle close to 100%. Toward the end of the Pulse Charge cycle the Battery Charger will be switched off for long periods between short on-pulses. Eventually, the off-time will become longer than the value specified by bit **TPOFFMAX (page 21)**, and the charging cycle will terminate (bit **EOC (page 20)** is set). Charging will resume if the battery voltage drops below VNOBATDET.

If the battery voltage drops below VNOBATDETECT (page 8), e.g. if the battery is removed after charging is finished, **EOC (page 20)** will be cleared and the battery charger controller will resume in pulse charge mode to enable operation of the device without battery. The no battery status is indicated with bit **NoBat (page 20)**.

If the battery is replaced after charging is finished and the on-pulse duration TPON (page 21) becomes longer than TPOFFMAX (page 21), the charge controller will clear bit CVM (page 19) and return to Constant Current or Fast Charge mode, depending on bit Fast (page 20).


Note: With **TPOFFMAX** = 11 (no termination), the condition for returning to Constant Current or Fast Charge mode will never be met. Bit **CVM** will be ambiguous in this case.

If AutoChgTerm (page 21) is 0, the battery continues to be charged after EOC.

During on-pulses the instantaneous battery voltage may exceed VCHOFF by several hundred millivolts. However, no harm will be done to the battery if **TPON** (page 21) is selected to be shorter than the electrochemical time constant of the battery.

By adding an external gate-source capacitor the switching edges of the P-channel MOSFET can be slowed down further. This prevents an external battery charge adapter with poor transient response from subjecting the VCHARGER pin to excessive voltage when the P-channel MOSFET turns off, and prevents excessive current into the battery when the P-channel MOSFET turns on.

Figure 6. Startup and Pulse Charging for Lithium-Based Batteries

Battery Charger Controller

Data Sheet

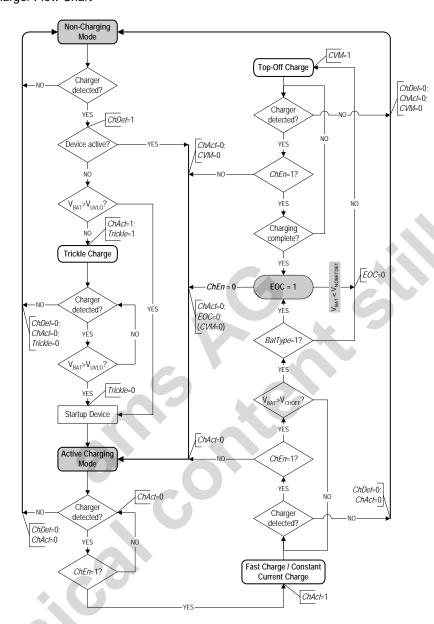
6.1.8 Battery Presence Detection

When active, the charge controller constantly monitors the voltage drop across an external current sense resistor (RSENSE) connected in series between the negative battery terminal and ground. In case no battery is connected to the system, no current can flow through RSENSE. If no (dis)charge current flow is detected, bits NoBat (page 20) and CVM (page 19) will be set.

If a battery is re-connected to the system, current will be flowing through R_{sense}. If a (dis)charge current flow is detected, **NoBat** and **CVM** will be cleared. Battery presence indication can be disabled by setting bit **DisBDet** (page 21).

6.1.9 Operation Without Battery

This feature allows operation of the device without a battery if a charge adapter is applied to the VCHARGER pin and bit **ChEn (page 20)** is set. The battery voltage is regulated to the charge termination threshold VCHOFF (page 8), depending on the setting of bits **BatType (page 20)** and **Li4v2 (page 20)**.


Note that when the charge controller is disabled by clearing bit **ChEn** e.g., during measurement of the battery voltage by an external ADC, the device will be reset when the battery is removed. The "operation without battery" feature can be disabled by setting **DisOWB** (page 21). The minimum required capacitance on VBAT (all buffer caps combined) must be ≥10µF to reduce the ripple on VBAT when operating the AS3604 without battery.

6.1.10 Charge Controller Bypass

The charge controller can be bypassed by setting bit Bypass (page 20). In bypass mode, the charger transistor Q1 (page 2) is fully on. The overvoltage protection however will turn off the transistor, when VBAT ≥ VOVLO (page 8). End-of-charge detection is disabled and has to be performed by the system host, bit EOC is cleared.

Removal of the charge adapter will be indicated in the Charger Status Register (page 19) but the charge controller will not be disabled. This feature is especially useful when using current-limited charge adapters with an output voltage close to the charge termination threshold and the system is operating without battery. Note that when the voltage difference between the charge adapter output voltage and the battery is smaller than VCHMIN (page 8) the charger detection circuit will indicate that no charge adapter is connected. Furthermore, Trickle Charge mode is not supported in bypass mode because the current regulation is overruled by bit Bypass.

Figure 7. Battery Charger Flow Chart

6.1.11 Overvoltage and Undervoltage Supervision

When the battery voltage exceeds the VovLo (page 8) threshold (VBAT rising), the charger transistor Q1(page 2) is turned off. Charging will resume if the battery voltage drops below VovLo (VBAT falling).

Likewise, when the battery voltage drops below the Undervoltage Lockout Threshold VUVLO (VBAT falling) (page 8), a Reset is generated (page 56), which also clears bit ChEn (page 20).

The charger will remain in low current Trickle Charge mode (page 8) until the VUVLO threshold (VBAT rising) has been exceeded.

If ChOv (page 21) =1, the AS3604 monitors the voltage on pin VCHARGER. If the voltage on VCHARGER exceeds VCHOV (bit ChOvH (page 21) = 0) or VCHOVH (bit ChOvH =1) the Battery Charger stops. If the voltage subsequently drops below this limit, the Battery Charger automatically resumes charging.

Battery Charger Controller

Data Sheet

6.1.12 Charger Detection Circuit

The Battery Charger Controller uses an integrated Charger Detection Circuit to determine if an external battery charger adapter has been applied to pin VCHARGER.

Charger register bits will be set/reset when any of the following conditions are met:

- 1. When the charger voltage exceeds the battery voltage by VCHDET (page 8), Bit chDet (page 19) will be set.
- 2. When the charger voltage drops below VCHMIN (page 8) above the battery voltage, bit **chDet** will be reset. If the charger was active, bit **ChEn** (page 20) = 1, bit **ChAct** (page 19) will also be reset. Charging will resume when the conditions for bit **chDet** = 1 are met.
- 3. If a Reset occurs during charging, the charger will also be reset (ChAct = 0). Bits ChEn and chDet will remain set to 1. To resume charging, the charger must be turned off (ChEn = 0) and then on (ChEn = 1).

6.1.13 Bootstrap Voltage Regulator

To charge even completely discharged batteries, the AS3604 contains an internal bootstrap voltage regulator (LDO V2_5) which generates a bootstrap voltage (VCHREG) to supply power to the internal Battery Charger circuitry.

6.1.14 Battery Charger Operation

The Battery Charger Controller controls an 8-bit current DAC which delivers a current (IDAC) that will generate a voltage (VGS) over an external resistor (RGS) connected between the gate and source of an external P-channel MOSFET.

Charge Current Regulator

The Charge Current Regulator has a resolution of 0.625 mV or 12.5 mA when using a $50 \text{m}\Omega$ sense resistor. The resolution is programmable using the **Charger Control Register** (page 20).

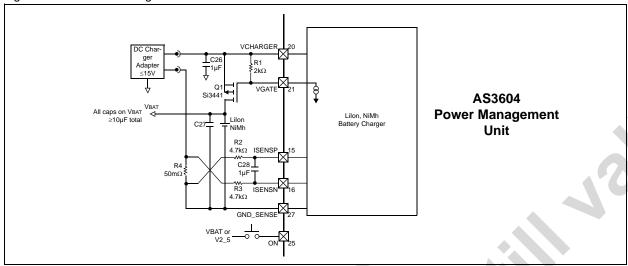
Table 5. Charge Current Regulator Parameters

Symbol	Parameter	Min	Тур	Max	Unit
IVGATE,LSB	Resolution of VGATE current; bit Boost (page 20) = 0		0.5		μΑ
IVGATE,FS	Full-scale value of VGATE current; bit Boost = 0		127.5		μΑ

Note: Setting bit Boost (page 20) = 1 multiplies this current by a factor of 10.

6.1.15 Charger Total Current Regulation

During normal operation, the AS3604 controls the charging current through the battery. Alternatively, it is possible to regulate the maximum current from the charger (see Figure 8).


If the shunt resistor is connected as shown in Figure 8, the charger regulates the current from the charger adapter. The internal register bit **AutoChgTerm** (page 21) must be set to 0 in this configuration. If **AutoChgTerm** is reset, the charger is not switched off if an end-of-charge condition is reached (only an interrupt is sent to the baseband processor).

If the end-of-charge interrupt is sent to the baseband processor, the baseband processor can terminate the charging cycle by setting bit AutoChgTerm to 1. This should only be done if a battery is present. If bit AutoChgTerm is 1 and the battery is subsequently removed, the baseband processor should immediately reset bit AutoChgTerm to 0 and bit ChEn (page 20) should be set to 0 and then to 1 again to restart the charger and avoid a reset cycle of the system due to undervoltage condition on the battery.

To avoid a reset cycle of the system under any condition, bit AutoChgTerm' should usually be left at 0.

Note: The AS3604 measures the current from the charger including the current used for charging the battery and the current flowing to the whole system. The end-of-charge detection is done by comparing this current against the value set in the bits **Trickle Current (page 21)**. Therefore this value has to be set sufficiently high to obtain a proper end-of-charge condition. If this is not possible, a timeout timer inside the baseband processor should be set allowing for an end-of-charge indication in the user interface.

Figure 8. Total Current Regulation

6.1.16 Gas Gauge

The Gas Gauge enables remaining capacity estimation of the battery by tracking the net current flow into and out of the battery using a Voltage-to-Frequency Converter.

Table 6. Gas Gauge Parameters

	_					
Symbol	Parameter	Min	Тур	Max	Unit	Notes
fclk	Internal Reference Clock	1.0	1.1	1.2	MHz	
fvFC	Sample Frequency		fclk/59	>	Hz	fclk: internal reference clock.
VISENSP/ VISENSN	Input Voltage	-0.1		0.1	V	
ZISENSP/ ZISENSN	Input Impedance	4.67			МΩ	
Avfc	(Dis)Charge Gain		91.0		Hz/V	fcLK = 1.1MHz
FRvfc	Fundamental Rate		3.05		μVh	ICLK = 1.1MHZ
Voff	Uncompensated Offset Voltage	-500		500	μV	Offset voltage ISENSP - ISENSN
Voff,comp	Compensated Offset Voltage	-50	±10	50	μV	Offset error after offset compensation

Voltage-to-Frequency Converter

The Voltage-to-Frequency Converter constantly monitors the voltage drop across an external current sense resistor (RSENSE) connected in series between the negative battery terminal and ground.

The use of an additional external RC lowpass filter is highly recommended. Using two $47k\Omega$ resistors, R2 and R3 (page 2), and a $0.1\mu F$ ceramic capacitor, C28 (page 2), the filter cutoff is approximately 16.9 Hz. This filter will capture the effect of most spikes, and will thus allow the Gas Gauge to accurately detect the total charge that has gone into or out of the battery.

Charge Current Accumulator

The Charge Current Accumulator is an internal 15-bit up/down counter with sign bit. It is incremented when current is charged into the battery and decremented when current is drawn out of the battery. It is updated at a rate of one count per $3.05\mu\text{Vh}$, which is equivalent to one count per $61.03\mu\text{Ah}$ (using a $50\text{m}\Omega$ current sense resistor).

If the counter is not read, it will roll over beyond FFFF_h, which occurs after approximately 2000mAh of charge (using a $50m\Omega$ sense resistor). It is the responsibility of the host system to read and reset the counter before rollover occurs.

The contents of the Charge Current Accumulator will be transferred into the **Delta Charge MSB Register** (page 22) and the **Delta Charge LSB Register** (page 22) when bit **UpdReq (page 22)** has been set. After the Delta Charge MSB/LSB registers have been updated successfully, bit **UpdReq** is cleared automatically and the Charge Current Accumulator will be reset along with bit **sign**.

Battery Charger Controller

Constant Voltage Regulator

The Constant Voltage Regulator acts directly on the setting of the 8-bit current DAC. It will commence when threshold VCHOFF (page 8) has been exceeded for the first time as long as bit **Pulse (page 20)** is not set.

Elapsed Time Counter

The sample clock (fvFc) of the Gas Gauge is fed to a 14-bit clock count divider, whose output signal is used as a clocking signal for the 16-bit Elapsed Time Counter, resulting in an equivalent rate of 1.1379 counts per second (4096.60 counts = 1 hour, 1 count = 0.8788s).

The Elapsed Time Counter can rollover beyond FFFFh which occurs after about 16 hours. If this happens the value given by the counter will be ambiguous. It is the responsibility of the host system to read the Elapsed Time Counter before rollover occurs.

The content of the Elapsed Time Counter is transferred into the **Elapsed Time MSB Register** (page 23) and the **Elapsed Time LSB Register** (page 23) when bit **UpdReq (page 22)** has been set. After the Elapsed Time MSB/LSB registers have been updated successfully, bit **UpdReq** is cleared automatically and the Elapsed Time Counter is reset.

Offset Calibration Mode

Although the Voltage-to-Frequency Converter compensates for the offset of the Integrator, the Gas Gauge features an additional offset calibration mode to enhance the measurement accuracy even further. By setting bit CalReq (page 22) the Integrator is reset and the offset calibration mode is activated.

The offset is accumulated during 16 clocks of the elapsed time counter (16x0.8788s = 14.06 sec). When offset calibration is complete, bit **CalReq** is cleared automatically and the offset value is transferred into the **Delta Charge MSB Register** (page 22) and the **Delta Charge LSB Register** (page 22) for calculating the actual average current (page 18).

The calculated value defines the measured offset between ISENSP and ISENSN. It has a resolution of 3.05µV. This offset value is used as a correction factor for calculating the actual average current.

Note: Offset calibration is not possible while the charger is active. If bit CalReq is set while the charger is active, the calibration will start automatically after the charger has been disabled by clearing bit ChEn or if the external battery charger adapter has been removed. If, during offset calibration, the charger is enabled, offset calibration mode is terminated, bit CalReq is cleared, the current value of the Elapsed Time Counter is transferred to the Elapsed Time MSB/LSB registers, and the Delta Charge MSB/LSB registers are loaded with FFFFh.

Calculation of Battery Status

The host system can calculate all the parameters necessary for estimating the remaining battery capacity by evaluating FGOffCal (the Elapsed Time MSB/LSB (page 23) and the Delta Charge MSB/LSB (page 22) registers).

Calculating Elapsed Time

The host system can evaluate the change in time (Δt) by setting bit **UpdReq** (page 22) and reading the Elapsed Time MSB/LSB registers after bit **UpdReq** has been automatically cleared. The change in time in seconds is given by:

$$\Delta t = ElapsedTime \times 3600 / 4096.60 [s]$$
 (EQ 1)

The absolute accuracy of (Δt) is directly related to the absolute accuracy of fCLK. To cancel errors associated with the accuracy of the oscillator, a correction factor (CV) can be introduced. CV can be evaluated by comparing the change in time calculated by (EQ 1) with a reference value $(\Delta tREF)$ obtained from a RTC or measured during system calibration. CV is given by:

$$CV = \Delta t REF / \Delta t$$
 (EQ 2)

By multiplying Δt with CV, the correct value for the change in time ($\Delta t corr$) can be calculated:

$$\Delta t CORR = CV \times \Delta t [s]$$
 (EQ 3)

Calculating Average Current

The host system can calculate the average current (IAVG) during the last time period by setting bit **UpdReq** (page 22) and reading the Delta Charge MSB/LSB registers and the Elapsed Time MSB/LSB registers after **UpdReq** has been automatically cleared. Together with FGOffCal, determined during offset calibration mode, IAVG is given by:

$$IAVG = DeltaCharge / (\Delta t \ X \ AVFC \ X \ Rsense) - FGOffCal \ X \ 3.05 \ \mu V / Rsense [A]$$
 (EQ 4)

Battery Charger Controller

Data Sheet

 Δt is the change in time in seconds calculated by (EQ 1), AVFC is the gain of the Voltage-to-Frequency Converter in Hz/V, RSENSE is the value of the sense resistor in ohms, and FGOffCal is the offset calibration value. As *DeltaCharge* and Δt both are proportional to the oscillator frequency, no correction factor needs to be introduced in the formula.

Calculating Accumulated Capacity

Accumulated capacity is used to calculate the absolute remaining capacity of the battery. It is given by:

$$QACC = IAVG \times \Delta tCORR [As]$$
 (EQ 5)

Calculating the Remaining Capacity

Calculation of the remaining battery capacity (RC) is the goal of the Gas Gauge. It is given by:

$$RC = RC + QACC [As]$$
 (EQ 6)

Calculating the Time to Empty

Time to empty (*tte*) is calculated from the average current (*IAVG*) given by (EQ 4). The longer the time period for which *IAVG* is calculated, the more accurate the value for *IAVG* and therefore the estimated the will be. It is given by:

$$tTE = RC / IAVG [s]$$
 (EQ 7)

6.1.17 Battery Charger Controller Registers

The Battery Charger Controller is controlled by the registers listed in Table 7.

Table 7. Battery Charger Controller Register Summary

Name	Addr	B7	B6	B5	В4	В3	B2	B1	В0	Page	
Charger Status Register	53	Bypass	NoBat	EOC	CVM	Trickle	IntReg	ChAct	chDet	19	
Charger Control Register	20	ChOvEn	Boost	Bypass	Pulse	Li4v2	Fast	BatType	ChEn	20	
Charger Timing Register	44	TPOF	FMAX		TPOFF			TPON		21	
Charger Current Register	22	ChOv	ChOvH	Bat_v	Co	nstantCurr	ent	Trickle	TrickleCurrent		
Charger Config Register	66	N/A	AutoChg Term	CVMtst	DisOWB	DisBDet	Dis Hyst	Wide	N/A	21	
Gas Gauge Register	21		N.	/A		CalMod	CalReq	UpdReq	FGEn	22	
Delta Charge MSB Register	54	sign	214	<u>2</u> 13	212	211	210	29	28	22	
Delta Charge LSB Register	55	27	26	25	24	23	22	21	20	22	
Elapsed Time MSB Register	56	215	214	<u>2</u> 13	212	211	210	29	28	23	
Elapsed Time LSB Register	57	27	26	25	24	23	22	21	20	23	
PreCurDac Register	67	27	26	25	24	23	22	21	20	23	

٨٨٨	r: 52	Charger Status Register							
Addr: 53		Displays status of Battery Charger Controller.							
Bit	Bit Name	Default	Default Access Bit Description						
0	chDet	00 _h	R	0 = No external battery charger detected. 1 = External battery charger adapter has been detected. Charger voltage exceeds battery voltage by VCHDET.					
1	ChAct	00 _h	R	0 = Charger is off or in Trickle Charge mode. 1 = Charger is in Constant Current, Fast Charge, or Pulse Charge mode.					
2	IntD co.	Б	0 = Bit is cleared when VBAT > VUVLO.						
2	IntReg	00 _h	R	1 = LDO V2_5 is operating.					
				0 = Trickle charging is off.					
3	Trickle	00 _h	R	1 = Charger is in Trickle Charge mode. Trickle current is set by the Charger Current Register (page 21).					
				0 = Battery charger is not in top-off charge mode.					
4	CVM	/M 00 _h	R	1 = Battery charger is in top-off charge mode (constant voltage or pulse charge mode).					

