March 2012

FSSD07

1-Bit / 4-Bit SD/SDIO and MMC Dual-Host Multiplexer

Features

■ On Resistance: 5Ω Typical, V_{DDC}=2.7V

■ f_{toggle}: >75MHz

■ Low On Capacitance: 6pF Typical

■ Low Power Consumption: 2µA Maximum

 Supports Secure Digital (SD), Secure Digital I/O (SDIO), and Multimedia Card (MMC) Specifications

 Supports 1-Bit / 4-Bit Host Controllers (V_{DDH1/H2}=1.65V to 3.6V) Communicating with High-Voltage (2.7-3.6V) and Dual-Voltage Cards (1.65-1.95V, 2.7-3.6V)

- V_{DDC}=1.65 to 3.6V, V_{DDH1/H2}=1.65 to 3.6V

24-Lead MLP and UMLP Packages

Applications

- Cell Phone, PDA, Digital Camera, Portable GPS, and Notebook Computer
- LCD Monitor, TV, and Set-Top Box

Related Resources

- FSSD07 Evaluation Board
- Evaluation Board Users Guide
- For samples, questions, or board requests; please contact analogswitch @fairchildsemi.com

Description

The FSSD07 is a 2:1 multiplexer that allows dual Secure Digital (SD), Secure Digital I/O (SDIO), and Multimedia Card (MMC) host controllers to share a common peripheral. The host controllers can be equal to, greater than, or less than peripheral card supply with minimal power consumption. This configuration enables dual host CMD, CLK, and D[3:0] signals to be multiplexed to a common peripheral.

The architecture includes the necessary bi-directional data and command transfer capability for single high-voltage cards or dual-voltage supply cards. The clock path is a uni-directional buffer.

Typical applications involve switching in portables and consumer applications: cell phones, digital cameras, home theater monitors, set-top boxes, and notebooks.

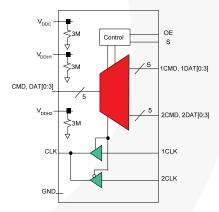
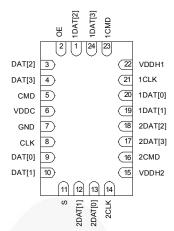



Figure 1. Analog Symbol Diagram

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package Description	Packing Method
FSSD07BQX	FSSD07	-40°C to +85°C	24-Lead Molded Leadless Package (MLP), JEDEC MO-220, 3.5 x 4.5mm	Tape & Reel
FSSD07UMX	JK	-40°C to +85°C	24-Lead Ultra-thin Molded Leadless Package (UMLP), 0.4mm pitch	Tape & Reel

Pin Configuration

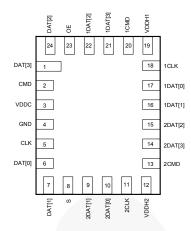


Figure 3. UMLP Pin Assignments

Pin Definitions

Pin# MLP	Pin# UMLP	Name	Description
1	22	1DAT[2]	SDIO Common Port
2	23	OE	Output Enable (Active HIGH)
3	24	DAT[2]	
4	1	DAT[3]	SDIO Common Port
5	2	CMD	
6	3	VDDC	Power Supply (SDIO Peripheral Card Port)
7	4	GND	Ground
8	5	CLK	Clock Path Port
9	6	DAT[0]	SDIO Common Port
10	7	DAT[1]	SDIO COMMON POR
11	8	S	Select Pin
12	9	2DAT[1]	Host Common Port
13	10	2DAT[0]	Host Common Port
14	11	2CLK	Clock Path Port
15	12	VDDH2	Power Supply (Host Port)
16	13	2CMD	
17	14	2DAT[3]	
18	15	2DAT[2]	Host Common Port
19	16	1DAT[1]	
20	17	1DAT[0]	
21	18	1CLK	Clock Path Port
22	19	VDDH1	Power Supply (SDIO Host Port)
23	20	1CMD	Host Common Port
24	21	1DAT[3]	TOSE COMMON POR

Truth Table

OE	S	Function
HIGH	LOW	1CMD, 1CLK, 1DAT[3:0] connected to CMD, CLK, DAT[3:0]
HIGH	HIGH	2CMD, 2CLK,2DAT[3:0] connected to CMD, CLK, DAT[3:0]
LOW	Х	CMD, DAT[3:0] ports high impedance; CLK is function of selected nCLK

