

Mono 1.4W Class AB Audio Amplifiers

General Description

The MAX98309/MAX98310 mono 1.4W class AB audio amplifiers offer low quiescent current while maintaining excellent SNR and low 0.008% THD+N. These ICs feature excellent 90dB PSRR and state of the art click-andpop suppression.

The ICs are offered with an internally fixed 0dB, 3dB, 6dB, and 9dB gain (MAX98310) or an externally set gain (MAX98309) through external resistors.

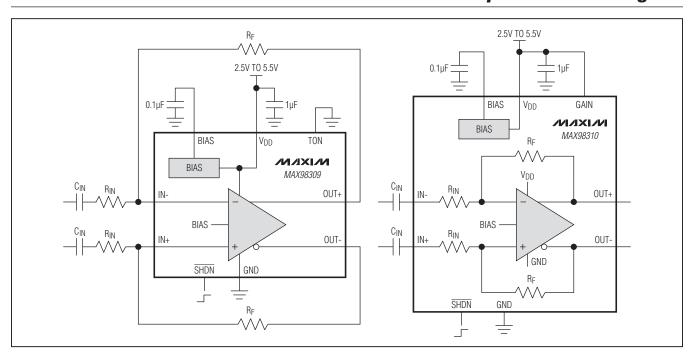
The MAX98309 feature a 10ms or 100ms pin-selectable turn-on time, while the MAX98310 has a preset 5ms turnon time.

The MAX98309/MAX98310 are available in a (1.0mm x 1.0mm) 9-bump, 0.3mm pitch WLP, and are specified over the extended -40°C to +85°C temperature range.

Applications

Cell Phones/Smartphones Digital Cameras **GPS** Portable Media Players e-Readers

Tablets


Benefits and Features

- **♦** Enhances System Performance
 - ♦ Differential Input Improves Noise Immunity
 - ♦ Industry-Leading Click-and-Pop Suppression
 - → High 90dB PSRR (f_{IN} = 217Hz)
- **♦** Smaller Solution Size
 - ♦ 1mm x 1mm WLP Footprint
- **♦ Extends Battery Life**
 - ♦ Low Quiescent Current
- ♦ Delivers Robust System Design
 - ♦ Thermal Overload Protection
 - ♦ Short-Circuit Protection
- ♦ 1.2mA Supply Current (V_{DD} = 3.7V)
- ♦ 750mW into 8 Ω (V_{DD} = 3.7V)
- ♦ 2.5V to 5.5V Supply Operation
- ♦ Pin-Selectable, Internally-Fixed Gain (MAX98310)
- ♦ 1.8V Logic-Compatible SHDN Input

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part. refer to www.maxim-ic.com/MAX98309.related.

Simplified Block Diagram

NIXIN

Maxim Integrated Products 1

Mono 1.4W Class AB Audio Amplifiers

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND0.3V to 6V	OUT+ to OUT- Short Circuit DurationContinuous
SHDN to GND0.3V to 6V	Continuous Power Dissipation ($T_A = +70^{\circ}C$)
All Other Pins to GND0.3V to (V _{DD} + 0.3V)	WLP (derate 11.9mW/°C above +70°C)848mW
Continuous Current	Junction Temperature+150°C
V _{DD} , GND, OUT±750mA	Operating Temperature Range40°C to +85°C
IN_, SHDN, BIAS, GAIN, TON±20mA	Storage Temperature Range65°C to +150°C
OUT_ Short Circuit to GND or VDD DurationContinuous	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