Addr: 53 Charger		Charger S	tatus Regis	Register					
Auu	1. 55	Displays s	plays status of Battery Charger Controller.						
Bit	Bit Name	Default Access Bit Description							
				0 = Battery charger is off or charging is in progress; automatically cleared when ChEn (page 20) is cleared.					
5	EOC	00 _h	R	1 = End of Charge. Automatically set when CV or pulse charging is completed or when VCHOFF is exceeded during charging of Ni-based batteries.					
6	NoBat	00 _h	R	No battery detection. 0 = Battery is connected, when DisBDet (page 21) is set, and/or ChEn (page 20) is cleared. 1 = No battery detected at VBAT.					
7	Bypass	00 _h	R	Indicates charger bypass mode. 0 = Normal charger operating mode. 1 = Indicates that charger is in bypass mode; charger transistor Q1 (page 2) is fully on and EOC detection is disabled.					

Addr: 20		Charger Control Register							
Addi	. 20	Controls operation of the Battery Charger Controller.							
Bit	Bit Name	Default	Access	Bit Description					
0	ChEn	Boot ROM	R/W	0 = Disables charging. 1 = Enables charging.					
1	BatType	Boot ROM	R/W	Li4v2 00 = Li-ion battery with coke anode; VCHOFF (page 8) = 4.1V 10 = Li-ion battery with graphite anode; VCHOFF = 4.2V x1 = Nickel-based battery; VCHOFF = 5.52V					
2	Fast	Boot ROM R/W		0 = Selects Constant Current charge mode. 1 = Selects Fast Charge mode.					
3	Li4v2	Boot ROM	R/W	Selects the type of lithium-based battery. 0 = VCHOFF (page 8) = 4.1V for Li+ battery with coke anode. 1 = VCHOFF = 4.2V for Li+ battery with graphite anode.					
4	Pulse	Boot ROM	R/W	Selects top-off charging mode. 0 = Select constant voltage charging mode. 1 = Select pulse charging mode.					
5	Bypass	Boot ROM	R/W	Enable bypassing of charge controller. 0 = Normal charger operation. 1 = Select charger bypass mode; charger transistor Q1 (page 2) is fully on and EOC detection is disabled.					
6	Boost	Boot ROM	R/W	Selects output of current DAC at pin VGATE. 0 = Nominal current (max. 128µA). 1 = 10x nominal current (default; max.1.28mA).					
7	ChOvEn	Boot ROM	R/W	0 = Disable automatic termination of charging.1 = Enable automatic termination of charging.					

Add	r. 11	Charger Timing Register								
Auu	ı. 44	Sets parameters for pulse charging.								
Bit	Bit Name	Default	Access	Bit Description						
				Sets pulse charge mode minimisteps of 137.31ms.	um on-time from 137.31ms to 1098.48ms in					
0.0	TDON	004	DAV	000 = 137.31ms	100 = 686.55ms					
2:0	TPON	001	R/W	001 = 274.68ms (default)	101 = 823.86ms					
				010 = 411.93ms	110 = 961.17ms					
				011 = 549.24ms	111 = 1098.48ms					
				Sets pulse charge mode minim steps of 68.65ms.	um off-time from 68.65ms to 549.24ms in					
- 0	TDOEE			000 = 68.65ms	100 = 343.28ms					
5:3	TPOFF	001	R/W	001 = 137.31ms (default)	101 = 411.93ms					
				010 = 205.97ms	110 = 480.59ms					
				011 = 274.62ms	111 = 549.24ms					
				Sets pulse charge mode maxin	num off-time before charging is terminated.					
	TPOFFMA			$00 = 4 \times \text{TPON}$ (page 21) (yields 1/5 of the constant charging current.						
7:6	X	01	R/W	10 = 19 x TPON (yields 1/20 of the constant charging current.						
				$01 = 9 \times \text{TPON}$ (yields 1/10 of the constant charging current).						
				11 = No termination (not recommended).						

۸۸۸	r: 66	Charger C	Charger Config Register						
Addr: 66		Sets addit	Sets additional charger configurations.						
Bit Bit Name Default Acce		Access	Bit Description						
0				N/A					
1	Wide	0	R/W	For test purposes only.					
2	Dis Hyst	0	R/W	For test purposes only.					
3	DisBDet	0	R/W	0 = Enable battery presence indication (default).					
3	DISDDEL			1 = Disable battery presence indication.					
4	DisOWB	0	R/W	0 = Enable operation without battery (default).					
4	DISOVIB	U	FK/VV	1 = Disable operation without battery. Disable analog comparators.					
5	CVMtst	0	R/W	For test purposes only.					
6	AutoChgT	- DAM		0 = Disable automatic EOC.					
6 R/W erm 0 R/W		15/00	1 = Enable automatic EOC.						
7				N/A					

Addı	22	Charger Current Register							
Addi	. 22	Sets curren	Sets current for trickle and Constant Current charging.						
Bit	Bit Name	Default	Access	Bit Description					
4.0	Trickle	Boot ROM	DAY	Sets the Trickle Charge mode from (1.25mV to 10mV)/RSENSE in steps					
1:0	Current	(01)	R/W	00 = 1.25mV/Rsense	10 = 5.00mV/Rsense				
				01 = 2.5mV/Rsense (default)	11 = 10mV/Rsense				
		Boot ROM (011)		Sets the charging current in Constant Current mode from: (0mV to 35mV) x Rsense-1 in steps of 5mV x Rsense -1.					
4.0	Constant		D // /	000 = No current.	100 = 20mv/Rsense				
4:2	Current		R/W	001 = 5mV/Rsense	101 = 25mV/Rsense				
				010 = 10mV/Rsense	110 = 30mV/Rsense				
				011 = 15mV/Rsense (default)	111 = 35mV/Rsense				
5	Bat v	N/A	R	0 = If battery voltage is < 4.1V (bit	Li4v2 (page 20)) = 1 or 4.0V (Li4v2 = 0).				
3	Dat_v	IN/A	I N	1 = If battery voltage is $> 4.1 \text{V} \text{ (Li4v2)} = 1 \text{ or } 4.0 \text{V} \text{ (Li4v2} = 0).$					
6	ChOvH	Boot ROM (0h) R/W		0 = Sets overvoltage protection low-threshold to 6.05V.					
U	CHOVII			1 = Sets overvoltage protection high-threshold to 6.5V					
7	ChOv	0h	R	0 = No charger overvoltage detected.					
	CHOV	Ull		1 = Charger overvoltage detected (VCHARGER).					

Addr: 21		Gas Gauge Register						
Add	1. 21	Controls the I	Fuel Gauge.					
Bit	Bit Name	Default	Access	Bit Description				
0	FGEn	0b	R/W	Controls the operation of the Gas Gauge. 0 = Disables Gas Gauge. 1 = Enables Gas Gauge.				
1	UpdReq	Ob	R/W	Controls the updates of the Delta Charge MSB/LSB registers and the Elapsed Time MSB/LSB registers. When set, this bit is cleared automatically after the Delta Charge MSB/LSB registers and the Elapsed Time MSB/LSB registers have been successfully updated. 0 = Indicates update of Delta Charge MSB/LSB registers and Elapsed Time MSB/LSB registers has been completed. 1 = Request update of Delta Charge and Elapsed Time Registers				
2	CalReq	Ob	R/W	Controls offset calibration. When set, this bit is cleared automatically after offset calibration has successfully completed. 0 = Indicates offset calibration has completed or forces termination of offset calibration. 1 = Request offset calibration.				
3	CalMod	0b	R/W	Sets the offset calibration mode. 0 = Connect inputs to ground. 1 = Use ISENSP and ISENSN (for testing purposes only).				
7:4				N/A				

Addı	r: 51	Delta Charge MSB Register						
Addi	1. 54	Holds the an	nount of charge	e since last reading.				
Bit	Bit Name	Default Access		Bit Description				
0	28	00 _h	R					
1	29	00 _h	R	This register (along with Delta Charge LSB Register) is				
2	210	00 _h	R	maintained in two's complement form with a resolution of 3.05µVh and a full-scale value of ±99.98mVh. When using a				
3	211	00 _h	R	$5.05\mu\text{VH}$ and a full-scale value of ±99.96HVH. When using a $50\text{m}\Omega$ current sense resistor, this is equivalent to a resolution				
4	212	00 _h	R	of 61.03uAh and a full-scale value of 1.999Ah. The sign bit is				
5	213	00 _h	R	set for negative values. This register will be updated after				
6	214	00 _h	R	setting bit UpdReq (page 22) = 1.				
7	sign	00 _h	R	3				

Addı	r. 55	Delta Charge LSB Register							
Addi	. 33	Holds the am	since last reading.						
Bit	Bit Name	Default	Access	Bit Description					
0	20	00 _h	R						
1	21	00 _h	R	This register (along with Delta Charge MSB Register) is					
2	22	00 _h	R	maintained in two's complement form with a resolution of					
3	23	00 _h	R	3.05uVh and a full-scale value of ±99.98mVh. When using a					
4	24	00 _h	R	50 m Ω current sense resistor, this is equivalent to a resolution					
5	25	00 _h	R	of 61.03uAh and a full-scale value of 1.999Ah. This register is					
6	26	00 _h	R	updated after setting bit UpdReq (page 22) = 1.					
7	27	00 _h	R						

Add	r: 56	Elapsed Time MSB Register						
Add	1. 30	Holds the elapsed time since last reading.						
Bit	Bit Name	Default	Access	Bit Description				
0	28	00 _h	R					
1	29	00 _h	R					
2	210	00 _h	R	This register (along with the Elapsed Time LSB Register)				
3	211	00 _h	R	stores the elapsed time count with a resolution of 0.8788				
4	212	00 _h	R	seconds and a full-scale value of 15.997 hours. This register				
5	213	00 _h	R	will be updated after setting bit UpdReq (page 22) = 1.				
6	214	00 _h	R					
7	215	00 _h	R					

Add	r. 57	Elapsed Time LSB Register							
Auu	1. 37	Holds the elapsed time since last reading.							
Bit	Bit Name	Default	Access	Bit Description					
0	20	00 _h	R						
1	21	00 _h	R						
2	22	00 _h	R	This register (along with the Elapsed Time MSB Register)					
3	23	00 _h	R	stores the elapsed time count with a resolution of 0.8788					
4	24	00 _h	R	seconds and a full-scale value of 15.997 hours. This register					
5	25	00 _h	R	will be updated after setting bit UpdReq (page 22) = 1.					
6	26	00 _h	R						
7	27	00 _h	R						

	Addr: 67	PreCurDac F	PreCurDac Register							
	Addi. 07	Sets starting point for current DAC at pin VGATE.								
Bit	Bit Name	Default	Access	Bit Description						
0	20	00 _h	R/W							
1	21	00 _h	R/W	Sets the preset value for the current DAC at pin VGATE to						
2	22	00 _h	R/W	speed up the startup, when the charge controller is enabled.						
3	23	00 _h	R/W	Boost = 0: Boost = 1:						
4	24	00 _h	R/W	$00_{h} = 0\mu A$ $00_{h} = 0\mu A$						
5	25	00 _h	R/W	0.5µA 5µA						
6	26	00 _h	R/W	$FF_h = 127.5 \mu A$ $FF_h = 1.275 mA$						
7	27	00 _h	R/W							

6.2 Step Down DC/DC Converter

The step-down converter is a high-efficiency fixed frequency current mode regulator. By using low resistance internal PMOS and NMOS switches, efficiency up to 95% can be achieved. The fast switching frequency allows using small inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load and line regulation over the whole output voltage range, up to an output current of 500mA, with an output capacitor of only 10µF. The implemented current limitation protects the DC/DC Converter and the coil during overload condition.

Figure 9. Step Down DC/DC Converter Block Diagram

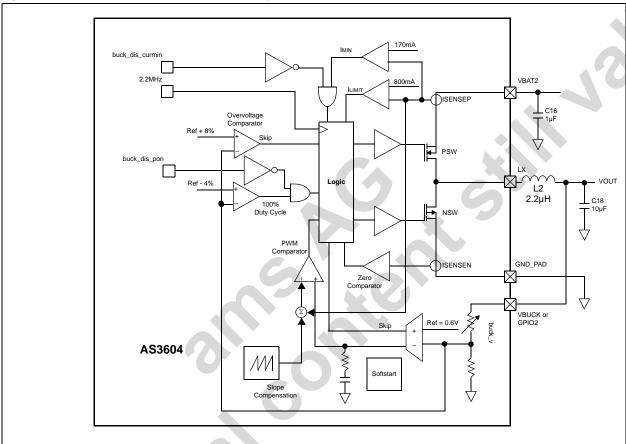
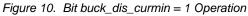
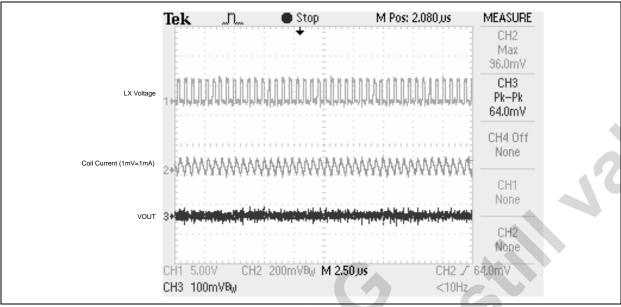


Table 8. Step Down DC/DC Converter Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VIN	Input Voltage	3.0		5.5	V	Pin VBAT_2
Vouт	Regulated Output Voltage	0.6		3.3	٧	Sense pin VBUCK (or GPIO2)
VOUT TOL	Output Voltage	-50		50	mV	Sense pin VBUCK (or GPIO2); Output Voltage < 2.0V
VOUI_TOL	Tolerance	-100		100		Sense pin VBUCK (or GPIO2); Output Voltage > 2.0V
ILIMIT	Current Limit		350		mA	Supply current into PMOS transistor
Rpsw	PSW On-Resistance			0.5	Ω	
Rnsw	NSW On-Resistance			0.5	Ω	
ILOAD	Load Current	0		500	mA	
fsw	Switching Frequency		2.2		MHz	
Соит	Output Capacitor		10		μF	Ceramic
Lx	Inductor		2.2		μΗ	
η	Efficiency		90		%	ILOAD = 100mA, VOUT = 2.3V, VBAT = 3V
			250			Operating Current; No Load
9	Current Consumption		100		μΑ	Quiescent Current; Low-Power Mode
			0.1			Shutdown Current
tmin_on	Minimum On Time		80		ns	
tmin_off	Minimum Off Time		40		ns	

To allow optimised performance in different applications, there are bit settings possible, to get the best compromise between high efficiency and low input/output ripple.

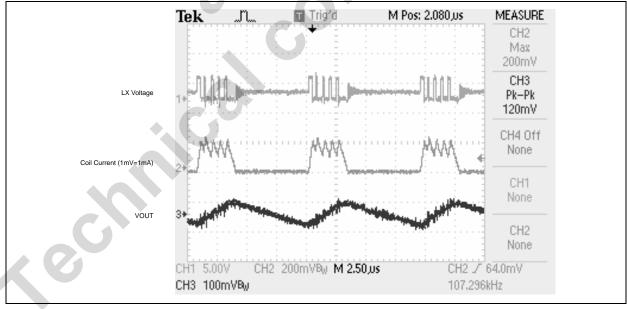

6.2.1 Low-Ripple, Low-Noise Operation


Low-ripple, low-noise operation can be enabled by setting bit buck_dis_curmin (page 29) = 1. In this mode there is no minimum coil current necessary before switching off the PMOS. As result, the ON time of the PMOS will be reduced down to tmin_on at no or light load conditions, even if the coil current is very small or the coil current is inverted. This results in a very low ripple and noise (but decreased efficiency) at light loads, especially at low input-to-output voltage differences.

Note: Because of the inverted coil current in that case the regulator will not operate in pulse skip mode.

Using bit stepdown_fb (page 46), the regulator feedback input can be configured at two pins:

- VBUCK When used as feedback input, configures the Step Down DC/DC Converter as a pre-regulator for the digital LDOs (VDIG_1 and VDIG_2)
- GPIO2 When used as feedback input, allows the digital LDOs (VDIG_1 and VDIG_2) to be connected to a separate input voltage source.



6.2.2 High-Efficiency Operation (Default Setting)

High-efficiency operation is enabled by setting bit **buck_dis_curmin** (page 29) = 0. In this mode there is a minimum coil current necessary before switching off the PMOS. As result there are less pulses at low output load necessary, and therefore the efficiency at low output load is increased. This results in higher ripple, and noisy pulse skip operation up to a higher output current.

Figure 11. Bit buck_dis_curmin = 0 Operation

Note: It is possible to switch between these two modes during operation, i.e.:

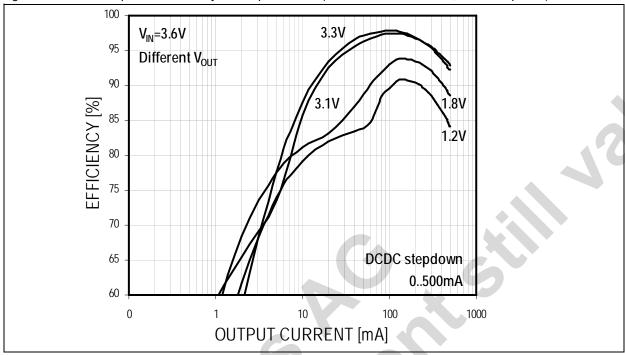
Bit **buck_dis_curmin** = 0: System is in idle state. No audio or RF signal. Decreased supply current preferred. Increase ripple doesn't effect system performance.

Step Down DC/DC Converter

Data Sheet

Bit **buck_dis_curmin** = 1: System is operating. Audio signal on and/or RF signal used. Decreased ripple and noise preferred. Increased power supply current can be tolerated.

6.2.3 100% PMOS ON Mode for Low Dropout Regulation


For low input-to-output voltage difference bit **buck_dis_pon** (page 29) can be set to allow 100% duty cycle of the PMOS transistor, if the output voltage drops by more than 4% below regulation.

6.2.4 Low Power Mode

Bit buck_lpo (page 29) can be set all the time. This mode allows internal power down, of not used blocks during pulseskip mode, which results in a better efficiency at light output loads.

6.2.5 Typical Performance Characteristics

Figure 12. DC/DC Step-Down Efficiency vs. Output Current (Bit buck_dis_curmin = 0, Bit buck_lpo = 0)

6.2.6 Step Down DC/DC Converter Registers

The Step Down DC/DC Converter is controlled by the registers listed in Table 9.