Typical Application VDDC VDDH1 FSSD07 1.65V to 3.6V 1.65V to 3.6V R_{CMD} , $R_{DAT[3:0]}$ CMD, DAT[3:0] 1CMD, 1DAT[3:0] WiFi, Bluetooth, Processor #1 MMC or SD Peripheral 1CLK CLK Secure Data/ VDDH2 Multi Media Card **Dual Host Selector** 1.65V to 3.6V SD Card $R_{1CMD, 2CMD} = 10k \text{ to } 100k \text{ ohm}$ $R_{1DAT[3:0]}$, $_{2DAT[3:0]}$ = 10k to 100k ohm 2CMD, 2DAT[3:0] MMC Card $R_{1CMD, 2CMD} = 4.7k$ to 100k ohm $R_{1DAT[3:0], 2DAT[3:0]} = 50k$ to 100k ohm Processor #2 2CLK OE GND -

Figure 4. Typical Application Diagram

Functional Description

The FSSD07 enables the multiplexing of dual ASIC / baseband processor hosts to a common peripheral card or module, providing bi-directional support of the dualvoltage SD/SDIO or MMC cards available in the marketplace. Each host SDIO port has its own supply rail, such that hosts with different supplies can be interfaced to a common peripheral module or card. The peripheral card supply must be equal to or greater than the host(s) to minimize power consumption. The independent V_{DDC} , V_{DDH1} , and V_{DDH2} are defined by the supplies connected from the application Power Management ICs (PMICs) to the FSSD07. The clock path is a uni-directional buffered path rather than a bidirectional switch port. The supplies (V_{DDC}, V_{DDH1}, and V_{DDH2}) have an internal termination resistor (typically $3M\Omega$) to ensure the supply rails internally do not float if the application turns off one or all of these sources.

CMD, DAT Bus Pull-ups

The CMD and DAT[3:0] ports do not have, internally, the system pull-up resistors as defined in the MMC or SD card system bus specifications. The system bus pull-up must be added external to the FSSD07. The value, within the specific specification limits, is a function of the individual application and type of card or peripheral connected. For SD card applications, the R_{CMD} and R_{DAT} pull-ups should be between $10k\Omega$ and $100k\Omega$. For MMC applications, the R_{CMD} pull-ups should be between $4.7k\Omega$ and $100k\Omega$, and the R_{DAT} pull-ups between $50k\Omega$ and $100k\Omega$. The card-side CMD and DAT[3:0] outputs have a circuit that facilitates incident wave switching, so the external pull-up resistors ensure retention of the output high level.

The OE pin can be used to place the CMD and DAT[3:0] into high-impedance mode during power-up sequencing or when the system enters IDLE state (see IDLE State CMD/DAT Bus "Parking").

CLK Bus

The 1CLK and 2CLK inputs are bi-state buffer architectures, rather than a switch I/O, to ensure 52MHz incident wave switching. Since most host controllers also have a clock enable register bit to enable or disable the system clock when in IDLE mode, the CLK output is not disabled by the OE pin. Instead, the CLK output is a function of whichever host controller clock is selected by the S pin.

Consequently, there is always a clock path connected between the selected host and the card. The state of the CLK pin is a function of the selected host controller nCLK output pin, which facilitates retaining clock duty cycle in the system or performing read / wait operations.

IDLE State & Power-Up CMD/DAT Bus "Parking"

The SD and MMC card specifications were written for a direct point-to-point communication between host controller and card. The introduction of the FSSD07 in that path, as an expander, requires that the functional operation and system latency not be impacted by the switch characteristics. Since there are various card formats, protocols, and configurable controllers, an OE pin is available to facilitate a fast IDLE transition for the CMD/DAT[3:0] outputs. Some controllers, rather than placing CMD/DAT into high-impedance mode, pull the outputs HIGH for a clock cycle prior to going into high-impedance mode (referred to as "parking" the output). Some legacy controllers pull their outputs HIGH versus high impedance.

If the OE pin is pulled HIGH and the controller places its command and data outputs into high-impedance (driving nCMD/nDAT[3:0]), the FSSD07 CMD/DAT[3:0] output rise time is a function of the RC time constant through the switch path. Pulling OE LOW puts the switches into high impedance, disabling communication from the host to card, and the CMD/DAT[3:0] outputs are pulled HIGH by the system pull-up resistors chosen for the application. This mechanism facilitates power-up sequencing by holding OE LOW until supplies are stable and communication between the host(s) and card is enabled.