Junction-to-Ambient Thermal Resistance (θ_{JA})....... 94°C/W Junction-to-Case Thermal Resistance (θ_{JC})......41°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 3.7V, V_{GND} = 0V, \overline{SHDN} = V_{DD}, GAIN = V_{DD} (0dB), C_{BIAS} = 0.1 \mu F, C_{IN} = 0.47 \mu F, no load: R_{IN} = R_F = 10 k \Omega (MAX98309), R_{DD} = 0.47 \mu F$ $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25$ °C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR test		2.5		5.5	V
Undervoltage Lockout	UVLO	V _{DD} falling	V _{DD} falling		1.8	2.3	V
Quiescent Supply Current	l	I_{VDD} $\overline{SHDN} = V_{DD}$ $V_{DD} = 3.7V$ $V_{DD} = 5V$	$V_{DD} = 3.7V$		1.2		^
	IVDD			1.9	1.8	mA	
Shutdown Supply Current	l _{VDD_SD}	$V_{\overline{SHDN}} = 0V, T_A = +25^{\circ}$	С		2	3	μΑ
		MAX98309 shutdown to	TON = GND		10	22.8	
Turn-On Time	tou	full operation	$TON = V_{DD}$		100		ms
Turn-On Time	ton	MAX98310 shutdown to	full operation		5.7	11.5	1115
			GAIN = V _{DD}	-0.25	0	+0.25	dB
			GAIN = GND GAIN = unconnected	2.75	3	3.25	
Gain	A _V	MAX98310		5.75	6	6.25	
			GAIN = BIAS	8.75	9	9.25	
			GAIN = V _{DD}	0.80 x V _{DD}			
Gain Selection Threshold		MAY00040	GAIN = GND			0.05 x V _{DD}	.,,
		MAX98310 GAIN = unconnected	0.16 x		0.24 x	V	
			GAIN = unconnected	V _{DD}		V_{DD}	
			GAIN = BIAS	0.35 x		0.69 x	
			UAIN = DIAS	V_{DD}		V_{DD}	

Mono 1.4W Class AB Audio Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=3.7V, V_{GND}=0V, \overline{SHDN}=V_{DD}, GAIN=V_{DD} (0dB), C_{BIAS}=0.1 \mu F, C_{IN}=0.47 \mu F, \text{ no load: } R_{IN}=R_F=10 \text{k}\Omega \text{ (MAX98309)}, T_{A}=T_{MIN} \text{ to } T_{MAX}. \text{ Typical values are at } T_{A}=+25 ^{\circ}\text{C}, \text{ unless otherwise noted.)} \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
		MAX98309, SHDN = VDD			1000		
Differential Input Resistance	D		GAIN = 0dB		38.2		kΩ
Differential input riesistance	R _{INDIFF}	MAX98310	GAIN = 3dB		31.7		
			GAIN = 6dB		25.5		
Input Bias Current	I _{INBIAS}	MAX98309/MAX98310, S	MAX98309/MAX98310, SHDN = V _{DD}			±1	μΑ
Shutdown Input Bias Current	I _{INBIAS} _ SHDN	SHDN = GND, IN_ = V _{DD}	or IN_ = GND	-5		+5	μΑ
Output Offset Voltage	V_{OS}	$T_A = +25^{\circ}C \text{ (Note 3)}$			±0.2	±1	mV
Click and Dan Laval	V	$R_L = 8\Omega$, 32 samples per second, A-weighted,	Into shutdown		-66		dD)/
Click-and-Pop Level	K _{CP}	$T_A = +25^{\circ}C$ (Notes 3, 4)	Out of shutdown		-66		- dBV
Common-Mode Bias Voltage	V _{BIAS}	Voltage at BIAS		0.475 x V _{DD}	0.5 x V _{DD}	0.525 x V _{DD}	V
Input Common-Mode Voltage Range	V _{CM}	Inferred from CMRR test		0.5		V _{DD} - 0.6	V
Common-Mode Rejection Ratio	CMRR	MAX98310/MAX98310	Guaranteed over input common-mode voltage range	-50	-76		dB
			$f_{IN} = 1kHz,$ $R_L = 8\Omega + 33\mu H$		-62		
		DC 2.5V to 5.5V		73	93		
Power-Supply Rejection Ratio	PSRR	$V_{RIPPLE} = 200 \text{mV}_{P-P}$	$f_{IN} = 217Hz$		90		dB
l ower supply Hojestion Hatie	1 01111	(Note 3)	$f_{IN} = 1kHz$		90		GD
		,	$f_{IN} = 10kHz$		72		
		$V_{DD} = 3.7V, 1\% THD+N$	$R_L = 8\Omega + 68\mu H$		0.750		
			$R_{L} = 4\Omega + 33\mu H$	-	1.2		
		$V_{DD} = 3.7V, 10\% \text{ THD+N}$	$R_{L} = 8\Omega + 68\mu H$		0.9		
Output Power			$R_{L} = 4\Omega + 33\mu H$	-	1.5		- W
	Pout	V _{DD} = 5V, 1% THD+N (Note 5)	$R_L = 8\Omega + 68\mu H$ $R_L = 4\Omega + 33\mu H$, thermally limited		2.1		
			$R_L = 8\Omega + 68\mu H$		1.7		
		V _{DD} = 5V, 10% THD+N (Note 5)	$R_L = 4\Omega + 33\mu H$, thermally limited		2.7		