Table 9. Step Down DC/DC Converter Register Summary

Name	Addr	B7	В6	B5	B4	В3	B2	B1	В0	Page
Step Down Voltage/Test Modes Register	01	buck_tm		buck_v						28
Reg Power Control (6ms after start) Register	09	N/A		buck_on	ldo_sim_ on	ldo_dig2 _on	ldo_dig1 _on	ldo_ana2 _on	ldo_ana1 _on	29
Step Down Configuration Register	23	buck_dis _curmin	buck_ dis_pon	buck_lpo	buck_ frequ	buck4u7	buck_ dis_n	buck_ nsw_on	buck_ psw_on	29

Addr	·· 01	Step Down Voltage/Test Modes Register						
Auui	. 01	Sets the output voltage of the Step Down DC/DC Converter.						
Bit	Bit Name Default Access			Bit Description				
5:0	buck_v	Boot ROM	R/W	Controls the voltage selection for the Step Down DC/DC Converter. 000000 = 0.6V(LSB = 50mV) 111000-111111 = 3.4V				
7:6	buck_tm	00	R/W	Buck test mode. Do not use; should be left at 00.				

۸ ما ما	r. 00	Reg Power	Reg Power Control (6ms after start) Register							
Addr: 09		Enables/disa	Enables/disables voltage regulators.							
Bit	Bit Name	Default	Access	Bit Description						
0	ldo_ana1_on			Refer to page 37.						
1	ldo_ana2_on			Refer to page 37.						
2	ldo_dig1_on			Refer to page 37.						
3	ldo_dig2_on			Refer to page 37.						
4	ldo_sim_on			Refer to page 37.						
				Enables the Step Down DC/DC Converter.						
5	buck_on	Boot ROM	R/W	0 = Step Down DC/DC Converter is off.						
				1 = Step Down DC/DC Converter is on.						
7:6				N/A	7.70					

Add	r. 22	Step Down	Configuration	on Register				
Addi	1. 23	Configures	the operation	mode of the Step Down DC/DC Converter.				
Bit	Bit Name	Default	Access	Bit Description				
0	buck_psw_on	Boot ROM	R/W	Activate PSW (0.5Ω PMOS) only if buck_on (page 29) and buck_nsw_on (page 29) = 0. 0 = Default setting. P-Channel switching transistor is controlled by the DC/DC Converter. 1 = Turns on P-Channel switching transistor. Bits buck_on and buck_nsw_on must both = 0.				
1	buck_nsw_on	Boot ROM	R/W	Activates NSW (0.5Ω NMOS) only if buck_on (page 29) = 0 and buck_psw_on = 0. 0 = Default setting. N-Channel switching transistor is controlled by the DC/DC Converter. 1 = Turns on N-Channel switching transistor. Bits buck_on and buck_psw_on must both = 0.				
2	buck_dis_n	Boot ROM	R/W	0 = Default setting. Normal operation of The synchronous rectifier. 1 = The synchronous rectifier is disabled (NSW is always off).				
3	buck4u7			0 = 2.2μH inductor 1 = Do not use this setting.				
4	buck_frequ	00h	R/W	Selects the step down frequency 0 = 2.2MHz 1 = Do not use this setting.				
5	buck_lpo	Boot ROM	R/W	0 = Low-power mode disabled. 1 = Low-power mode enabled.				
6	buck_dis_pon	0	R/W	Step down PON feature control. 0 = PON feature enabled. 100% duty cycle (PMOS always on) if output voltage drops more than 4%. Increased output ripple in that operation. 1 = PON feature disabled. Maximum duty cycle = 1 - (tmin_off*fsw)				
7	buck_dis_curmin	0	R/W	Step down curmin feature control. 0 = curmin feature enabled. Inductor current regulated to min 170mA. Higher efficiency in low dropout and low output current operation. Higher output ripple and noise. 1 = curmin feature disabled. Decreased efficiency in low dropout mode and at low output current. Small output ripple and noise.				

6.3 Low Dropout Regulators

The Low Dropout Regulators (LDOs) are linear high performance regulators with programmable output voltages. The LDOs can be controlled by either software (voltage, on/off) or hardware (on/off) using highly configurable GPIO1 to GPIO3 pins.

The Low Dropout Regulators include the following:

- RF and Analog Low Dropout Regulators Described on page 30
- Digital Low Dropout Regulators Described on page 31
- SIMCard Low Dropout Regulator Described on page 32
- Low Power Low Dropout Regulator Described on page 33

6.3.1 RF and Analog Low Dropout Regulators

The RF LDOs (VRF_1 - VRF_4) and Analog LDOs (VANA_1 and VANA_2) are designed to supply power to sensitive analog circuits like LNAs, Transceivers, VCOs and other critical RF components of cellular radios. Additionally, these LDOs are suitable for supplying power to audio devices or as a reference for A/D and D/A converters.

The design is optimized to deliver the best compromise between quiescent current and regulator performance for battery powered devices. Stability is guaranteed with ceramic output capacitors (see Figure 13) of 1μ F ±20% (X5R) or 2.2μ F +100/-50% (Z5U).

The low ESR of these capacitors ensures low output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to operate in linear mode. Power supply rejection is high enough to suppress ripple on the battery caused by the PA in TDMA systems. The low noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power transistor enables the device to deliver up to 150mA even at nearly discharged batteries without any decrease of performance.

Figure 13. Analog LDO Block Diagram

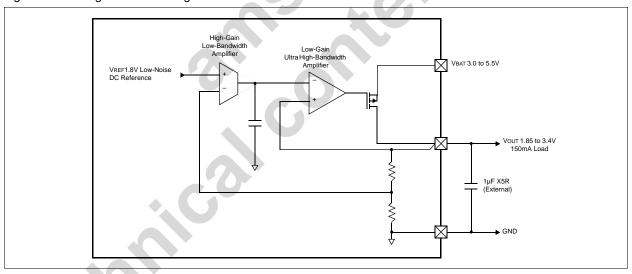


Table 10. RF and Analog LDO Characteristics

VBAT = 4V; ILOAD = 150mA; SCSB = 25°C; CLOAD = 2.2μF (Ceramic); unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VBAT	Supply Voltage Range	3		5.5	V	
Ron	On-Resistance			1	Ω	VANA_1, VANA_2, VRF_1, VRF_2
				2		VRF_3, VRF_4
PSRR	Power Supply Rejection	70			٩D	f = 1kHz
FORK	Ratio	40			dB	f = 100kHz

Table 10. RF and Analog LDO Characteristics (Continued)

VBAT = 4V; ILOAD = 150mA; SCSB = 25°C; CLOAD = 2.2μF (Ceramic); unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
IOFF	Shut Down Current			100	nA	
IVDD_LDO	Supply Current			50	μA	Without load
Noise	Output Noise		30	50	μVrms	10Hz < f < 100kHz
tstart	Startup Time			200	μs	
		1.85		2.85		VBAT > 3.0V
Vout	Output Voltage	1.85		3.4	V	Full programmable range
		2.5		3.2		For VANA_1, VBAT >3.0V
Vout_tol	Output Voltage Tolerance	-50		50	mV	
1/1 11/5050	Line Deputation	-1		1	\/	Static
VLINEREG	Line Regulation	-10		10	mV	Transient; Slope: t _r = 10µs
\/, -,				1	>/	Static
VLOADREG	Load Regulation	-10		10	mV	Transient; Slope: t _r = 10µs
Ішміт	Current Limitation		400		mA	VANA_1, VANA_2, VRF_1, VRF_2, VRF_3, VRF_4

6.3.2 Digital Low Dropout Regulators

Digital LDOs VDIG_1 and VDIG_2 can be used in any medium-power system or subsystem where quiescent power consumption of the regulator itself needs to be minimized without sacrificing performance.

In order for the Digital LDOs to operate at full range, the Charge Pump (page 41) must be operating to provide adequate gate voltage. This requires that the Charge Pump capacitors C2 and C3 (see Figure 1 on page 2) are installed.

Figure 14. Digital LDO Block Diagram

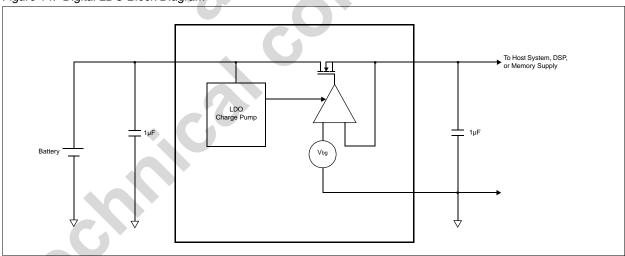


Table 11. Digital LDO Characteristics

 $V_{BAT} = 4V$; $I_{LOAD} = 200mA$; $SCSB = 25^{\circ}C$; $C_{LOAD} = 1\mu F$ (Ceramic); unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VBUCK	Supply Voltage Range	1		5.5	V	
Ron	On-Resistance			4	Ω	

Table 11. Digital LDO Characteristics (Continued)

VBAT = 4V; ILOAD = 200mA; SCSB = 25° C; CLOAD = 1μ F (Ceramic); unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
PSRR	Power Supply Rejection	60			dB	f = 1kHz
FORK	Ratio	30				f = 100kHz
IOFF	Shut Down Current			100	nA	
IVDD_LDOD	Supply Current			20	μA	Without load
tstart	Startup Time			200	μs	
		.75		1.4		VBAT > 3.0V, V5_6 = 5.2V, ILOAD < 250mA
Vout	Output Voltage	.75		2.2	V	VBAT > 3.0V, V5_6 = 5.2V, ILOAD < 200mA
		.75		2.5		VBAT > 3.0V, V5_6 = 5.2V, ILOAD < 100mA
Vout_tol	Output Voltage Tolerance	-50		50	mV	
VLINEREG	Line Regulation	-10		10	mV	Static
VLINEREG	Line Regulation	-50		50	IIIV	Transient; Slope: t _r = 10µs
VICABBEO	Lood Degulation	-20		20	m\/	Static
VLOADREG	Load Regulation	-50		50	mV	Transient; Slope: t _r = 10µs
ILIMIT	Current Limitation		400		mA	

6.3.3 SIMCard Low Dropout Regulator

The SIMCard LDO (VSIM) is optimized for SIMCard supply. It is designed to achieve the lowest possible power consumption and still provide reasonable regulation characteristics. To ensure high PSRR and stability, a low-ESR ceramic capacitor of 100nF (min.) must be connected to the output.

Table 12. LDO VSIM Characteristics

VBAT = 4V; ILOAD = 20mA; SCSB = 25°C; CLOAD = 100nF (Ceramic); unless otherwise specified.

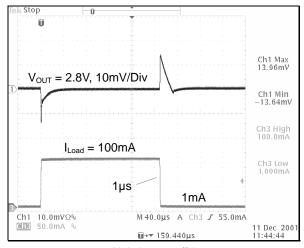
Symbol	Parameter	Min	Тур	Max	Unit	Notes
VBAT	Supply Voltage Range	3		5.5	V	
Ron	On-Resistance			50	Ω	
PSRR	Dower Cumply Dejection Datio	40			dB	f = 1kHz
FSKK	Power Supply Rejection Ratio	20			uБ	f = 100kHz
IOFF	Shut Down Current			100	nA	
IVDD_SIMCARD	Supply Current		40		μA	
tstart	Startup Time			200	μs	
Vout	Output Voltage	1.8		3.0	V	VBAT > 3.2V
Vout_tol	Output Voltage Tolerance	-50		50	mV	
VLINEREG	Line Degulation	-10		10	m)/	Static
VLINEREG	Line Regulation	-100		100	mV	Transient; Slope: t _r = 10µs
All CAPPEO	Load Pagulation	-10		10	mV	Static
VLOADREG	Load Regulation	-100		100	IIIV	Transient; Slope: t _r = 10µs

6.3.4 Low Power Low Dropout Regulator

The low-power bootstrap LDO (V2_5) is needed to supply power to the core (analog and digital) of the AS3604. LDO V2_5 is designed to achieve the lowest possible power consumption, and still provide reasonable regulation characteristics. LDO V2 5 has two supply inputs selecting automatically the higher one. This gives the possibility to supply the AS3604 core either with the battery or with the Battery Charger, depending on the conditions.

To ensure high PSRR and stability, a low-ESR ceramic capacitor of 1µF (min.) must be connected to the output.

Note: Levelshifters in both directions (input and output) are placed between digital pins (VANA_1) and the digital core (V2_5) of the device, because of the different power supplies.


Table 13. LDO V2_5 Characteristics VBAT = 4V; CLOAD_EXT = 0; SCSB = 25°C; CLOAD = 2.2μF (Ceramic); unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VBAT	Supply Voltage Range	2.8		5.5	V	
VCHARGER	External Charger Adapter voltage	4		15	V	
Ron	On-Resistance			50	Ω	Guaranteed per design
PSRR	Power Supply	60			dB	f = 1kHz
PSKK	Rejection Ratio	40			иБ	f = 100kHz
IOFF	Shut Down Current			100	nA	
IVDD_LPLDO	Supply Current			3	μА	Guaranteed per design; consider device internal load for measurement
tstart	Startup Time			200	μs	
Vout	Output Voltage	2.4	2.5	2.6	V	
Vout_tol	Output Voltage Tolerance	-50		50	mV	
\/\ NEDEO	Line Degulation	-10		10	m\/	Static
VLINEREG	Line Regulation	-50		50	mV	Transient; Slope: t _r = 10µs
VI OARRES	Load Degulation	-10		10	m\/	Static
VLOADREG	Load Regulation	-50		50	mV	Transient; Slope: t _r = 10µs

Low Dropout Regulators

6.3.5 Typical Performance Characteristics

Figure 15. Load Regulation of LDOs VANA_1, VANA_2, VRF_1, VRF_2

X-Axis: 40µs/Div

Figure 17. Load Regulation of LDOs VDIG_1, VDIG_2

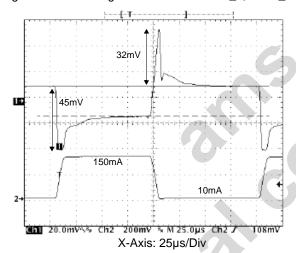


Figure 18. Line Regulation of LDOs VANA_1,

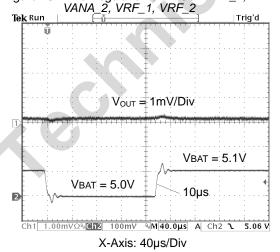
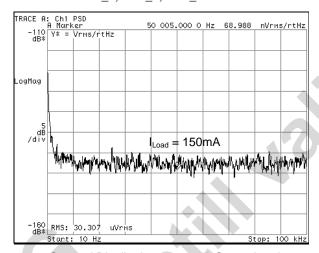



Figure 16. Output Noise of LDOs VANA_1, VANA_2, VRF_1, VRF_2

Spectral Distribution at 150mA Output Load

Figure 17. Load Regulation of LDO V2_5

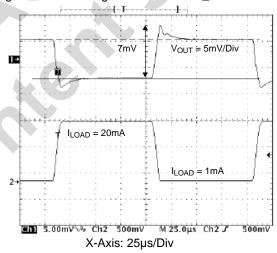
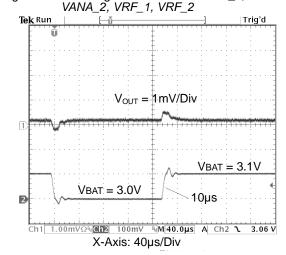



Figure 19. Line Regulation of LDOs VANA_1,

6.3.6 LDO Registers

The Low Dropout Regulators are controlled by the registers listed in Table 14.

Table 14. Low Dropout Regulators Register Summary

Name	Addr	B7	B6	B5	B4	В3	B2	B1	В0	Page
LDO_RF1 Voltage Register	2		N/A		ldo_rf1_v					35
LDO_RF2 Voltage Register	3		N/A		ldo_rf2_v					35
LDO_RF3 Voltage Register	4		N/A				ldo_rf3_v			35
LDO_RF4 Voltage Register	5		N/A				ldo_rf4_v			35
LDO_ANA Voltage Register	6		ldo_ana1_v				do_ana2_	V		36
LDO_DIG1 Voltage Register	7	١	I/A		ldo_dig1_v					36
LDO_DIG2 Voltage Register	8	N/A	ldo_sim_v			ldo_d	ig2_v			36
Reg Power Control (6ms after start) Register	9	١	I/A	buck_on	ldo_sim_ on	ldo_dig2 _on	ldo_dig1 _on	ldo_ana 2_on	ldo_ana 1_on	37
LDO_GPIO Active Register	15	ldo_dig2 _gpio	ldo_dig1_ gpio	ldo_rf4_ gpio	ldo_rf3_ gpio	ldo_rf2_ gpio	ldo_rf1_ gpio	ldo_ana 2_gpio	ldo_buck _gpio	39
LDO_RF Switch Register	16	ldo_rf4 _on			ldo_rf1 _on	rf4_sw	rf3_sw	ana2_sw	ana1_sw	38
LDO_AD GPIO Register	17	ldo_dig2_gpio_sel		ldo_dig1	_gpio_sel	ldo_ana2	_gpio_sel	ldo_buck	_gpio_sel	39
LDO_RF GPIO Register	18	ldo_rf4_	_gpio_sel	ldo_rf3_	gpio_sel	ldo_rf2_	gpio_sel	ldo_rf1_	gpio_sel	40

Addı	·· 02	LDO_RF1 Vo	Itage Registe	r
Auui	. 02	Sets the volta	ige for LDO VF	RF_1.
Bit	Bit Name	Default	Access	Bit Description
				00000 = 1.85V
4:0	ldo_rf1_v	Boot ROM	R/W	(LSB = 50mV)
				11111 = 3.40V
7:5				N/A

۸۵۵۱	Addr: 03 LDO_RF2 Voltage Register			
Auui	. 03	Sets the volta	ige for LDO VF	RF_2.
Bit	Bit Name	Default	Access	Bit Description
				00000 = 1.85V
4:0	ldo_rf2_v	Boot ROM	R/W	(LSB = 50mV)
				11111 = 3.40V
7:5				N/A

Addı	·· 04	LDO_RF3 Voltage Register						
Addi	. 04	Sets the volta	age for LDO VF	RF_3.				
Bit	Bit Name	Default	Access	Bit Description				
4:0	ldo_rf3_v	Boot ROM	R/W	00000 = 1.85V (LSB = 50mV)				
				11111 = 3.40V				
7:5				N/A				

Addr: 05		LDO_RF4 Voltage Register		
		Sets the voltage for LDO VRF_4.		
Bit	Bit Name	Default	Access	Bit Description
4:0	ldo_rf4_v	Boot ROM	R/W	00000 = 1.85V
				(LSB = 50mV)
				11111 = 3.40V
7:5				N/A

۸۵۵۱	0e	LDO_ANA Voltage Register				
Addr: 06		Sets the volta	/ANA_1 and VANA_2.			
Bit	Bit Name	Default Access Bit Description				
4:0	ldo_ana2_v	Boot ROM	R/W	Sets the voltage for LDO VANA_2. 00000 = 1.85V (LSB = 50mV) 11111 = 3.40V		
7:5	ldo_ana1_v	Boot ROM	R/W	Sets the voltage for LDO VANA_1. 000 = 2.5V (LSB = 100mV) 111 = 3.2V		

Addr: 07		LDO_DIG1 V	oltage Registe	er
		Sets the volta	DO VDIG_1.	
Bit	Bit Name	Default	Access	Bit Description
5:0	ldo_dig1_v	Boot ROM	R/W	Table 15 lists the Digital LDO programmable voltages.
7:6				N/A

Addı	·· 00	LDO_DIG2 Voltage Register				
Auui	. 00	Sets the volta	age for Digital L	DOs VDIG_2 and VSIM.		
Bit Name		Default	Access	Bit Description		
5:0	ldo_dig2_v	Boot ROM	R/W	Sets the voltage for Digital LDO VDIG_2. Table 15 lists the Digital LDO programmable voltages.		
6	ldo_sim_v	Boot ROM	R/W	Sets the voltage for LDO VSIM. 0 = 1.8V 1 = 3.0V (default)		
7				N/A		

Table 15. Digital LDOs VDIG_1 and VDIG_2 Programming Voltage

Decimal Code	Binary Code	Vout [V]	Decimal Code	Binary Code	Vout [V]
0	000000	0.75	22	010110	1.80
1	000001	0.80	23	010111	1.80
2	000010	0.85	24	011000	1.80
3	000011	0.90	25	011001	1.80
4	000100	0.95	26	011010	1.80
5	000101	1.00	27	011011	1.80
6	000110	1.05	28	011100	1.80
7	000111	1.10	29	011101	1.80
8	001000	1.15	30	011110	1.80
9	001001	1.20	31	011111	1.80
10	001010	1.25	32	100000	1.50
11	001011	1.30	33	100001	1.60
12	001100	1.35	34	100010	1.70
13	001101	1.40	35	100011	1.80
14	001110	1.45	36	100100	1.90
15	001111	1.50	37	100101	2.00
16	010000	1.55	38	100110	2.10
17	010001	1.60	39	100111	2.20
18	010010	1.65	40	101000	2.30
19	010011	1.70	41	101001	2.40

Low Dropout Regulators

Table 15. Digital LDOs VDIG_1 and VDIG_2 Programming Voltage (Continued)

Decimal Code	Binary Code	Vout [V]	Decimal Code	Binary Code	Vout [V]	
20	010100	1.75	42	101010	2.50	
21	010101	1.80	-	-	-	

Note: Full performance for $V_{out} \le 2.20V$ (max.), 100mA output current for $V_{out} \le 2.50V$.