Power Optimization

Since the FSSD07 has multiple supplies (V_{DDC} , V_{DDH1} , and V_{DDH2}), the control signals have been referenced to the card peripheral side (V_{DDC}). To minimize power consumption, current paths between supplies are isolated when one or more supplies are not present. This includes the configuration of the removal of V_{DDC} with host controller supplies remaining present.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V_{DDC}	Card Supply Voltage		-0.5	4.6	V
$V_{\rm DDH1}, V_{\rm DDH2}$	Host Controller Supply Voltage		-0.5	4.6	V
V	Switch I/O Voltage ⁽¹⁾	1DAT[3:0], 2DAT[3:0], 1CMD, 2CMD Pins	-0.5	V _{DDx} ⁽²⁾ + 0.3V (4.6V maximum)	V
V _{SW}	Switch I/O Voltage	DAT[3:0], CMD Pins	-0.5	V _{DDx} ⁽²⁾ + 0.3V (4.6V maximum)	V
V _{CNTRL}	Control Input Voltage ⁽¹⁾	S, OE	-0.5	4.6	V
V _{CLKI}	CLK Input Voltage (1)	1CLK, 2CLK	-0.5	4.6	V
V _{CLKO}	CLK Output Voltage ⁽¹⁾	CLK	-0.5	V _{DDx} ⁽²⁾ + 0.3V (4.6V maximum)	V
I _{INDC}	Input Clamp Diode Current			-50	mA
I _{SW}	Switch I/O Current	SDIO Continuous		50	mA
I _{SWPEAK}	Peak Switch Current	SDIO Pulsed at 1ms Duration, <10% Duty Cycle		100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
T _L	Lead Temperature	Soldering, 10 Seconds		+260	°C
		I/O to GND		8	
F0D	Human Body Model, JEDEC: JESD22-A114	Supply to GND		10	kV
ESD	OLDES. SEODEE ATTI	All Other Pins		5	
	Charged Device Model, JEDEC-JE	SD-C101		2	

Notes:

- 1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
- 2. V_{DDx} references the specific SDIO port V_{DD} rail (i.e. V_{DDH1} , V_{DDH2} , V_{DDC}).

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parame	Min.	Max.	Unit	
V_{DDC}	Supply Voltage - Card Side		1.65	3.60	V
$V_{DDH1,}V_{DDH2}$	Supply Voltage - Dual Host Contro	ller	1.65	3.60	V
V_{CNTRL}	Control Input Voltage - V _S , V _{OE}	0	V_{DDC}	V	
V_{CLKI}	Clock Input Voltage - V _{CLKI}	0	V _{DDH1/H2}	V	
		CMD, DAT[3:0]	0	V_{DDC}	V
$V_{\sf SW}$	Switch I/O Voltage	1CMD, 1DAT[3:0]	0	V_{DDH1}	V
		0	V_{DDH2}	V	
T _A	Operating Temperature	-40	+85	°C	
θ_{JA}	Thermal Resistance, Free Air MLP Package			+50	°C/W

DC Electrical Characteristics at 1.8V V_{DDC}

All typical values are for V_{DDC} =1.8V at 25°C unless otherwise specified.