Caution: Do not use values for Vout > 2.50V.

	Addr: 09	Reg Power Control (6ms after start) Register				
	Addi. 09	Enables/disables voltage regulators.				
Bit	Bit Name	Default Access		Bit Description		
0	ldo_ana1_on	Boot ROM	R/W	Enables control of LDO VANA_1. 0 = LDO VANA_1 is off. 1 = LDO VANA_1 is on. Note: Do not set this bit = 0 or serial interface access will be disabled.		
1	ldo_ana2_on	Boot ROM	R/W	Enables control of LDO VANA_2. 0 = LDO VANA_2 is off. 1 = LDO VANA_2 is on.		
2	ldo_dig1_on	Boot ROM	R/W	Enables control of LDO VDIG_1. 0 = LDO VDIG_1 is off. 1 = LDO VDIG_1 is on.		
3	ldo_dig2_on	Boot ROM	R/W	Enables control of LDO VDIG_2. 0 = LDO VDIG_2 is off. 1 = LDO VDIG_2 is on.		
4	ldo_sim_on	Boot ROM	R/W	Enables control of LDO VSIM. 0 = LDO VSIM is off. 1 = LDO VSIM is on.		
5	buck_on	4		Refer to page 29.		
7:6				N/A		

	Addr: 16	LDO_RF Switch Register					
	Addi. 10	Enables LDO	s as high-side	switches.			
Bit	Bit Name	Default	Access Bit Description				
0	ana1_sw	Boot ROM	R/W	0 = VANA_1 operates as LDO. 1 = VANA_1 is operating as high-side switch (Ron = 1Ω); valid if Ido_rf1_on = 0.			
1	ana2_sw	Boot ROM	R/W	0 = VANA_2 operates as LDO. 1 = VANA_2 is operating as high-side switch (Ron = 1Ω); valid if Ido_rf2_on = 0.			
2	rf3_sw	Boot ROM	R/W	0 = VRF_3 operates as LDO. 1 = LDO VRF_3 is operating as high-side switch (Ron = 2Ω); valid if Ido_rf3_on = 0.			
3	rf4_sw	Boot ROM	R/W	0 = VRF_4 operates as LDO 1 = LDO VRF_4 is operating as high-side switch (Ron = 2Ω), valid if Ido_rf4_on = 0.			
4	ldo_rf1_on	Boot ROM	R/W	Enables control of LDO VRF_1. Set ana1_sw = 0 before setting this bit = 1. 0 = LDO VRF_1 is off. 1 = LDO VRF_1 is on.			
5	ldo_rf2_on	Boot ROM	R/W	Enables control of LDO VRF_2. Set ana2_sw = 0 before setting this bit = 1. 0 = LDO VRF_2 is off. 1 = LDO VRF_2 is on.			
6	ldo_rf3_on	Boot ROM	R/W	Enables control of LDO VRF_3. Set rf3_sw = 0 before setting this bit = 1. 0 = LDO VRF_3 is off. 1 = LDO VRF_3 is on.			
7	ldo_rf4_on	Boot ROM	R/W	Enables control of LDO VRF_4. Set rf4_sw = 0 before setting this bit = 1. 0 = LDO VRF_4 is off. 1 = LDO VRF_4 is on.			

ldo_rfx_on*	rfx:sw*	RF LDO Function		
0	0	Off		
0	1	Fully On, Ron = 1 or 2Ω		
1	0	Linear Voltage Regulator		
1	1	Not Allowed		

^{*} Where *x* = 1-4

	Addr: 15	LDO_GPIO Active Register				
	Addr. 15	Activates GPIO on/off control for voltage regulators.				
Bit	Bit Name	Default	Access	Bit Description		
0	buck_gpio	Boot ROM	R/W	Activates GPIO control of Step Down DC/DC Converter. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit buck_on (page 29) = 1.		
1	ldo_ana2_gpio	Boot ROM	R/W	Activates GPIO control for LDO VANA_2. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit Ido_ana2_on (page 37) = 1.		
2	ldo_rf1_gpio	Boot ROM	R/W	Activates GPIO control for LDO VRF_1. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit Ido_rf1_on (page 38) = 1.		
3	ldo_rf2_gpio	Boot ROM	R/W	Activates GPIO control for LDO VRF_2. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit Ido_rf2_on (page 38) = 1.		
4	ldo_rf3_gpio	Boot ROM	R/W	Activates GPIO control for LDO VRF_3. 0 = Controlled by software. 0 = On when assigned GPIO pin = 1 and bit Ido_rf3_on (page 38) = 1.		
5	ldo_rf4_gpio	Boot ROM	R/W	Activates GPIO control for LDO VRF_4. 0 = Controlled by software. 1 = LDO VRF_4 is on when assigned GPIO pin = 1 and bit Ido_rf4_on (page 38) = 1.		
6	ldo_dig1_gpio	Boot ROM	R/W	Activates GPIO control for LDO VDIG_1. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit Ido_dig1_on (page 37) = 1.		
7	ldo_dig2_gpio	Boot ROM	R/W	Activates GPIO control for LDO VDIG_2. 0 = Controlled by software. 1 = On when assigned GPIO pin = 1 and bit Ido_dig2_on (page 37) =		

	Addr: 17	LDO_AD GPIO Register				
	Auur. 17	Selects C	SPIO pin fo	or power on/off control.		
Bit	Bit Name	Default	Access	Bit Description		
1:0	buck_gpio_sel	Boot ROM	R/W	Valid if GPIO activation bit buck_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 – this setting cannot be selected when GPIO2 is used as feedback pin. 10 = GPIO3 11 = Do not use this setting.		
3:2	ldo_ana2_gpio_sel	Boot ROM	R/W	Valid if GPIO activation bit Ido_ana2_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		
5:4	ldo_dig1_gpio_sel	Boot ROM	R/W	Valid if GPIO-activation bit Ido_dig1_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		
7:6	ldo_dig2_gpio_sel	Boot ROM	R/W	Valid if GPIO-activation bit Ido_dig2_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		

	Addr: 18	LDO_RF GP	IO Register			
	Auur. 16	Selects GPIO pin for power on/off control for RF LDOs VRF_1 - VRF_4.				
Bit	Bit Name	Default	Access	Bit Description		
1:0	ldo_rf1_gpio_sel	Boot ROM	R/W	Valid if Ido_rf1_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		
3:2	ldo_rf2_gpio_sel	Boot ROM	R/W	Valid if Ido_rf2_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		
5:4	ldo_rf3_gpio_sel	Boot ROM	R/W	Valid if Ido_rf3_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		
7:6	ldo_rf4_gpio_sel	lo_rf4_gpio_sel Boot ROM	R/W	Valid if Ido_rf4_gpio (page 39) = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.		

Data Sheet Charge Pump

6.4 Charge Pump

The Charge Pump uses VANA_1 (supplied by Analog LDO VANA_1) as input and doubles this voltage using a flying capacitor between pins CAPP and CAPN (see Figure 1 on page 2) to its output, V5_6. If bit **cp_pulseskip** (page 41) is set, the Charge Pump compares its output voltage against a voltage reference, defined by **cp_vref** (page 41), and only starts charging cycles if its output voltage is below **cp_vref**. If V5_6 is > 5.6V (when VANA_1 is >2.8V), pulseskip will automatically be enabled (depending on bit **cp_vref**) to protect the pin from overvoltage (bit **cp_pulseskip** will not be set in this case).

The Charge Pump requires the external components specified in Table 16.

Table 16. Charge Pump External Components

I	Symbol	Parameter	Min	Тур	Max	Unit	Notes
	CFLY (C2)	External Flying Capacitor		330		nF	Ceramic low-ESR capacitor between pins CAPP and CAPN (page 2).
	CSTORE (C3)	External Storage Capacitor	1		4.7	μF	Ceramic low-ESR capacitor between pins V5_6 and VSS (page 2).

Note: Connections to the two external capacitors should be kept as short as possible.

Table 17. Charge Pump Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Notes
ICPOUT	Output Current	0		30	mA	VANA_1 = 2.8V, internal clock selected,
VCPOUT	Output Voltage	5.0	5.2	5.6	V	cp_vref (page 41) = 5.25V or cp_pulseskip = 0.
VCPOUTI0	Output Voltage (No Load)	2 x VANA_1				Vana_1 ≥ 2.0V, no load at output, cp_pulseskip = 0.
	Quiescent Current		980			cp_pulseskip = 0, cp_freq (page 41) = 0 (1.1MHz).
IQUIESCENT			498			cp_pulseskip = 0, cp_freq = 1 (550kHz).
IQUIESCENT	Quiescent Current		5		μA	cp_pulseskip = 1, cp_freq = 0, VANA_1 = 2.8V.
			4			cp_pulseskip = 1, cp_freq = 1, VANA_1 = 2.8V.
ISHUTDOWN	Shutdown Current			0.1	μA	@25°C
VRIPPLE	Ripple Voltage		28.8		mVp-p	cp_pulseskip = 0, cp_freq = 0, ILOAD = 30mA.

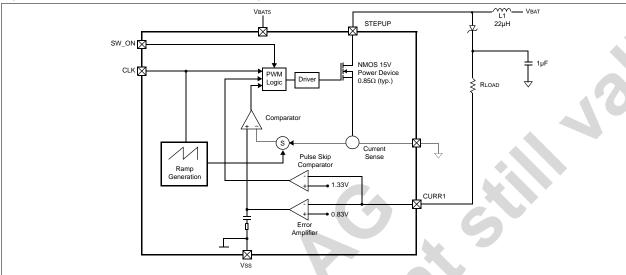
6.4.1 Charge Pump Control Register

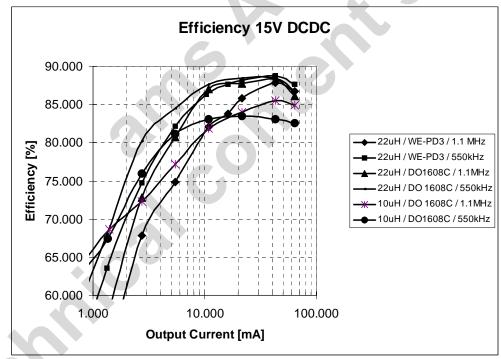
۸ ما ما	r: 24	Charge Pump Control Register					
Add	1: 24	Sets the operation mode of the Charge Pump.					
Bit	Bit Name	Default	Default Access Bit Description				
0	cp_on	Boot ROM	R/W	0 = Charge Pump is off. 1 = Activates the Charge Pump. The Charge Pump is automatically activated when any of the following blocks are active: Audio Amplifier, VDIG_1, VDIG_2.			
1	cp_pulseskip	Boot ROM	R/W	Controls the Charge Pump pulseskip mode. 0 = Always try to double the voltage on VANA_1. 1 = Only start a cycle if V5_6 is lower than the voltage defined by bit cp_vref.			
2	cp_vref	Boot ROM	R/W	If in pulseskip mode, regulate to the following voltage by leaving out complete cycles: 0 = 4.74V 1 = 5.25V			
3				N/A			
4	cp_freq	Boot ROM	R/W	Sets the Charge Pump clock frequency. 0 = System clock 1 = System clock/2 (half frequency)			
5	onkey_pulldown			Controls the pulldown on pin ON. 0 = Switches on the pulldown on pin ON. 1 = Switches off the pulldown on pin ON.			
7:6				N/A			

6.5 Step Up DC/DC Converter

The integrated Step Up DC/DC Converter is a high-efficiency current-mode PWM regulator, providing an output voltage of up to 15V. A constant switching-frequency results in low noise on supply and output voltages. An optional digital NMOS switch is provided for cases when the Step Up DC/DC Converter is not used.

Figure 20. Step Up DC/DC Converter Block Diagram




Table 18. Step Up DC/DC Converter Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Notes
Vsw	High Voltage Pin	0		15	V	Pin STEPUP
IVDD_SU	Quiescent Current		140		μA	Pulse skipping mode
ISHUTDOWN	Shutdown Current			100	nA	@25°C
VFB	Feedback Voltage, Transient	0		5.5	V	Pin CURR1
VFB	Feedback Voltage during Regulation	0.65	0.83	1.0	V	Pin CURR1
ISW_max	Current Limit	550	780	1100	mA	stpup_on (page 43) = 1 stpup_low_curr (page 43) = 0
		350	510	750	mA	stpup_on = 1, stpup_low_curr = 1
Rsw	Switch Resistance		0.85	1.54	Ω	stpup_on = 0, stpup_low_curr = 1
ILOAD	Load Current	0		45	mA	At 15V output voltage.
VPULSESKIP	Pulseskip Threshold	1.2	1.33	1.5	٧	PIN CURR1. Note: Voltage at pin CURR1, pulse skips are introduced when load current becomes too low.
VRIPPLE	Ripple Voltage		146		mVp-p	stpup_freq (page 43) = 0 , Vout = $15V$, ILOAD = 45mA , BW $\leq 20\text{MHz}$.
fin	Fixed Switching Frequency	1	1.1	1.2	MHz	1.1MHz; stpup_freq = 0
IIIN	Fixed Switching Frequency	0.5	0.55	0.6	IVII IZ	0.55MHz; stpup_freq = 1
Соит	Output Capacitor		1		μF	Ceramic
I (Industar)	ILOAD > 20mA	17	22	27		Use inductors with small
L (Inductor)	ILOAD < 20mA	8	10	27	μH	CPARASITIC (<100pF) for high efficiency.
tmin_on	Minimum On-Time	90		180	ns	
MDC	Maximum Duty Cycle	88	91	94	%	Guaranteed per design.

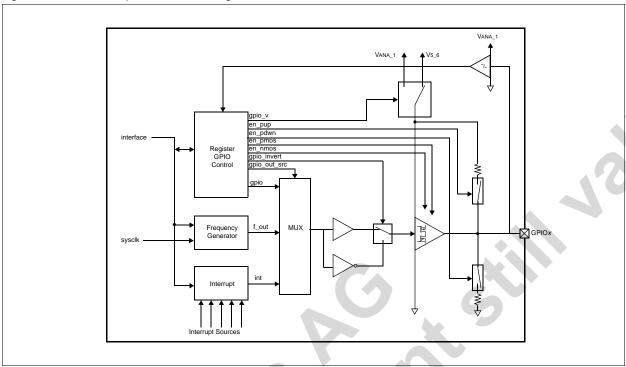
6.5.1 Step Up DC/DC Converter Register

۸۵۵	r: 25	Step Up DC/DC Converter Control Register						
Addr: 25		Sets the operation mode of the Step Up DC/DC Converter.						
Bit	Bit Name	Default	Access	Bit Description				
				Activates the Step Up DC/DC Converter.				
0	stpup_on	Boot ROM	R/W	0 = Step Up DC/DC Converter is off.				
				1 = Step Up DC/DC Converter is on.				
			This bit controls the NMOS switch on pin STEPUP only if					
1	otnun ow on	Boot ROM	R/W	$stpup_on = 0.$				
1	stpup_sw_on	BOOL KOIVI	K/VV	0 = Switch open (STEPUP floating).				
				1 = Switch closed (STEPUP pulled to VSS).				
				Defines the clock frequency of the Step Up DC/DC Converter.				
2	stpup_freq	Boot ROM	R/W	0 = System clock (typ. 1.1MHZ).				
				1 = System clock/2 (half frequency).				
				NMOS-switch current-limit control only if stpup_on = 1.				
3	3 stpup_low_curr	Boot ROM	R/W	0 = High current limit (600mA).				
				1 = Low current limit (300mA).				
7:4				N/A				

Figure 21. Typical Performance Characteristics

6.6 General Purpose Input/Output

The general purpose input/output pins (GPIO1 - GPIO3) are highly configurable and independently controlled.


Table 19. DC Characteristics Input/Output Pin with Selectable Supply GPIO1:GPIO3

Parameter	Symbol	Min	Max	Unit	Notes
High-Level Input Voltage	ViH	0.7 x VANA_1		V	
Low-Level Input Voltage	VIL		0.3 x VANA_1	V	
Hysteresis	VHYS	0.2 x VANA_1		V	
Input Leakage Current (if not used as pulldown/pullup)	İLEAK	-5	5	μA	to VANA_1 and VSS
Pulldown Current (if configured as pulldown)	IPULLDOWN	5	50	μA	to VSS
Pullup Current (if configured as pullup)	lpullup	-200	-20	μA	to V5_6 or VANA_1 as configured
High-Level Output Voltage Supply VANA_1	Voн	0.8 x VANA_1		V	at -2mA
High-Level Output Voltage Supply V5_6 (V5_6 min. 5.0V)	Vоннv	0.8 x V5_6		V	at -2mA
Low-Level Output Voltage	Vol		0.2 x VANA_1	V	at 2mA
Capacitive Load	CLOAD		50	pF	

GPIO1 - GPIO3 can be used to accommodate the following functionality:

- Software controlled input and output
- Input pin for the Watchdog
- Signal input (GPIO1-GPIO3)
- Interrupt output with configurable interrupt source
- Configurable frequency and duty cycle output
- External clock input for Step Up/Down DC/DC Converters and Charge Pump synchronization (GPIO1 only)
- Active pullup or pulldown; can be combined with other I/O functions
- Output open drain (push or pull type)
- Output high-level voltage selection between V5_6 or VANA_1; (V5_6 not possible on GPIO2)
- Optional feedback input for Step Down DC/DC Converter (GPIO2)

Figure 22. General Purpose I/O Block Diagram

6.6.1 GPIO Registers

GPIO1 - GPIO3 are controlled by the registers listed in Table 20.

Table 20. GPIO Register Summary

Name	Addr	B7	B6	B5	B4	В3	B2	B1	В0	Page
GPIO1 Control Register	26	gpio1_	_out_src	gpio1_ invert	gpio1	_pulls	gpio1_ voltage	gpio1_	_mode	46
GPIO2 Control Register	27	gpio2_	_out_src	gpio2_ invert	gpio2	_pulls	stepdown _fb	gpio2	_mode	46
GPIO3 Control Register	28	gpio3_	_out_src	gpio3_ invert	gpio3	_pulls	gpio3_ voltage	gpio3 ₋	_mode	47
GPIO Signal Register	33			N/A			gpio3	gpio2	gpio1	47
GPIO Frequency Control High Time Register	34)		gpio_l	h_time				48
GPIO Frequency Control Low Time Register	35	U			gpio_	l_time				48
Clock Generation Register	30	N/A ext_clk						48		
Interrupt Enable Register	31	chgov_i nt_en	chgrmv_i nt_en	resume_i nt_en	chdet_ int_en	onkey_ int_en	ovtmp_ int_en	vchoff_ int_en	wdog _int_en	49
Interrupt Status Register	32	chgov_i	chgrmv_i	resume_i	chdet_i	onkey_i	ovtmp_i	vchoff_i	wdog_i	49

Addr: 26		GPIO1 Conti	rol Register	
Auui	. 20	Configures pi	in GPIO1.	
Bit	Bit Name	Default	Access	Bit Description
1:0	gpio1_mode	Boot ROM	R/W	Sets the direction for pin GPIO1. 00 = Input only. 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11 = Output (open drain, only pull; only PMOS is active).
2	gpio1_voltage	Boot ROM	R/W	If pin GPIO1 is used as output, sets the positive supply (GND_PAD is always used as negative supply). 0 = VANA_1 1 = V5_6
4:3	gpio1_pulls	Boot ROM	R/W	Sets pullup/pulldown to pin GPIO1 (independent of bit gpio1_mode setting). 00 = None 01 = Pulldown 10 = Pullup 11 = N/A
5	gpio1_invert	Boot ROM	R/W	 0 = Output signal is not inverted. 1 = Inverts any output signal going to GPIO1. This is useful for the Watchdog output source to make the output active high or low.
7:6	gpio1_out_src	Boot ROM	R/W	Sets the source of pin GPIO1 output. x0 = Bit gpio1 (page 47) controlled through the serial interface. 01 = Frequency generator defined by bits gpio_h_time (page 48) and gpio_l_time (page 48). 11= Interrupt signal (see Interrupt Function on page 49).

Addr: 27		GPIO2 Cont	rol Register	
Auui	. 21	Configures p	in GPIO2.	
Bit	Bit Name	Default	Access	Bit Description
1:0	gpio2_mode	Boot ROM	R/W	Sets the direction for pin GPIO2. 00 = Input only. 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11 = Output (open drain, only pull; only PMOS is active).
2	stepdown_fb	Boot ROM	R/W	 0 = GPIO2 is used as regulator configurable I/O pin, Step Down DC/DC Converter feedback is at pin VBUCK. 1 = Pin GPIO2 is used as feedback-pin for Step Down DC/DC Converter.
4:3	gpio2_pulls	Boot ROM	R/W	Sets pullup/pulldown to pin GPIO2 (independent of bit gpio2_mode setting). 00 = None 10 = Pullup 01 = Pulldown 11 = N/A
5	gpio2_invert	Boot ROM	R/W	 0 = Output signal is not inverted. 1 = Inverts any output signal going to pin GPIO2. This is useful for the Watchdog output source to make the output active high or low.
7:6	gpio2_out_src	Boot ROM	R/W	Sets the source of pin GPIO2 output. x0 = Bit gpio2 (page 47) (controlled through the serial interface). 01 = Frequency generator defined by bits gpio_h_time (page 48) and gpio_l_time (page 48). 11= Interrupt signal (see Interrupt Function on page 49).

Addı	r. 20	GPIO3 Cont	rol Register					
Auui	. 20	Configures pin GPIO3.						
Bit	Bit Name	Default	Access	Bit Description				
1:0	gpio3_mode	Boot ROM	R/W	Sets the direction for pin GPIO3. 00 = Input only. 01 = Output (push and pull). 10 = Output (open drain, only push; only NMOS is active). 11 = Output (open drain, only pull; only PMOS is active).				
3:2	gpio3_voltage	Boot ROM	R/W	If pin GPIO1 is used as output, sets the positive supply (GND_PAD is always used as negative supply). 0 = VANA_1 1 = V5_6				
4	gpio3_pulls	Boot ROM	R/W	Sets pullup/pulldown to pin GPIO3 (independent of bit gpio3_mode setting). 00 = None				
5	gpio3_invert	Boot ROM	R/W	 0 = Output signal is not inverted. 1 = Inverts any output signal going to pin GPIO3. This is useful for the Watchdog output source to make the output active high or low. 				
7:6	gpio3_out_src	Boot ROM	R/W	Sets the source of pin GPIO3. x0 = Bit gpio3 (page 47) (controlled through the serial interface) 01 = Frequency generator defined by bits gpio_h_time (page 48) and gpio_I_time (page 48). 11 = Interrupt signal (see Interrupt Function on page 49).				

Addr	22	GPIO Signal Register						
Auui	. 33	Reads the logic signal of the GPIO pins, independently of any other GPIO bit setting.						
Bit	Bit Name	Default	Access	Bit Description				
0	gpio1	N/A	R/W	Reads the logic signal from pin GPIO1. If gpio1_out_src (page 46) = 00, this is the output signal at pin GPIO1.				
1	gpio2	N/A	R/W	Reads the logic signal from pin GPIO2. If gpio2_out_src (page 46) = 00, this is the output signal at pin GPIO2.				
2	gpio3	N/A	R/W	Reads the logic signal from pin GPIO3. If gpio3_out_src (page 47) = 00, this is the output signal at pin GPIO3.				
7:3				N/A				

6.6.2 Programmable Frequency Generator

The Programmable Frequency Generator is controlled by bits <code>gpio_h_time</code> (page 48) and <code>gpio_l_time</code> (page 48). It generates a waveform with 0.9 microseconds times <code>gpio_h_time</code> high-level and 0.9 microseconds times <code>gpio_l_time</code> low-level. The accuracy of these timings is ±10%.

The frequency of the Programmable Frequency Generator is:

$$f=1/(tcl\kappa^*gpio_h_time + tcl\kappa^*gpio_l_time)$$
 (EQ 8)

where tclk = 1/fCLK (page 17) = 1/1.1MHz (typ.) = 0.909µs (typ.)

The purpose of the Programmable Frequency Generator is to have a controlled sweepable frequency or duty cycle source for one of the following:

- General User-Defined Clock
- 8-Bit DAC (output should be filtered by an RC filter)
- (High) Positive and Negative Voltage Generation (see 25V/-20V Voltage Generator on page 48)

6.6.3 Programmable Frequency Generator Registers

۸۵۵۱	24	GPIO Frequency Control High Time Register				
Addr: 34		Configures programmable frequency generator.				
Bit	Bit Name	Default	Default Access Bit Description			
7:0	gpio_h_time	64 _h	R/W	Defines the number of system clock cycles (typ. $0.9\mu s$), that the programmable frequency generator at the GPIO output(s) is high. $00_h = 0.909\mu s$ FF _h = 232.7 μs		

Addı	25	GPIO Frequency Control Low Time Register				
Auui	. 33	Configures p	frequency generator.			
Bit	Bit Name	Default Access Bit Description				
7:0	gpio_l_time	64 _h	R/W	Defines the number of system clock cycles (typ. $0.9\mu s$), that the programmable frequency generator at the GPIO output(s) is low. $00_h = 0.909\mu s$ FF _h = $232.7\mu s$		

۸۵۵۱	·· 30	Clock Gener	ation Registe	
Addr: 30		Sets the sour	em clock.	
Bit	Bit Name	Default	Access	Bit Description
0	ext_clk	Boot ROM	R/W	0 = Internal 1.1MHz RC-oscillator. 1 = System clock controlled by pin GPIO1.
7:1				N/A

6.6.4 25V/-20V Voltage Generator

Using the Programmable Frequency Generator a voltage generator for +25V or -20V can be built with only 4 external capacitors and 5 external Shottky diodes as shown in the following diagrams.

Figure 23. 25V Positive Voltage Generator Block Diagram

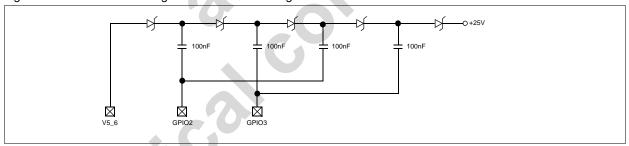
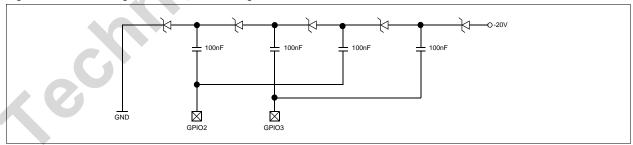



Figure 24. -20V Voltage Generator Block Diagram

Note: GPIO2 and GPIO3 must be 180° out of phase, e.g., set bit gpio2_invert (page 46) = 1 and bit gpio3_invert (page 47) = 0.

6.6.5 Interrupt Function

Any of the GPIO pins (GPIO1 - GPIO3) can be configured as interrupt output pins. To enable this function, the corresponding GPIO control bits must be set to 11b. See gpio2_out_src (page 46), or gpio3_out_src (page 47).

Several signals can be configured as interrupt source using the Interrupt Enable Register. A rising edge of an enabled interrupt control signal sets the selected GPIO interrupt output pin = 1.

The Interrupt Status Register shows the currently active interrupt signals. Reading this register resets the Interrupt Status Register bits and sets the active GPIO pin (GPIO 1 - GPIO3) = 0.

6.6.6 Interrupt Registers

Add	r· 31	Interrupt En	able Register				
Auu	1. 31	Enables/disables interrupt sources.					
Bit	Bit Name	Default	Access	Bit Description			
0	wdog_int_en	Boot ROM	R/W	0 = Disables watchdog alarm as interrupt source signal.			
	waog_int_on	Boot Row	10,00	1 = Enables watchdog alarm as interrupt source signal.			
				0 = Disables charge termination voltage as interrupt source			
1	vchoff int en	Boot ROM	R/W	signal.			
	vonon_me_on	Bootitom	1011	Enables charge termination voltage as interrupt source signal.			
2	ovtmp int en	Boot ROM	D/M	0 = Disables ov_temp_110 (device temperature alert at 110°C).			
-	oviiip_iiii_eii	BOOL KOW	R/W	1 = Enables ov_temp_110 (device temperature alert at 110°C).			
3	onkey_int_en	Boot ROM	R/W	0 = Disables pin ON (active high).			
٦	Olikey_ilit_eli	BOOL KOW	IN/VV	1 = Enables pin ON (active high).			
4	chdet int en	Boot ROM	R/W	0 = Disables charger detection.			
4	cridet_int_en	BOOL KOW	K/VV	1 = Enables charger detection.			
5	rooumo int on	Boot ROM	R/W	0 = Disables charger-resume interrupt.			
5	resume_int_en	BOOL KOW	FX/VV	1 = Enables charger-resume interrupt.			
6	charmy int on	Boot ROM	R/W	0 = Disables charger-removed interrupt.			
6	chgrmv_int_en	BOOL KOW	IK/VV	1 = Enables charger-removed interrupt.			
7	chaov int on	Boot ROM	R/W	0 = Disables charger overvoltage interrupt.			
	chgov_int_en	BOOL KOIVI	FX/VV	1 = Enables charger overvoltage interrupt.			

Addı	r. 22	Interrupt Sta	atus Register				
Auui	1. 32	Displays the status of the interrupt inputs.					
Bit	Bit Name	Default	Access	Bit Description			
0	wdog_i	Boot ROM	R/W	0 = Software or hardware watchdog is off or has not rolled over. 1 = Software or hardware watchdog is rollover.			
1	vchoff i	Boot ROM	R/W	0 = Battery voltage is below Vcногг (раде 8) threshold.			
!	VCHOII_I	VCHOII_I BOOL ROW	IX/VV	1 = Battery voltage has reached VcноFF threshold.			
				0 = Device temperature is below 110°C.			
2	ovtmp_i	Boot ROM	R/W	1 = 110°C temperature threshold ov_temp_110 (page 59) has been reached.			
3	onkov i	Boot ROM	R/W	0 = ON key has not been pressed.			
3	onkey_i	BOOL KOW	K/VV	1 = ON key has been pressed (rising edge).			
4	chdet_i	Boot ROM	R/W	Charger detection interrupt, active if chDet (page 19) is falling.			
5	resume_i	Boot ROM	R/W	Resume charging interrupt, active if Bat_v (page 21) is falling.			
6	chgrmv_i	Boot ROM	R/W	Charger detection interrupt, active if chDet (page 19) is falling.			
7	chgov_i	Boot ROM	R/W	Charger over voltage interrupt, active if ChOv (page 21) is rising.			

Data Sheet Current Sinks

6.7 Current Sinks

The AS3604 contains general purpose current sinks intended to control backlights, buzzers, and vibrators. All current sinks have an integrated protection (VPROTECT) against overvoltage and can therefore also drive inductive loads. CURR1 is also used as feedback for Step Up DC/DC Converter and in this configuration regulated to 0.8V.

The current sinks can also be used as switches to VSS with configurable impedance as indicated in Table 21.

Table 21. Current Source Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Notes
ICURR <i>x</i>	currx_current = 01 _h - FF _h	0.625		160	mA	currx_sw = 0, resolution = 0.625mA
RPD_SW	currx_current = 01 _h - FF _h	0.3		77	Ω	
VPROTECT	Maximum voltage at pin CURRx to protect driver transistor			VBAT + 2.0V	V	ISINK ≥ 20mA (1)

Note: If a voltage higher than VPROTECT is applied to pins CURR1 - CURR4, a current of more than 20mA will flow into the AS3604. This protects the device from voltage rises caused by inductive loads.

6.7.1 Current Sink Registers

The current sinks are controlled by the registers listed in Table 22.

Table 22. Current Sink Register Summary

Name	Addr	B7 B6		B5 B4	В3	B2	B1	B0	Page
CURR1 Value Register	36			curr1	_current				50
CURR2 Value Register	37			curr2	current				50
CURR3 Value Register	38			curr3	_current				51
CURR4 Value Register	39			curr4	_current				51
CURR Control Register	40	curr4_ctrl		curr3_ctrl	curr2	2_ctrl	curr	1_ctrl	51
CURR Mode Register	41		N/A		curr4_sw	curr3_sw	curr2_sw	curr1_sw	51
CURR GPIO Map Register	42	curr4_gpio		curr3_gpio	curr2	_gpio	curr1	_gpio	52

Addı	r. 36	CURR1 Value Register						
Auui	. 30	Sets the curre	Sets the current / resistance of current source CURR1.					
Bit	Bit Name	Default	Access	Bit Description	1			
7:0	curr1_current	00 _h	R/W	00 _h 01 _h FF _h	curr1_sw (page 51) = 0 Power Down 0.625mA 160mA	curr1_sw = 1 Open 77Ω 0.3Ω		

Add	r: 27	CURR2 Value Register								
Auu	1. 37	Sets the curre	Sets the current / resistance of current source CURR2.							
Bit	Bit Name	Default	Access	Bit Description						
7:0	curr2_current	00 _h	R/W	00 _h 01 _h FF _h	curr2_sw (page 51) = 0 Power Down 0.625mA 160mA	curr2_sw = 1 Open 77Ω 0.3Ω				

Data Sheet Current Sinks

Addı	r: 38		URR3 Value Register ets the current / resistance of current source CURR3.					
Bit	Bit Name	Default	efault Access Bit Description					
7:0	curr3_current	00 _h	R/W	00 _h 01 _h FF _h	curr3_sw (page 51) = 0 Power Down 0.625mA 160mA	curr3_sw = 1 Open 77Ω 0.3Ω		

Addı	r. 20	CURR4 Value Register							
Auui	1. 33	Sets the curre	Sets the current / resistance of current source CURR4.						
Bit	Bit Name	Default	Access	Bit Description	scription				
7:0	curr4_current	00 _h	R/W	00 _h 01 _h FF _h	curr4_sw (page 51) = 0 Power Down 0.625mA 160mA	curr4_sw = 1 Open 77Ω 0.3Ω			

Addı	·· 40	CURR Cont	rol Register			
Auui	. 40	Selects software/ hardware control of current sources.				
Bit	Bit Name	Default	Access	Bit Description		
				00 = Pin CURR2 is turned off.		
1:0	curr1_ctrl	00b	R/W	01 = Pin CURR2 is active.		
				$1x = GPIO$ control; pin is active when curr1_gpio (page 52) =1.		
				00 = Pin CURR2 is turned off.		
3:2	curr2_ctrl	00b	R/W	01 = Pin CURR2 is active.		
				$1x = GPIO$ control; pin is active when curr2_gpio (page 52) =1.		
				00 = Pin CURR4 is turned off.		
5:4	curr3_ctrl	00b	R/W	01 = Pin CURR4 is active.		
				$1x = GPIO$ control; pin is active when curr3_gpio (page 52) = 1.		
				00 = Pin CURR4 is turned off.		
7:6	curr4_ctrl	00b	R/W	01 = Pin CURR4 is active.		
				$1x = GPIO$ control; pin is active when curr4_gpio (page 52) = 1.		