Cumahad	Doromatar	V _{DDC}	V _{DDH1} /	Canditions	T _A =-40 to +85°C			I I to ! 4
Symbol	Parameter	(V)	V _{DDH2} (V)	Conditions	Min.	Тур.	Max.	Unit
Common Pi	ns							
V _{IK}	Clamp Diode Voltage	1.80	1.80	I _{IK} =-18mA			-1.2	V
V _{IH}	Control Input Voltage High	1.80	1.80		1.3			٧
V _{IL}	Control Input Voltage Low	1.80	1.80				0.5	٧
I _{IN}	S, OE Input High Current	1.95	1.95	V _{CNTRL} =0V to V _{DDC}	-1		1	μA
l _{oz}	Off Leakage, Current of all ports	1.95	1.95	V _{SW} =0V to V _{DDC}	-1.0	0.5	1.0	μA
V _{OHC}	CLK Output Voltage High ⁽³⁾	1.95	1.95	I _{OH} =-2mA	1.6			٧
V _{oLC}	CLK Output Voltage Low ⁽³⁾	1.65	1.65	I _{OL} =-2mA			90	mV
R _{ON}	Switch On Resistance ⁽⁴⁾	1.65	1.65	V _{CMD, DAT[3:0]} =0V, I _{ON} =-2mA Figure 5			10	Ω
ΔR_{ON}	Delta On Resistance ^(3, 5)	1.65	1.65	V _{CMD, DAT[3:0]} =0V, I _{ON} =- 2mA		0.85		Ω
Power Supp	ly							
I _{CC(VDDC)}	Quiescent Supply Current (Card)	1.95	0	V _{SW} =0 or V _{DDC} , I _{OUT} =0			2	μA
I _{CC(VDDH1/H2)}	Quiescent Supply Current (Hosts)	1.95	1.95	$\begin{array}{c} V_{SW} {=} 0 \text{ or } V_{DDx,} \ I_{OUT} {=} 0, \\ V_{CLKI} {=} V_{DDHx,} \\ V_{CLKO} {=} Open, \ OE {=} V_{DDC} \end{array}$			2	μA
ΔI_{HOST}	Delta I _{CC(VDDH1, VDDH2)} for One Host Powered Off	1.95	1.95 / 0 0 / 1.95	V_{SW} =0 or V_{DDx} , I_{OUT} =0, V_{CLKI} = V_{DDHx} , V_{CLKO} =Open, OE= V_{DDC}			2	μA

Notes:

- 3. Guaranteed by characterization, not production tested.
- 4. On resistance is determined by the voltage drop between the switch I/O pins at the indicated current through the switch.
- 5. Δ R_{ON}=R_{ON max} R_{ON min} measured at identical V_{CC}, temperature, and voltage.

DC Electrical Characteristics at 2.7V V_{DDC}

All typical values are for V_{DDC} =2.7V at 25°C unless otherwise specified.

0	D	V 00	V _{DDH1} /	0	T _A =-	-40 to +8	35°C	Unit	
Symbol	Parameter	V _{DDC} (V)	V _{DDH2} (V)	Conditions	Min.	Тур.	Max.		
Common	Pins					•	•		
V _{IK}	Clamp Diode Voltage	2.7	2.7	I _{IK} =-18mA			-1.2		
V _{IH}	Control Input Voltage High	2.7	2.7		1.8			V	
V _{IL}	Control Input Voltage Low	2.7	2.7				0.8		
I _{IN}	S, OE Input High Current	3.6	3.6	V _{CNTRL} =0V to V _{DDC}	-1		1	μΑ	
l _{oz}	Off Leakage Current of all Ports	3.6	3.6	V _{SW} =0V to V _{DDC}	-1.0	0.5	1.0	μΑ	
V _{OHC}	CLK Output Voltage High ⁽⁶⁾	2.7	2.7	I _{OH} =-2mA	2.4			٧	
V _{OLC}	CLK Output Voltage Low ⁽⁶⁾	3.6	3.6	I _{OL} =-2mA			90	mV	
R _{ON}	Switch On Resistance ⁽⁷⁾	2.7	2.7	V _{CMD, DAT[3:0]} =0V, I _{ON} =-2mA Figure 5		5.0	8.0	Ω	
ΔR_{ON}	Delta On Resistance ^(6, 8)	2.7	2.7	V _{CMD, DAT[3:0]} =0V, I _{ON} =- 2mA		0.8		Ω	
Power St	ipply								
I _{CC(VDDC)}	Quiescent Supply Current (Card)	3.6	0	V _{SW} =0 or V _{DDC} , I _{OUT} =0			2	μA	
I _{CC} (VDDH1/C2)	Quiescent Supply Current (Hosts)	3.6	3.6	$\begin{array}{l} V_{SW} {=} 0 \text{ or } V_{DDx,} I_{OUT} {=} 0, \\ V_{CLKI} {=} V_{DDHx}, V_{CLKO} {=} Open, \\ OE {=} V_{DDC} \end{array}$			2	μA	
ΔI_{HOST}	Delta I _{CC(VDDH1, VDDH2)} for One Card Powered Off	3.6	3.6 / 0 0 / 3.6	V_{SW} =0 or $V_{DDx,}$ I_{OUT} =0, V_{CLKI} = V_{DDHX} , V_{CLKO} =Open, OE = V_{DDC}			2	μA	

Notes:

- 6. Guaranteed by characterization, not production tested.
- On resistance is determined by the voltage drop between the switch I/O pins at the indicated current through the switch.
- 8. Δ R_{ON}=R_{ON max} R_{ON min} measured at identical V_{CC}, temperature, and voltage.