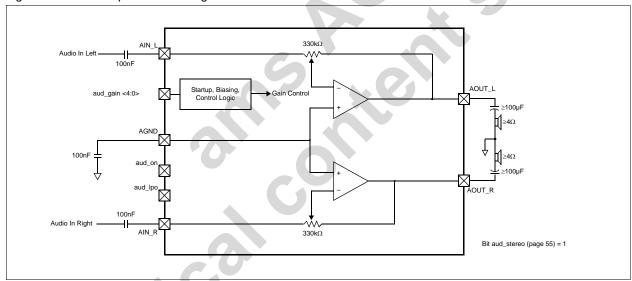
۸۵۵	r. 11	CURR Mode	Register	
Addr: 41 Selects operation mode f			ation mode for	current sources.
Bit	Bit Name	Default	Access	Bit Description
				0 = Pin CURR1 is operating as current sink.
0	curr1_sw		R/W	1 = Pin CURR1 is operating as resistive load current. Resistance is defined by bits curr1_current (page 50).
				0 = Pin CURR2 is operating as current sink.
1	curr2_sw		R/W	1 = Pin CURR2 is operating as resistive load current. Resistance is defined by bits curr2_current (page 50).
				0 = Pin CURR3 is operating as current sink.
2	curr3_sw		R/W	1 = Pin CURR3 is operating as resistive load current. Resistance is defined by bits curr3_current (page 51).
				0 = Pin CURR4 is operating as current sink.
3	curr4_sw		R/W	1 = Pin CURR4 is operating as resistive load. Resistance is defined by bits curr4_current (page 51).
7:4				N/A

Data Sheet Current Sinks

Add	r. 42	CURR GPIO	Map Registe	r			
Add	1: 42	Selects GPIO pin to control current sources.					
Bit	Bit Name	Default	Access	Bit Description			
1:0	curr1_gpio	Boot ROM	R/W	If bits curr1_ctrl (page 51) = 1x, the following pin is assigned for turning the CURR1 pin on and off. 00 = GPIO1 01 = GPIO2 10 = GPIO3			
3:2	curr2_gpio	Boot ROM	R/W	If bits curr2_ctrl (page 51) = 1x, the following pin is assigned for turning the CURR2 pin on and off. 00 = GPIO1 01 = GPIO2 10 = GPIO3			
5:4	curr3_gpio	Boot ROM	R/W	If bits curr3_ctrl (page 51) = 1x, the following pin is assigned for turning the CURR3 pin on and off. 00 = GPIO1 01 = GPIO2 10 = GPIO3			
7:6	curr4_gpio	Boot ROM	R/W	If bits curr4_ctrl (page 51) = 1x, the following pin is assigned for turning the CURR4 pin on and off. 00 = GPIO1 01 = GPIO2 10 = GPIO3			

Data Sheet Audio Amplifier

6.8 Audio Amplifier


The integrated Audio Amplifier provides real CD-quality audio and can be used as a headphone amplifier for portable devices. It is designed to meet the operational and power requirements of portable devices by delivering:

- 1WRMs continuous power into 8Ω differential at 5V supply
- 2 x 50mWRMs into 32Ω single-ended at 5V supply

The Audio Amplifier provides the following operational features:

- Total harmonic distortion is less than 0.1% at 1kHz and the quiescent current does not exceed 8mA.
- Power supply rejection is always better than 50dB and allows direct connection to noisy batteries, e.g. in TDMA systems.
- The internal programmable gain can be used for volume and balance control.
- Only a few external components are required for AC-coupling and reference bypass.
- An internal smooth-rampup circuit ensures pop- and click-less startup without expensive and bulky external relays.
- Device stability even with high capacitive loads of 1nF and does not require external snubber networks.
- Inputs are high-impedance in power-down.

Figure 25. Audio Amplifier Block Diagram - Stereo Mode

Note: The value of the audio output decoupling capacitors depends on the speaker impedance and the desired minimum output frequency:

$$C = 1/(2xPxfxR) (EQ 9)$$

Where:

f = minimum output cutoff frequency, -3dB point.

 $R = \text{speaker impedance in } \Omega$.

C = decoupling capacitance in F.

Data Sheet Audio Amplifier

Figure 26. Audio Amplifier Block Diagram – Differential Mode

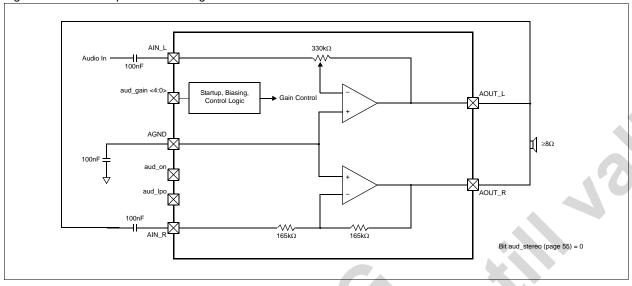


Table 23. Audio Amplifier Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VDDH	Supply Voltage Range (VBAT_3)	3		5.5	٧	
PSRR	Power Supply Rejection Ratio,		70		dB	f = 1kHz
1 OKK	Differential		50		ub	f = 20kHz
PSRR	Power Supply Rejection Ratio,		50		dB	f = 1kHz
FORK	Single-Ended		40		ub	f = 20kHz
loff	Shut Down Current			100	nA	
	Supply Current			9		<pre>aud_lpo (page 55) = 0 and aud_ib_red (page 55) = 00</pre>
IVDDH	(Differential Mode)			4	mA	aud_lpo = 1 and aud_ib_red = 00
			V	2.7		aud_lpo = 1 and aud_ib_red = 11
				8		aud_lpo = 0 and aud_ib_red = 00
IVDDH	Supply Current (Stereo Mode)			3	mΑ	aud_lpo = 1 and aud_ib_red = 00
				1.7		aud_lpo = 1 and aud_ib_red = 11
RLOAD	Output Load	8			Ω	Differential mode
RLOAD	Output Load	4			5.2	Stereo mode
				0.1	%	Pout = 1W, Rload = 8Ω , f = 1kHz Differential
				0.5	%	Pout = 1W, RLOAD = 8Ω , f = 20kHz Differential
THD+N	Total Harmonic Distortion			0.05	%	Pout = 50mW, Rload =32 Ω , f = 1kHz Single-Ended
<i>></i> (0.2	%	Pout = 50mW, Rload =32 Ω , f = 20kHz Single-Ended
SNR	Signal to Noise Ratio	84	91		dB	VBAT=3.7V, not tested, guaranteed per design
A0	Gain	-22	0	20	dB	Programmable gain: AOUT/AIN
ΔΑχ	Programmable Gain Step-Size		3		dB	
IOV_ON	Overcurrent On_limit	591	650	744	mA	Current rising into PMOS driver; when aud_lpo = 0 and aud_ib_red = 00, and aud_overcur = 1.

Data Sheet Audio Amplifier

Table 23. Audio Amplifier Characteristics (Continued)

Symbol	Parameter	Min	Тур	Max	Unit	Notes
lov_off	Overcurrent Off_limit	397	550	650	mΑ	Current decreasing in PMOS driver; when aud_lpo = 0 and aud_ib_red = 00, and aud_overcur (page 55) is cleared.
lov_hyst	Overcurrent Hysteresis		100		mA	

6.8.1 Audio Amplifier Registers

Add	r. 12	Audio Control Register								
Add	1. 43	Configures th	ne Audio Ampli	fier.						
Bit	Bit Name	Default	Access	Bit Description						
0	aud_on	0	R/W	Activates the Audio Amplifier. 0 = Audio amplifier off; inputs AIN_L and AIN_R are high-impedance. 1 = Audio amplifier on.						
1	aud_lpo	0	R/W	Select Low-Power Operation; reduced output power. $0 = \text{Use for speakers} < 32\Omega \text{ (nominal impedance) in stereo mode; } < 64\Omega \text{ differential.}$ $1 = \text{Use for speakers} \geq 32\Omega \text{ (nominal impedance) in stereo mode; } \geq 64\Omega \text{ differential.}$						
3:2	aud_ib_red	00b	R/W	Reduced bias current into Audio Amplifier circuit. $00 = \text{Use for speakers} < 8\Omega \text{ (nominal impedance) in stereo mode;} < 16\Omega \text{ differential.}$ $01 = \text{N/A}$ $10 = \text{N/A}$ $11 = \text{Use for speakers} \geq 8\Omega \text{ (nominal impedance) in stereo mode;} \geq 16\Omega \text{ differential.}$						
7:4	aud_gain	0000b	R/W	Audio Amplifier gain adjust. 0000 = Output off						

۸۵۵	r. 6E	Audio Control 2 Register							
Addr: 65 Configures the			he Audio Amp	ne Audio Amplifier.					
Bit	Bit Name	Default	Access	Bit Description					
0	aud_stereo	1	R/W	Selects audio mode. 0 = Differential mono mode (connect pin AIN_R to pin AOUT_L) 1 = Stereo mode.					
1	aud_overcur	00	R	0 = Normal operation; audio output current below limit of IOV_ON (page 54). 1 = Audio output current exceeds limit (IOV_ON).					
3:2	aud_pulldwn	00b	R/W	Audio amplifier output pulldown control; active if aud_on (page 55)=0. 00 = 30µA 01 = 0.6mA 10 = 1.2mA 11 = 2.5mA					
7:4				N/A					

Data Sheet Reset

7 System Supervisory Functions

7.1 Reset

RESET is an active low bi-directional pin; an external pullup to LDO VANA_1 has to be added (see Digital Input/Output DC/AC Characteristics on page 64). During each reset cycle the following states are controlled by the AS3604:

- Pin RESET is Forced to GND
- Programmable Power-off Function
- Programmable Power-on Sequence and Regulator Voltages
- Programmable Reset Timer
- All Register bits Set to Default Values after Power-On (except the Audio Control 2 Register (page 55), the Interrupt Status Register (page 49), and the Boot Sequence Detection Register (page 63).

Note: Programming is controlled by the internal mask-ROM and the external resistor RPROGRAM. The first address of each ROM-bank defines which of the regulators are turned off during reset.

7.1.1 Reset Conditions

Reset can be activated from 7 different sources:

- Power On (Battery or Charger Insertion)
- Low Battery
- Power Off Mode
- Software Forced Reset
- Externally Triggered through the RESET Pin
- Overtemperature
- Watchdog
- Momentary Power Loss Detection

Power On (Battery or Charger Insertion)

There are two types of voltage dependent resets:

- VPOR Monitors the voltage on pin V2_5. LDO V2_5 uses the voltage VCHARGER or VBAT as its source.
- VRESET Monitors the voltage on VBAT pins. Pin RESET is only released if V2_5 > VPOR and VBAT > VRESETRISE.

Low Battery

A reset is automatically generated if VBAT drops below VRESETFALLING for a minimum period (VRESETMASk). Table 24. Reset Levels

Symbol	Parameter	Min	Тур	Max	Unit	Notes
Vpor	Overall power on reset	1.5	2.0	2.3	V	Monitor voltage on pin V2_5; power on reset for all internal functions. Note: Pin RESET stays low until V2_5 > VPOR
VRESETRISE	Reset level for VBAT rising		3.1		V	Monitor voltage on pin VBAT; rising level.
VRESETFALLING	Reset level for VBAT falling 1		2.8		V	Monitor voltage on pin VBAT; falling level.
VRESETMASK	Mask time for VRESETFALLING		40		μs	Duration for VBAT < VRESETFALLING until a reset cycle is started. ²
Tpowerloss	Interval for recovery of power loss on VBAT	100	250	500	ms	If the duration of a power loss on VBAT is below this duration, the system will restart

^{1.} VRESETFALLING is only accepted if the reset condition is longer than VRESETMASK. This guard time is used to avoid a complete reset of the system in case of short drops of VBAT.

Momentary Power Loss Detection

If the battery voltage (VBAT) drops below VRESETFALLING and rises above VRESETRISE within TPOWERLOSS, the AS3604 automatically restarts and sets bit tmp_pwr_loss (page 57) to 1. This can be used to detect short VBAT interruptions, e.g., due to a dropped mobile phone call.

^{2.} VRESET signal is debounced with the specified mask time for rising- and falling-slope of VBAT. The default time is 40µs and it can be programmed from 0µs to 200µs with the register reset-mask timer.

Data Sheet Reset

Power Off

Setting bit **power_off** (page 57) = 1 puts the AS3604 into ultra low-power mode. To start a complete reset cycle, the AS3604 waits until the external pin ON is pulled high, the Battery Charger is inserted, or level VPOR is reached. Bit **power_off** is automatically cleared by this reset cycle. During power off state, all circuits are turned off except LDO $V2_5$, thus the current consumption of the AS3604 is reduced to less than 10μ A. The digital part is supplied by LDO $V2_5$, all other circuits are turned off in this mode, including internal references and oscillator.

Note: All registers except the Reset Control Register (page 57) are set to their default value after power-on.

Software Forced Reset

Setting bit force_reset (page 57) = 1 immediately initiates a reset cycle, and is automatically cleared during a reset.

External Triggered Reset

If the pin RESET is pulled from high to low by an external source (microprocessor or button) a reset cycle is initiated.

Overtemperature Reset

The reset cycle can be started by overtemperature conditions (page 59).

Watchdog Reset

If the Watchdog is armed (bit wtdg_on (page 60) = 1 and bit wtdg_res_on (page 60) = 1) and the timer expires, a reset is initiated. Refer to page 60 for information about the Watchdog block.

7.1.2 Reset Registers

Addr: 58		Reset Control Register							
Addi	. 30	Controls re	eset and pow	ver off.					
Bit	Bit Name	Default	Access	Bit Description					
0	force_reset	0b	R/W	0 = Normal operation.					
				1 = Initiates a complete reset cycle.					
				0 = Normal operation.					
1	power_off	0b	R/W	1 = Initiates power-off mode where all LDOs are turned off except LDO V2_5. The AS3604 waits for a rising edge on pin ON or until the battery charger is detected.					
				Static indication of ON input pin.					
2	on_input	N/A	R	0 = ON input pin is low.					
				1 = ON input pin is high (external ON key depressed).					
5:3	reset_reason	N/A	R	Indicates to the software the reason for the most recent reset. 000 = VPOR (page 56) was reached (initial battery or charger insertion). 001 = VRESETFALLING (page 56) was reached (VBAT < 2.75V). 010 = Software forced by bit force_reset. 011 = Software forced by bit power_off and ON was pulled high. 100 = Software forced by bit power_off and a Battery Charger detected. 101 = Externally triggered through pin RESET. 110 = Reset caused by overtemperature T140. 111 = Reset caused by Watchdog.					
6	tmp_ pwr_loss	0b	R	0 = Normal startup. 1 = A momentary power loss condition was detected.					
7				N/A					

Add	r: 10	Reset Time							
Auu	1. 19	Sets the RE	SET timer va	ue.					
Bit	Bit Name	Default	Default Access Bit Description						
				Set RESTIME					
				000 RESTIME = 10ms	100 RESтіме = 50ms				
2:0	res_timer	Boot ROM	R/W	001 RESTIME = 20ms	101 RESтіме = 60ms				
				010 RESTIME = 30ms	110 RESтіме = 70ms				
				011 RESTIME = 40ms	111 RESTIME = 80ms				
				Set MASKTIME					
	•			$000 = MASKTIME = 0\mu s$	100 MASKTIME = 80μs				
5:3	reset_mask_timer	11b	R/W	001 MASKTIME = 5µs	101 MASKTIME = 120µs				
				010 MASKTIME = 10µs	110 MASKTIME = 160µs				
				011 MASKτιΜΕ = 40μs	111 MASKTIME = 200µs				
7:5				N/A					

Data Sheet Startup

7.1.3 Reset Cycle

During a reset cycle, pin RESET is forced low for at least the time specified by bits res_timer (page 57) and then all register bits are set to their default values except bit ov_temp_140 (page 59) and the Boot Sequence Detection Register (page 63).

During the reset time, a normal startup is initiated (refer to Startup on page 58) and the reset is active until the reset timer (set by bits res_timer) expires. The voltage on pin RESET is then pulled high by the external resistor and the whole system is leaving the reset state.

7.1.4 res con: Reset Control

Reset is internally generated from a power on detection circuit (page 56) and provided to the internal logic as well as externally through the open-drain pin RESET. This pin can also be forced externally by pulling it low. Additionally Reset can be forced by software by setting bit force_reset (page 57) = 1.

7.2 Startup

7.2.1 Normal Startup

During a normal reset cycle (page 56), after V_{2_5} is above VPOR and VBAT is above VRESETRISE, a normal startup is initiated as follows:

- 1. The external capacitor on pin CREF is charged to 1.8V.
- 2. A 3-bit A/D conversion of resistor RPROGRAM value is performed, selecting 1 of 8 boot configurations see bit rom_adr (page 63).
- The DC/DC converters and LDOs are sequentially powered up according to the selected Boot ROM configuration (address 01_h - 31_h – see Table 35 on page 68).
- 4. Depending on the Boot ROM setting (address 0 Bit 7, Auto-Shutdown):
 - a. The AS3604 enters shutdown mode if no momentary power loss is detected (only valid through initial startup, not during a reset cycle).
 -or-
 - b. The Reset-Timer is set by the Boot ROM and the reset is released when the Reset-Timer expires (pin RESET is pulled high).

7.2.2 Programmable Startup Sequences

For more details on the available power-on sequences stored in the Boot-ROM, please refer to document AS3604_BootSeq.PDF, available from *austriamicrosystems*, AG upon request.

7.2.3 Startup from Battery Charger

If the voltage on pin VCHARGER is within VSTARTCHARGER, the Battery Charger is started in all cases, even with VBAT = 0V. This allows the battery to be charged (even from deep discharge) and a normal startup to proceed.

Table 25. Battery Charger Startup Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VSTARTCHARGER	Voltage on pin VCHARGER for the AS3604 to start	4.35	5.0	15	V	On pin VCHARGER.

Data Sheet Protection Functions

7.3 Protection Functions

The Step Up DC/DC Converter, the Step Down DC/DC Converter, and all LDOs have integrated overcurrent protection. Overtemperature protection of the AS3604 is also built-in and can be activated with the serial interface bit **temp_pmc_on (page 59)**.

The AS3604 has two temperature indicators:

- ov_temp_110 (page 59) Automatically reset if the overtemperature condition is removed.
- ov_temp_140 (page 59) Must be reset via the serial interface with bit rst_ov_temp_140 (page 59). If ov_temp_140 is set, an automatic reset of the complete AS3604 is initiated. Bit ov_temp_140 is not cleared by this reset cycle to indicate the reason for this (unexpected) shutdown. It must be cleared intentionally by bit rst_ov_temp_140. The cause of this reset is stored in the Reset Control Register (page 57). This allows a detection of the reset cause, after the device has restarted.

7.3.1 TMP SV: Temperature Supervision

The AS3604 includes an integrated temperature sensor, implemented to provide overtemperature protection of the device. It generates flags linked to the two temperature thresholds:

- T110 110° threshold. Sets ov_temp_110 (page 59), signalling the 110° overtemperature condition. Thus software can react and shut down power-consuming functions in order to decrease the device's temperature.
- **T140** 140° threshold. Reaching this temperature level generates a Reset, when **temp_pmc_on (page 59)** is enabled. This sets all regulators into power-down mode and stops battery charging.