AC Electrical Characteristics at 1.8V V_{DDC}

All typical values are for V_{DDC} =1.8V at 25°C unless otherwise specified.

Comple ed	Danamatan	V 00	V _{DDH1} /	Conditions	T _A =-40 to +85°C			Unit
Symbol	Parameter	V _{DDC} (V)	V _{DDH2} (V)	Conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Time, S, OE to CMD, DAT[3:0]	1.65 to 1.95	1.65 to 3.6	V_{SW} =0V, R_L =1k Ω , C_L =20pF Figure 7, Figure 8		8	18	ns
t _{OFF}	Turn-Off Time, S, OE to CMD, DAT[3:0]	1.65 to 1.95	1.65 to 3.6	V_{SW} =0V, R_L =1k Ω , C_L =20pF Figure 7, Figure 8		6	13	ns
t _{RISE1/} FALL1	CMD/DAT Output Edge Rates ⁽⁹⁾	1.65 to 1.95	1.65 to 3.6	R_L =1k Ω , C_L =20pF (10-90%) Figure 7, Figure 8		3		ns
t _{PD}	Switch Propagation Delay ⁽⁹⁾	1.65 to 1.95	1.65 to 3.6	R_L =1k Ω , C_L =20pF Figure 7, Figure 89		4.5	9	ns
t _{pLH}	LH Propagation Delay 1CLK, 2CLK to CLK	1.65 to 1.95	1.65 to 3.6	C _L =20pF Figure 10, Figure 11		4	6	ns
t _{pHL}	HL Propagation Delay 1CLK, 2CLK to CLK	1.65 to 1.95	1.65 to 3.6	C _L =20pF Figure 10, Figure 11		4	6	ns
t _{RISE2/} FALL2	CLK Output Edge Rates ⁽⁹⁾	1.65 to 1.95	1.65 to 3.6	C _L =20pF (10-90%) Figure 7, Figure 8		3		ns
O _{IRR}	Off Isolation ⁽⁹⁾	1.8	1.65 to 3.6	f=10MHz, R_T =50 Ω , C_L =20pF, Figure 12		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk ⁽⁹⁾	1.8	1.65 to 3.6	f=10MHz, R_T =50 Ω , C_L =20pF, Figure 13		-60		dB
f _{toggle}	Clock Frequency ⁽⁹⁾	1.8	1.65 to 3.6	C _L =20pF	_	75		MHz

Note:

9. Guaranteed by characterization, not production tested.

AC Electrical Characteristics at 3.3V V_{DDC}

All typical values are for V_{DDC} =3.3V at 25°C unless otherwise specified.

Compleal	Parameter	V 00	V _{DDH1} / V _{DDH2}	Conditions	T _A =-	Unit		
Symbol	/IIIDDI PAIAIIIEIEI Vonc (V)		(V)	Conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Time, S, OE to CMD, DAT[3:0]	2.7 to 3.6	1.65 to 3.6	V_{SW} =0V, R_L =1k Ω , C_L =20pF Figure 7, Figure 8		8	18	ns
t _{OFF}	Turn-Off Time, S, OE to CMD, DAT[3:0]	2.7 to 3.6	1.65 to 3.6	V_{SW} =0V, R_L =1k Ω , C_L =20pF Figure 7, Figure 8		6	13	ns
t _{RISE1/} FALL1	CMD/DAT Output Edge Rates ⁽¹⁰⁾	2.7 to 3.6	1.65 to 3.6	R_L =1k Ω , C_L =20pF (10- 90%) Figure 7, Figure 8		3		ns
t _{PD}	Switch Propagation Delay ⁽¹⁰⁾	2.7 to 3.6	1.65 to 3.6	R_L =1k Ω , C_L =20pF Figure 7, Figure 8		2.5	6	ns
t _{pLH}	LH Propagation Delay 1CLK, 2CLK to CLK	2.7 to 3.6	1.65 to 3.6	C _L =20pF Figure 10, Figure 11		4	6	ns
t _{pHL}	HL Propagation Delay 1CLK, 2CLK to CLK	2.7 to 3.6	1.65 to 3.6	C _L =20pF Figure 10, Figure 11		4	6	ns
t _{RISE2/} FALL2	CLK Output Edge Rates ⁽¹⁰⁾	2.7 to 3.6	1.65 to 3.6	C _L =20pF (10-90%) Figure 7, Figure 8		3		ns
O _{IRR}	Off Isolation ⁽¹⁰⁾	2.7	1.65 to 3.6	f=10MHz, R_T =50Ω, C_L =20pF Figure 12		-60		dB
Xtalk	Non-Adjacent Channel Crosstalk ⁽¹⁰⁾	2.7	1.65 to 3.6	f=10MHz, R_T =50 Ω , C_L =20pF, Figure 13		-60		dB
f _{toggle}	Clock Frequency ⁽¹⁰⁾	2.7	1.65 to 3.6	C _L =20pF		75		MHz