7.3.2 Overtemperature Detection

Table 26. Overtemperature Detection Parameters

Symbol	Parameter	Min	Тур	Max	Unit
T110	ov_temp_110 Rising Threshold	95	110	125	°C
1110	ov_terrip_110 Rising Threshold	203	230	257	٥F
T140	ov tomo 140 Piging Throshold	125	140	155	°C
1140	ov_temp_140 Rising Threshold	257	284	311	٥F
Thyst	ov_temp_110 and ov_temp_140 Hysteresis		5		°C

7.3.3 Overtemperature Detection Register

٨٨٨	r. 50	Overtemperature Control Register							
Addr: 59		Device temperature supervision.							
Bit	Bit Name	Default	Access	Bit Description					
0	temp_pmc_on	0	R/W	Activates/deactivates temperature supervision. Default: Off - all other bits are only valid if set to 1. 0 = Temperature supervision is disabled. No reset will be generated when the device temperature exceeds 140°C. 1 = Temperature supervision is enabled.					
1	ov_temp_110	N/A	R	1 = Warning flag indicating that the device temperature has exceeded 110°C.					
2	ov_temp_140	N/A	R	1 = Indicates that the device overtemperature has exceeded 140°C. This bit is not cleared by the automatic reset caused by this flag. It must be cleared using bit rst_ov_temp_140.					
3	rst_ov_temp_140	0	W	Used to clear bit ov_temp_140 ; first set this bit = 1 and then set it =0.					
5:4	temp_test	00	R/W	Only used for production; must always be set to 00.					
6	tco_110_a	N/A	R	Only used for production – direct output of T110 comparator.					
7	tco_140_a	N/A	R	Only used for production – direct output of T140 comparator.					

Data Sheet Watchdog Block

7.4 Watchdog Block

The AS3604 includes a Watchdog block to detect a deadlock of the connected controller.

If the Watchdog block is active (wtdg_on (page 60) = 1), it must get a continuous trigger signal within a programmable timer window. If there is no signal for a certain time period from a defined GPIO pin or bit wtdg_sw_sig (page 61), the Watchdog block starts either a complete reset – bit wtdg_res_on (page 60) must be set to 1 – or sets interrupt flag wdog_i (page 49).

The Watchdog timer window is defined by bits:

- wtdg_min_timer (page 61)
- wtdg_max_timer (page 61)

The trigger signal can be configured using bits:

- wtdg_trigger (page 60)
- wtdg_sw_sig (page 61) Watchdog is reset by software
- wtdg_gpio_input (page 60) Watchdog is reset by hardware (GPIO)

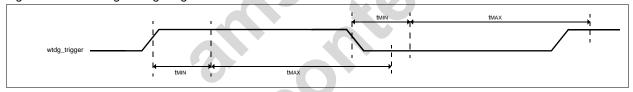
Any of the general purpose input/outputs can be configured as inputs using bit wtdg_gpio_input (page 60), and outputs using bits gpio1_out_src (page 46), gpio2_out_src (page 46), or gpio3_out_src (page 47) = 11, for the Watchdog. While the GPIO input must be continuously re-triggered in order to avoid a Watchdog interrupt, the GPIO output will generate in interrupt when the Watchdog runs over – wdog_int_en (page 49).

7.4.1 Watchdog Registers

The Watchdog is controlled by the registers listed in Table 27.

Table 27. Low Dropout Regulators Register Summary

Name	Addr	B7	B6	B5	B4	B3	B2	B1	B0	Page
Watchdog Control Register	46		N/A	1	wtdg_ trigger	wtdg_gp	oio_input	wtdg_ res_on	wtdg_on	60
Watchdog_min Timer Register	47		*		wtdg_m	nin_timer				61
Watchdog_max Timer Register	48				wtdg_m	nax_timer				61
Watchdog Software Signal Register	49				N/A				wtdg_ sw_sig	61


۸۵۵	n 16	Watchdog C	ontrol Regis	ster
Addr: 46 Controls the Wat		Watchdog bl	ock.	
Bit	Bit Name	Default	Access	Bit Description
0	wtdg_on	0	R/W	0 = Disables the Watchdog block. 1 = Enables the Watchdog block.
1	wtdg_res_on	1	R/W	If the Watchdog expires and this bit = 1, a reset cycle will be started. Refer to page 56 for information about reset cycles. 0 = A watchdog overflow does not generate a reset. 1 = A watchdog overflow generates a reset.
3:2	wtdg_gpio_input	00	R/W	Specifies the input pin of the Watchdog if bit wtdg_trigger = 1. 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Do not use this setting.
4	wtdg_trigger	0	R/W	Select type of trigger (software or hardware). 0 = Use bit wtdg_sw_sig (page 61) as trigger signal for the Watchdog. 1 = Use the pin defined by bit wtdg_gpio_input as trigger signal for the Watchdog.
7:5				N/A

Addr: 47		Watchdog_min Timer Register						
		Sets the minimum Watchdog trigger time.						
Bit	Bit Name	Default	Default Access Bit Description					
7:0	wtdg_min_timer	00 _h	R/W	$00_h = 0s$ $01_h = 7.5ms$ $FF_h = 1.9s$.				

Addr: 48		Watchdog_max Timer Register						
		Sets the max						
Bit	Bit Name	Default	Access	Bit Description				
				$01_h = 7.5 ms$				
7:0	wtdg_max_timer	FF _h	R/W	FF _h = 1.9s. Caution: Do not set these bits = 00_h .	19			

Addr: 49		Watchdog Software Signal Register						
Auui	. 43	Resets the V	Vatchdog block	k by software.				
Bit	Bit Name	Default	Default Access Bit Description					
0	wtdg_sw_sig	0	R/W	Trigger input by the serial interface if wtdg_trigger (page 60) = 0. 0 = Force watchdog trigger = low (see Figure 27). 1 = Force watchdog trigger = high (see Figure 27).				
7:1				N/A				

Figure 27. Watchdog Timing Diagram

7.5 Internal Reference Circuits

The internal reference circuits (V, I, fclk) require the external components listed in Table 28.

Table 28. Reference External Components

Symbol	Parameter	Min	Тур	Max	Unit	Notes
Сехт	External filter capacitor	-20%	100	+20%	nF	Ceramic low-ESR capacitor between pins CREF and VSS
REXT	External resistor	-1%	220	+1%	kΩ	Between pins RBIAS and VSS

Table 29. References Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Notes
VCEXT	Reference voltage	-1%	1.8	+1%	V	Low noise trimmed voltage reference - connected to pin CREF; do not load.
fclk	Internal reference clock	1.0	1.1	1.2	MHz	Trimmed clock reference

To reduce the current consumption of the AS3604, internal references circuit scan be set into a special low-power mode with bit low_power_on (page 62).

7.5.1 Internal Reference Registers

Addı	45	References Control Register					
Addi	. 45	Configures low-power mode.					
Bit	Bit Name	Default	Access	Bit Description			
				0 = Standard mode or controlled by GPIO, if			
0	low_power_on	0	R/W	low_power_gpio_on = 1.			
	iow_powor_on	ŭ	10,00	1 = Low-power mode; all parameters except noise (see LDO parameters, section 6.3) are still valid.			
				If set and low_power_on = 0 then the low-power mode is controlled by a GPIO pin.			
1	1 low_power_gpio_on	0	R/W	0 = Low-power mode disabled for GPIO control.			
				1 = Low-power mode is activated by GPIO pin (low_power_gpio). low_power_on must be enabled.			
				Specifies the pin to be used as GPIO control.			
				00 = GPIO1			
3:2	low_power_gpio	00	R/W	01 = GPIO2			
				10 = GPIO3			
				11 = GPIO3			
				0 = Low-power mode is activated. If the selected GPIO input,			
4	low_power_gpio_pol	0	R/W	bit low_power_gpio = 1.			
				1 = Low-power mode is activated. If the selected GPIO input, bit low_power_gpio = 0.			
7:5				N/A			

Data Sheet Low Power Mode

7.6 Low Power Mode

Bit low_power_on (page 62) controls low-power mode. In low-power mode the integrated voltage reference and the temperature supervision comparators operate in pulsed mode. This reduces the quiescent current of the AS3604 by 45µA (typical). Because of the pulsed function, the LDO output noise parameters do not meet the specification in low-power mode but the full functionality is still available.

Note: Low-power mode can be activated by hardware using one of the GPIO pins, or by software by setting bit low_power_on (page 62) = 1.

7.7 Boot Sequence Detection

The AS3604 startup and reset sequences are highly configurable. The configuration of these sequences is defined by the ratio of the external bias resistors RBIAS and RPROGRAM.

At the beginning of each reset cycle a 3-bit A/D conversion is performed. The result of this conversion is used to select 1 of 8 possible address-ranges of an internal mask-programmable ROM. The information stored in this ROM defines the following parameters:

- The voltage regulators will be turned off at the beginning of the reset cycle.
- The power-on sequence and voltage levels of up to 7 LDOs and the Step-Down DCDC-converter.
- The duration of the reset cycle (4 possible timer values).

For the specified value of Rext = $220k\Omega$, values of RPROGRAM listed in Table 30 select the 8 possible address ranges.

Table 30. RPROGRAM Values

Selected Bank	RPROGRAM (Ideal)	Closest E24 Resistor Value (tol. = ± 5%)
Bank 0	Open	Open
Bank 1	320kΩ	330kΩ
Bank 2	160kΩ	160kΩ
Bank 3	80kΩ	82kΩ
Bank 4	40kΩ	39kΩ
Bank 5	20kΩ	20kΩ
Bank 6	10kΩ	10kΩ
Bank 7	5kΩ	5.1kΩ

7.7.1 ON Detection Register

Addr	·· 60	Boot Sequence Detection Register					
Auui	. 00	Displays the	detected Boo	t ROM sequence.			
Bit	Bit Name	Default	Access	Bit Description			
2:0	rom_adr	000b	R	Selected boot ROM bank (as set by RPROGRAM). Registers 01 through 31 (see Table 35 on page 68) are configured according to the selected bank.			
3	rom_valid	0	R	0 = Not ready. 1 = Boot ROM bank (rom_adr) is valid.			
7:4				N/A			

7.8 Serial Interface

The AS3604 provides for the automatic selection of serial interface modes SPI and I²C. In I²C mode two of four signals can be defined to support this mode switching.

7.8.1 Digital Input/Output DC/AC Characteristics

The output voltage LDO VANA_1 is used as supply voltage of the pins.

Bit Ido_ana1_on (page 37) should never be set to 0, as register access over the serial interface is not possible in this case. It is only set to 0 automatically:

- In power-off state (where it is set to 0 automatically)
- During the startup sequence (Boot ROM Addresses 9:13)
- At reset-state (Boot ROM Address 0)

Table 31. DC Characteristics Input Pin SCLK/SDI

Parameter	Symbol	Min	Max	Unit	Notes
High-Level Input Voltage	ViH	0.7 x VANA_1		V	
Low-Level Input Voltage	VIL		0.3 x VANA_1	V	
Hysteresis	VHYS	0.2 x VANA_1		V	
Input Leakage Current	ILEAK	-5	5	μΑ	to VANA_1 and GND_PAD

Table 32. DC Characteristics Input/Output Pin SCSB/SDO

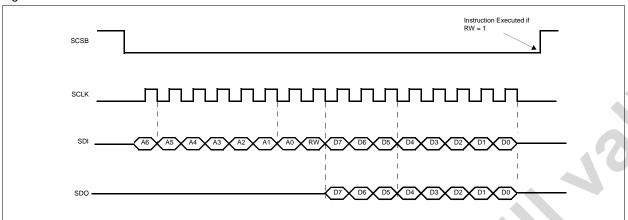

Parameter	Symbol	Min	Max	Unit	Notes
High-Level Input Voltage	ViH	0.7 x VANA_1		٧	
Low-Level Input Voltage	VIL		0.3 x VANA_1	V	
Hysteresis	VHYS	0.2 x VANA_1		V	
Input Leakage Current	ILEAK	-5	5	μA	to VANA_1 and GND_PAD
High-Level Output Voltage	Voн	0.8 x VANA_1		V	at -2.0mA
Low-Level Output Voltage	Vol		0.2 x VANA_1	V	at 2.0mA
Capacitive Load	CLOAD		50	pF	

Table 33. DC Characteristics Input/Output Open Drain Pin RESET

Parameter	Symbol	Min	Max	Unit	Notes
High-Level Input Voltage	ViH	0.7 x VANA_1		V	
Low-Level Input Voltage	VIL		0.3 x VANA_1	V	
Hysteresis	VHYS	0.2 x VANA_1		V	
Input Leakage Current	ILEAK	-5	5	μΑ	to VANA_1 and GND_PAD
Low-Level Output Voltage	Vol		0.2 x VANA_1	V	at 2mA
Capacitive Load	CLOAD		50	pF	
External Pullup Resistor	RPULLUP		100k	Ω	Connect to VANA_1

7.8.2 SPI Compatible Serial Interface

Figure 28. SPI Waveform

For a read access bit RW (signal SDI) = 1, for a write access bit RW (signal SDI) = 0.

Data is captured at the rising edge of SCLK and written to SDO at the falling edge of SCLK. If the cycle is not completed after the last bit of the addressed cell, the access is continued with next address (address + 1) to allow block transfers. The maximum clock rate is 10MHz.

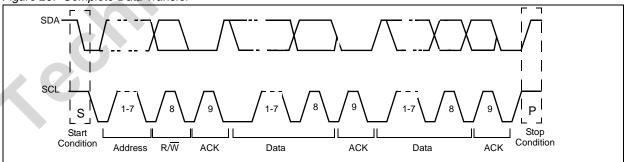
7.8.3 I2C Compatible Serial Interface

I²C Configuration

The AS3604 can be configured as an I²C-slave. The AS3604 is able to detect automatically that I²C-mode is used when pin SCSB is connected to SDO.

The following pins are used for the I2C interface:

- SDI/SDA = I/O Pin
- SCLK /SCK = Input Pin


½C Features

- Fast-mode capability (max. SCL-frequency is 400 kHz @ 100pF capacitive load)
- 7-bit addressing mode
- Write formats:Single-Byte-Write, Page-Write
- Read formats:Current-Address-Read, Random-Read, Sequential-Read
- SDA input delay and SCL spike filtering by integrated RC-components

I²C Slave Addresses

The AS3604 device address is fixed at 82_h for write commands and 83_h for read commands.

Figure 29. Complete Data Transfer

½C Data Transfer Formats

Definitions used in the serial data transfer format diagrams (Figures 30 - 34) are listed in Table 34.

Table 34. I²C Data Transfer Byte Definitions

Symbol	Definition	R/W (AS3604 Slave)	Notes
S	Start condition after stop	R	1 bit
Sr	Repeated start	R	1 bit
DW	Device address for write	R	1000 0010 (82 _h)
DR	Device address for read	R	1000 0011 (83 _h)
WA	Word address	R	8 bit
А	Acknowledge	W	1 bit
N	No acknowledge	R	1 bit
reg_data	Register data/write	R	8 bit
data (n)	Register data/read	R	1 bit
Р	Stop condition	R	8 bit
WA++	Increment word address internally	R	During acknowledge

Figure 30. I2C Byte Write

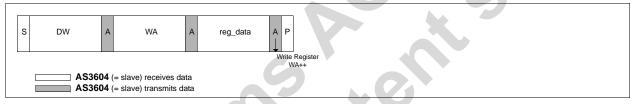
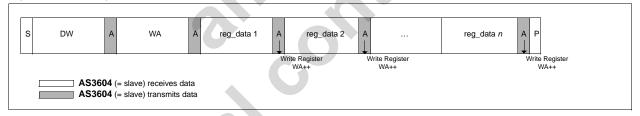
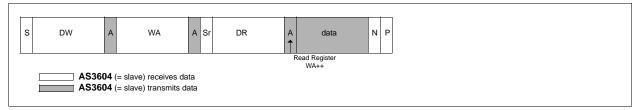



Figure 31. 12C Page Write

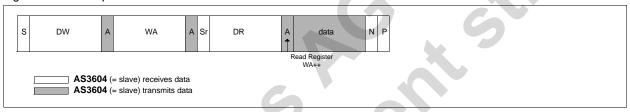

Byte Write and Page Write formats are used to write data to the slave.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

The following diagrams show some of the serial read formats supported by the AS3604.

Figure 32. I2C Random Read



Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

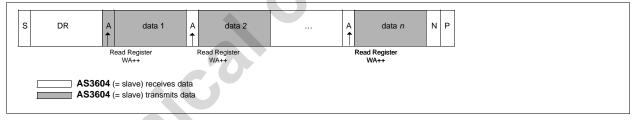

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 33. I2C Sequential Read

Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

Figure 34. I2C Current Address Read

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition.

8 Register Map

The AS3604 registers along with their addresses and default values are listed in Table 35. Fields marked N/A are not used; reading these bits may result in 0s or 1s. Always use 0s, when writing to these bits.

Caution: Do not write to addresses not listed in Table 35.

Table 35. Register Summary

Register	Addr	Default	B7	В6	B5	B4	В3	B2	B1	В0		
Step Down Voltage/ Test Modes	01	ROM	buck_tm			buck_v						
LDO_RF1 Voltage	02	ROM		N/A			ldo_rf1_v					
LDO_RF2 Voltage	03	ROM		N/A		ldo_rf2_v						
LDO_RF3 Voltage	04	ROM		N/A			ldo_rf3_v					
LDO_RF4 Voltage	05	ROM		N/A				ldo_rf4_v				
LDO_ANA Voltage	06	ROM		ldo_ana1_v				ldo_ana2_v				
LDO_DIG1 Voltage	07	ROM	N/A	dcdc_fb_sel			ldo_c	lig1_v				
LDO_DIG2 Voltage	08	ROM	N/A	ldo_sim_v			ldo_c	lig2_v				
Reg Power Ctrl (6ms after start)	09	ROM	N	/A	buck_on	ldo_sim_on	ldo_dig2_on	ldo_dig1_on	ldo_ana2_on	ldo_ana1_on		
LDO_RF Switch 6ms (after start) 1	10	ROM	ldo_rf4_on	ldo_rf3_on	ldo_rf2_on	ldo_rf1_on	rf4_sw	rf3_sw	ana2_sw	ana1_sw		
Reg Power Ctrl 6.128ms (after start) 1	11	ROM	N	/A	buck_on	ldo_sim_on	ldo_dig2_on	ldo_dig1_on	ldo_ana2_on	ldo_ana1_on		
LDO_RF Switch 6.128ms (after start) 1	12	ROM	ldo_rf4_on	ldo_rf3_on	ldo_rf2_on	ldo_rf1_on	rf4_sw	rf3_sw	ana2_sw	ana1_sw		
Reg Power Ctrl 6.256ms (after start) 1	13	ROM	N	/A	buck_on	ldo_sim_on	ldo_dig2_on	ldo_dig1_on	ldo_ana2_on	ldo_ana1_on		
LDO_RF Switch 6.256ms (after start) 1	14	ROM	ldo_rf4_on	ldo_rf3_on	ldo_rf2_on	ldo_rf1_on	rf4_sw	rf3_sw	ana2_sw	ana1_sw		
LDO_GPIO active	15	ROM	ldo_dig2_gpio	ldo_dig1_gpio	ldo_rf4_gpio	ldo_rf3_gpio	Ldo_rf2_gpio	ldo_rf1_gpio	ldo_ana2_gpi o	buck_gpio		
LDO_RF Switch	16	ROM	ldo_rf4_on	ldo_rf3_on	ldo_rf2_on	ldo_rf1_on	rf4_sw	rf3_sw	ana2_sw	ana1_sw		
LDO_AD GPIOx	17	ROM	ldo_dig2	ldo_dig2_gpio_sel		_gpio_sel	Ldo_ana2_gpio_sel		ldo_ana1	_gpio_sel		
LDO_RF GPIOx	18	ROM	ldo_rf4_	gpio_sel	ldo_rf3_	gpio_sel	ldo_rf2_gpio_sel		ldo_rf1_	gpio_sel		
Reset Timer	19	ROM	N	/A	r	eset_mask_tim	er		res_timer			
ChargerControl	20	ROM	ChOvEn	Boost	Bypass	Pulse	Li4v2	Fast	BatType	ChEn		
FuelGauge	21	ROM		N	/A		CalMod	CalReq	UpdReq	FGEn		
Charger Current and Voltage	22	ROM	ChOv	ChOvH	Bat_v	Co	onstantCurrent[2	[2:0] TrickleCu		ırrent[1:0]		
Step Down Config	23	ROM	buck _dis_curmin	buck _dis_pon	buck _lpo	buck _frequ	buck _4u7	buck _dis_n	buck _nsw_on	Buck _psw_on		
Charge Pump Control Onkey Pulldown	24	ROM	N	/A	onkey_pulld_ off	cp_freq	N/A	cp_vref	cp_pulseskip	cp_on		
Step Up DC/DC Control	25	ROM		N	/A		stpup_low_cu rr	stpup_freq	stpup_sw_on	stpup_on		
GPIO1 Control	26	ROM	gpio1_	out_src	gpio1_invert	gpio1	_pulls	gpio1_voltage	gpio1_	_mode		
GPIO2 Control	27	ROM	gpio2_out_src gr		gpio2_invert	gpio2_pulls		gpio2_voltage	gpio2_mode			
GPIO3 Control	28	ROM	gpio3_out_src gpio3_invert		gpio3_pulls gpio3_voltage		gpio3_mode					
Clock Generation	30	ROM				N/A				ext_clk		
Interrupt Enable	31	ROM	chgov_int_en	chgrmv_int_e n	resume_int_e n	chdet_int_en	onkey_int_en	ovtmp_int_en	eoc_int_en	wdog_int_en		
Interrupt Status	32	NA	chgov _i	chgrmv_i	resume_i	chdet_i	onkey_i	ovtmp_i	eoc_i	wdog_i		
GPIO Signal	33	NA	N/A gpio3 gpio2 gpio1					gpio1				
GPIO Frequency Control High Time	34	00h				gpio_	h_time		gpio_h_time			

Table 35. Register Summary

Register	Addr	Default	B7	В6	B5	B4	В3	B2	B1	В0
GPIO Frequency Control Low Time	35	00h		gpio_l_time						
CURR1 value	36	00h				curr1_	current			
CURR2 value	37	00h				curr2_	current			
CURR3 value	38	00h				curr3_	current			
CURR4 value	39	00h				curr4_	current			
CURR control	40	00h	curr	4_ctrl	curr	3_ctrl	curra	2_ctrl	curr	1_ctrl
CURR mode	41	00h		N	I/A		curr4_sw	curr3_sw	curr2_sw	curr1_sw
CURR GPIO map	42	00h	curr4	I_gpio	curr3	3_gpio	curr2	gpio	curr1	_gpio
Audio Control	43	00h		aud.	_gain		aud_i	ib_red	aud_lpo	aud_on
ChargerTiming	44	4Bh	TPOFF	MAX[1:0]		TPOFF[2:0]	•		TPON[2:0]	
References Control	45	00h		low power a			low_pov	wer_gpio	low_power_g pio_on	low_power_o
Watchdog Control	46	02h		N/A wtdg_trigger wtdg_gpio_				oio_input	wtdg_res_on	wtdg_on
Watchdog_min Timer	47	00h		wtdg_min_timer						1
Watchdog_max Timer	48	FFh	wtdg_max_timer							
Watchdog Software Signal	49	00h	N/A w					wtdg_sw_sig		
ChargerStatus	53	NA	Bypass	NoBat	EOC	CVM	Trickle	IntReg	ChAct	ChDet
DeltaChargeMSB	54	NA	sign	214	213	212	211	210	29	28
DeltaChargeLSB	55	NA	27	26	25	24	23	22	21	20
lapsedTimeMSB	56	NA	215	214	213	212	211	210	29	28
ElapsedTimeLSB	57	NA	27	26	25	24	23	22	21	20
Reset Control	58	0h	N/A	tmp_ pwr_loss		reset_reason		on_input	power_off	force_reset
Overtemperature Control	59	00h	10	N/A			rst_ov_temp_ 140	ov_temp_140	ov_temp_110	temp_pmc_o n
Boot_status	60	NA	N/A			rom_valid		rom_adr		
ASIC ID 1	61	33h	0 0 1		1	0	0	1	1	
ASIC ID 2	62	50h				R	ev			
Audio Control 2	65	0h	N/A				aud_p	oulldwn	aud_overcurr	aud_stereo
ChargerConfig	66	0h	N/A	AutoChgTerm	CVMTst	DisOWB	DisBDet	DisHyst	Wide	N/A
PreCurDAC	67	00h	27	26	25	24	23	22	21	20

Read-Only Bit	
Read/Write Bit	

^{1.} Reading registers 10 -14 will always return 00h. These registers are only used during startup sequencing of the respective LDOs. The final sequence in register 14 can be read in register 09 after the boot sequence is completed.

9 Pinout and Packaging

9.1 Pin Descriptions

Table 36. Pin Type Definitions

Pin Type	Description	
DI	Digital Input	
DO	Digital Output	
DIO	Digital Input/Output	
DIO_5	Digital Input/Output with Selectable Supply (V5_6 or VSS)	
OD	Open Drain - the device can only pulldown this pin	
AIO	Analog Pin	
Al	Analog Input	
AO	Analog Output	
S	Supply Pin	
GND	Ground Pin	

Table 37. Pinlist QFN48

Pin	Name	Туре	Description				
1	V5_6	AIO	Output voltage of the Charge Pump; if used, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
2	CAPP	AIO	Flying capacitor of the Charge Pump; if used, connect a ceramic capacitor of 330nF (±20%) to this pin.				
3	CAPN	AIO	Flying capacitor of the Charge Pump; if used connect a ceramic capacitor of 330nF (±20%) to this pin.				
4	VANA_1	АО	Output voltage of Analog LDO VANA_1; if the Charge Pump or this LDO is used, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
5	VBAT_1	S	Supply pin for Analog LDOs VANA_1 and VANA_2; can be connected to VBAT or separate supply (3.0-5.5V).				
6	VANA_2	AO	Output voltage of one of Analog LDO VANA_2; if used, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
7	VRF_2	AO	Output voltage of RF LDO VRF_2; can be used as high-side switch, if used as LDO, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
8	VBAT_4	S	Supply pad for RF-LDOs VRF_1 and VRF_2 and internal LDO; can be connected to VBAT or separate supply $(3.0-5.5V)$.				
9	VRF_1	AO	Output voltage of RF LDO VRF_1; can be used as high-side switch, if used as LD connect a ceramic capacitor of 1μ F ($\pm 20\%$) or 2.2μ F ($\pm 100\%$ /- 50%).				
10	RESET	DIO/OD	Bidirectional RESET pin; add an external pullup resistor to pin VANA_1.				
11	SDO	DO	SPI digital output in SPI mode; connect to pin SCSB in I2C mode.				
12	SDI/SDA	DI	SPI digital input in SPI mode; SDA input/output in I2C mode.				
13	SCLK/SCK	DI	SPI clock input in SPI mode; SCK input in I2C mode.				
14	SCSB	DI	SPI chip-select in SPI mode; connect to pin SDO in I2C mode.				
15	ISENSP	Al	Positive sensing input voltage for the external charging current shunt resistor.				
16	ISENSN	Al	Negative sensing input voltage for the external charging current shunt resistor.				
17	VRF_3	AO	Output voltage of RF LDO VRF_3; can be used as high-side switch, if used as LDO, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
18	VBAT_5	S	Supply pin for Charger, RF LDOs VRF_3 and VRF_4. Always connect to VBAT.				
19	VRF_4	AO	Output voltage of RF LDO VRF_4; can be used as high-side switch, if used as LDO, connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%).				
20	VCHARGER	Al	High voltage input coming from the Battery Charger; if the Battery Charger is used, connect a ceramic capacitor of 1µF.				

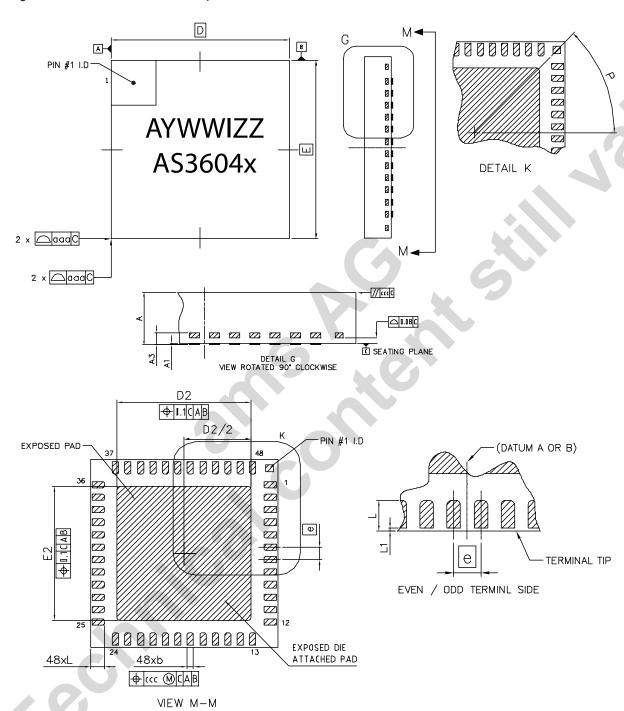

Data Sheet Pin Descriptions

Table 37. Pinlist QFN48 (Continued)

Pin	Name	Туре	Description				
21	VGATE	AO	Control pin for the external battery charger MOSFET transistor.				
22	V2_5	АО	Output voltage of low power LDO V2_5; always connect a ceramic capacitor of 1µF (±20%) or 2.2µF (+100%/-50%); do not load this pin during startup.				
23	RBIAS	AIO	External resistor; always connect a resistor of $220k\Omega$ (±1%) to ground. Caution: Do not load this pin.				
24	RPROGRAM	AIO	External resistor for selecting Boot ROM address; audio input in testmode.				
25	ON	DI	Input pin to startup the AS3604 (power on); internal pulldown. Supply pin for Zenerzap programming voltage (for internal use only).				
26	CREF	AIO	Bypass capacitor for the internal voltage reference; always connect a capacitor of 100nF. Caution: Do not load this pin.				
27	GND_SENSE	AIO	Sensitive GND for Bandgap Voltage Reference.				
28	AOUT_L	AO	Audio Amplifier left-channel output.				
29	AOUT_R	AO	Audio Amplifier right-channel output.				
30	VBAT_3	S	Supply pin for Step-Up Converter, Current Sinks, and Audio Amplifier; always connect to VBAT.				
31	AGND	AIO	Audio Amplifier reference GND; if the Audio Amplifier is used, connect a capacitor of 100nF (±10%) to this pin. Caution: Do not connect directly to VSS.				
32	CURR4	Al	Analog current sink input (designed for buzzer).				
33	CURR3	Al	Analog current sink input (designed for vibrator).				
34	CURR2	Al	Analog current sink input (designed for (white LEDs).				
35	CURR1	Al	Analog current sink input (designed for white LEDs); also used as input for the Step Up DC/DC Converter.				
36	STEPUP	AIO	Step Up DC/DC Converter output pin; can also be used as a ground switch.				
37	AIN_R	Al	Audio Amplifier right-channel input; sense output in test mode.				
38	AIN_L	Al	Audio Amplifier left-channel input; sense output in test mode.				
39	VDIG_2	АО	Output voltage of Digital LDO VDIG_2; if used, connect a ceramic capacitor of 100nF (±20%).				
40	VBUCK	AI	Supply pin for Digital LDOs VDIG_1 and VDIG_2; If the Step Down DC/DC converter is used as pre-regulator, connect this pin to the output of the DC/DC converter. If Step Down DC/DC pre-regulator is not used, this pin can be connected to VBAT or a separate supply (1.0-5.5V).				
41	VDIG_1	АО	Output voltage of Digital LDO VDIG_1; if used, connect a ceramic capacitor of 100nF (±20%).				
42	VBAT_6	S	Supply pin for digital LDO VDIG_1. Connect to VBAT.				
43	GPIO3	DIO_5	General purpose switchable 5V input/output.				
44	GPIO2	DIO_5	General purpose switchable 5V input/output.				
45	GPIO1	DIO_5	General purpose switchable 5V input/output.				
46	VSIM	AO	Output voltage of LDO VSIM; if used, connect a ceramic capacitor of 100nF (±20%).				
47	VBAT_2	S	Supply pin for the Step Down DC/DC Converter and LDO VSIM; always connect to VBAT.				
48	LX	AO	Step Down DC/DC Converter output.				
49	VSS	Vss	Ground pad (QFN48: exposed paddle).				

9.2 Package Drawings and Markings

Figure 35. QFN 48 - 6x6mm with Exposed Paddle

EDEC Package Outline Standard: MO-220 VHHD-5 - Lead Finish: 100% Sn "Matte Tin".

Marking: AYWWIZZ A: Pb-Free Identifier

Y: Last Digit of Manufacturing Year

WW: Manufacturing Week

I: Plant Identifier ZZ: Traceability Code

Symbol	Min	Nom	Max		
Α	0.80	0.85	0.90		
A1		0.203REF			
A3	0.00		0.05		
b	0.18	0.20	0.25		
D		6.00BSC			
Е	6.00BSC				
D2	4.20		4.40		
E2	4.20		4.40		
е		0.40BSC			
L	0.40	0.45	0.50		
L1			0.10		
Р		45ºBSC			
aaa		0.05			
CCC		0.10			

Notes:

- 1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters; angles are in degrees.
- 3. Dimension b applies to metallic terminals and is measured between 0.25 and 0.30mm from the terminal top. Dimension L1 represents the terminal fullback from the package edge. Up to 0.1mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

10 External Parts List

The recommended specifications for external components (refer to Figure 1 on page 2 and Figure 2 on page 3) are listed in Table 38.

Table 38. External Parts Specification

Part	Min.	Тур.	Max.	Tol. Min.	Rating Min.	Remarks	Package Min.
C1	1µF		4.7µF	±20%	25V	Ceramic, X5R, X7R (Step-Up)	1206
C2		330nF		±20%	6.3V	Ceramic, X5R (Charge Pump)	0603
C3	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (V5_6)	0603
C4	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VANA_1)	0603
C5		1µF		±20%	6.3V	Ceramic, X5R (VBAT_1)	0603
C6	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VANA_2)	0603
C7		22µF		±20%	6.3V	Ceramic, X5R (V2_5)	1206
C8	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VRF_1)	0603
C9		1µF		±20%	6.3V	Ceramic, X5R (VBAT_4)	0603
C10	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VRF_2)	0603
C11	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VRF_3)	0603
C12		1µF		±20%	6.3V	Ceramic, X5R (VBAT_5)	0603
C13	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VRF_4)	0603
C14	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VDIG_1)	0603
C15	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VDIG_2)	0603
C16		1µF		±20%	6.3V	Ceramic, X5R (VBAT_2)	0603
C18		10µF		±20%	6.3V	Ceramic, X5R (VBUCK)	
C19		100nF		±20%	6.3V	Ceramic, X5R (VSIM)	0402
C20		100µF		±20%	6.3V	Tantalum; L Stereo Decoupling Cap.	
C21		100µF		±20%	6.3V	Tantalum; R Stereo Decoupling Cap.	
C22		1µF		±20%	6.3V	Ceramic, X5R (VBAT_4)	0603
C23		100nF		±20%	6.3V	Ceramic, X5R (Decoupling, AIN_L)	0402
C24		100nF		±20%	6.3V	Ceramic, X5R (Decoupling, AIN_R)	0402
C25		100nF		±20%	6.3V	Ceramic, X5R (AGND)	0402
C26	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VCHARGER)	0603
C27	10μF			±20%	6.3V	X5R; all VBAT Caps. Combined	0603
C28		1µF		±20%	6.3V	Ceramic, X5R (ISense)	0402
C29		100nF		±20%	6.3V	Ceramic, X5R (CREF)	0402
C30	1µF		4.7µF	±20%	6.3V	Ceramic, X5R (VBUCK)	0603
R1		2k		±1%		VGATE Pullup Resistor	0201
R2		4.7k		±1%		ISENSP Series Resistor	0201
R3		4.7k		±1%		ISENSN Series Resistor	0201
R4	25m	50m	100m	±1%		Shunt resistor	0603
R7				±5%			
R5		100k		±10%		Reset Pullup Resistor	0201
R6		220k		±1%		Bias Resistor	0201
R7	3	0 10k 20k 39k 82k 160k 330k Inf		±5%		Select ROM Bank 7 Select ROM Bank 6 Select ROM Bank 5 Select ROM Bank 4 Select ROM Bank 3 Select ROM Bank 2 Select ROM Bank 1 Select ROM Bank 0	0201
L1		22µH		±20%		Recommended type: Coiltronics SD-12-220	
L2		2.2µH		±20%		Recommended type: Coiltronics SD-12-2R2	
D1	MBR	0520 or s	similar			Shottky Diode; ONSEMI, IR	SOD123
D2		xx4148				Universal Diode	
Q1	Si3	441 or sir	nilar			PMOS Charger Transistor; VISHAY	

11 Ordering Information

Device ID	Marking	Package Type	Delivery Form*	Description
AS3604A-ZQFP	AS3604A	QFN48 6x6mm	Tape and Reel (in dry pack)	Package Size = 6x6x0.85mm; Pitch = 0.4mm; Pb-Free
AS3604B-ZQFP	AS3604B	QFN48 6x6mm	Tape and Reel (in dry pack)	Package Size = 6x6x0.85mm; Pitch = 0.4mm; Pb-Free

Where:

A/B = Revision A or B

Z= Temperature Range: -30 to +70 °C

QF = QFN Package

P = Delivery Form Tape and Reel in Dry Pack

* Dry pack sensitivity level = 3 in accordance with IPC/JEDEC J-STD-033A.

Copyrights

Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact

austriamicrosystems - a leap ahead

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com