Note:

10. Guaranteed by characterization, not production tested.

Capacitance

Cumbal	Doromotor	V _{DDC}	V _{DDH1/H2}	Conditions	T _A =-4	l lmi4		
Symbol	Parameter	(V)	(V)	Conditions	Min.	Тур.	Max.	Unit
C _{IN(S, OE,}	Control and nCLK Pin Input Capacitance ⁽¹¹⁾	0	2.7	V _{DDC} =0V		2.5		pF
C _{ON}	Common Port On Capacitance ⁽¹¹⁾ (C _{DAT[3:0], CMD})	2.7	2.7	V _{OE} =V _{DDC} , V _{bias} =0.5V, f=1MHz Figure 14		7.5		pF
C _{OFF}	Input Source Off Capacitance ⁽¹¹⁾	2.7	2.7	V _{OE} =0V, V _{bias} =0.5V, f=1MHz Figure 15		4		pF

Note:

11. Guaranteed by characterization, not production tested.

Test Diagrams

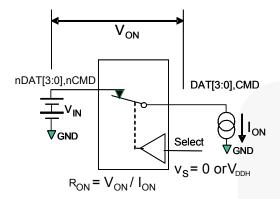
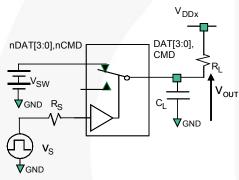



Figure 5. On Resistance

 R_L , R_S , and C_L are functions of the application environment (see AC tables for specific values). C_L includes test fixture and stray capacitance.

Figure 7. AC Test Circuit Load

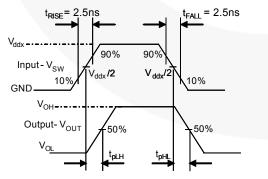
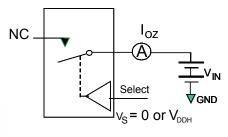



Figure 9. Switch Propagation Delay (tPD) Waveform

Each switch port tested separately.

Figure 6. Off Leakage

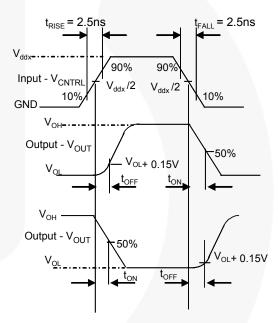
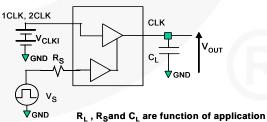



Figure 8. Turn On/Off Time Waveforms

R_L , R_Sand C_L are function of application environment (see AC Tables for specific values)

C_L includes test fixture and stray capacitance

Figure 10. AC Test Circuit Load (CLK)

Test Diagrams (Continued)

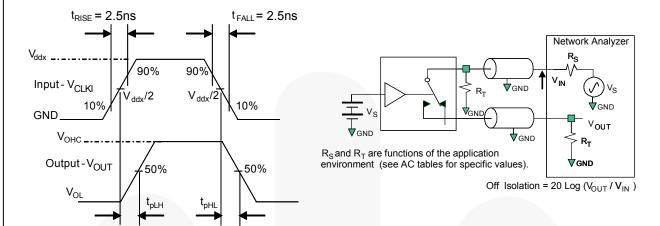


Figure 11. CLK Propagation Delay Waveforms

Figure 12. Channel Off Isolation

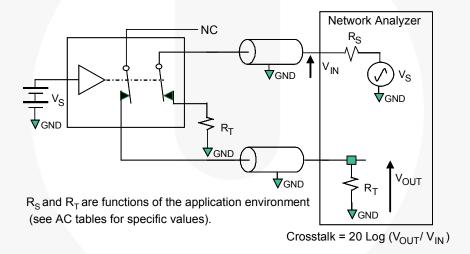


Figure 13. Channel-to-Channel Crosstalk

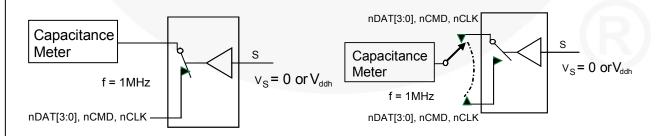
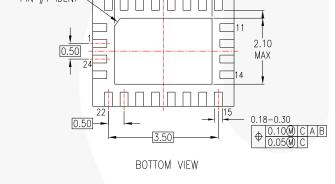



Figure 14. Channel On Capacitance

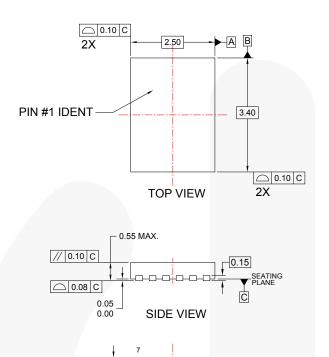
Figure 15. Channel Off Capacitance

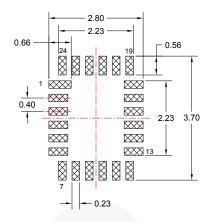
Physical Dimensions 4.50 5.50 MAX 3.70 MAX 3.50 PIN #1 IDENT-2.90 MAX 2.00 (2X) \(\sigma \) 0.15 C MAX (2X) \(\sigma \) 0.15 C 4.50 TOP VIEW MAX 0.50 TYP 2.70 0.80 MAX MAX 0.10 C (0.20)(0.90)□ 0.08 C 0.05 Ċ 0.50 TYP-SEATING PLANE -0.24 MAX SIDE VIEW RECOMMENDED LAND PATTERN 3.10 MAX 0.50 PIN #1 IDENT

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WFSD-2 FOR DIMENSIONS ONLY. PIN NUMBERING DOES NOT COMPLY.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP24Brev4


Figure 16. 24-Lead, Molded Leadless Package (MLP)


Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Always visit Fairchild Semiconductor's online packaging area for the most recent container drawings: http://www.fairchildsemi.com/packaging/MLP24B_TNR.pdf.

Physical Dimensions

RECOMMENDED LAND PATTERN

NOTES:

- A. NO JEDEC STANDARD APPLIES
- B. DIMENSIONS ARE IN MILLIMETERS.

23X 0.35 3

- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. DRAWING FILENAME: MKT-UMLP24Arev1.

0.45

0.55

Figure 17. 24-Lead, Ultra-thin Molded Leadless Package (UMLP), 0.4mm pitch

0.40

0.15 0.25 24X

Ф

0.10 C A B

0.05 C

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packaging/MicroMLP24_TNR.pdf

BOTTOM VIEW

TRADEMARKS

CROSSVOLT™

DEUXPEED⁶

EcoSPARK®

EfficientMax™

Dual Cool™

ESBC™

Fairchild®

FACT

FPS™

FAST®

FastvCore™

FETBench™

FlashWriter®*

CTL™

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX-CAP™*
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™

Current Transfer Logic™

Fairchild Semiconductor®

FACT Quiet Series™

Green FPS™ e-Series™
Green FPS™ e-Series™
GMaX™
GTO™
IntelliMAX™
ISOPLANAR™

GreenBridge™

Global Power ResourceSM

F-PFS™

FRFET®

INTERIIMAX™
ISOPLANAR™
Making Small Speakers Sound Louder
and Better™

MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak™

MillerDrive™
MotionMax™
Motion-SPM™
mWSaver™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SOUTIONS TO TOUR
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
EGENERAL®*

The Power Franchise®
the Wer franchise
TinyBoost™
TinyBoost™
TinyCalc™
TinyLogic®
TinyPOWOr™
TinyPOWOr™
TinyPOWIT™
TinyPWMT™
TinyWire™
TranSiC™
TifFault Detect™
TRUECURRENT®*

µSerDes™

SerDes"
UHC®
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a)
 are intended for surgical implant into the body or (b) support or
 sustain life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I61

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com