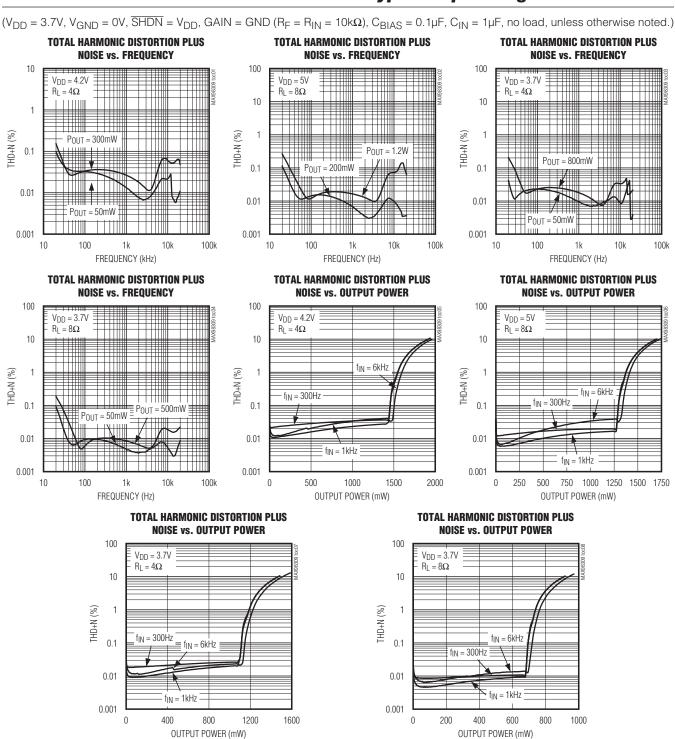
Mono 1.4W Class AB Audio Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=3.7V,\,V_{GND}=0V,\,\overline{SHDN}=V_{DD},\,GAIN=V_{DD}\,(0dB),\,C_{BIAS}=0.1\mu F,\,C_{IN}=0.47\mu F,\,no\,load:\,R_{IN}=R_{F}=10k\Omega\,(MAX98309),\,R_{A}=R_{MIN}\,to\,R_{MAX}$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
		$f_{IN} = 1kHz$, BW = 22Hz to	$R_{L} = 8\Omega + 68\mu H,$ $P_{OUT} = 375\text{mW}$		0.008		
Total Harmonic Distortion Plus Noise	THD+N	22kHz	$R_{L} = 4\Omega + 33\mu H,$ $P_{OUT} = 750\text{mW}$	0.06	0.02		%
		$f_{IN} = 6kHz$, BW = 22Hz to 22kHz	$R_{L} = 8\Omega + 68\mu H,$ $P_{OUT} = 375\text{mW}$		0.01		
Signal-to-Noise Ratio	SNR	A-weighted, $V_{DD} = 5V$, P_{OU} $R_L = 8\Omega + 33\mu H$	$_{\rm T} = 1.4 W,$		110		dB
Output Noise Voltage	V _N	A-weighted (Note 3)			9		μV
Overcurrent Protection Threshold					2		А
Thermal-Protection Threshold					+160		°C
Thermal-Protection Hysteresis					15		°C
Maximum Capacitive Load Drive	CL	Bridge-tied load capacitand	ce		500		pF
LOGIC INPUT (SHDN, TON) (MAX98309)							
Input Logic-High	V _{IH}	1.8V logic compliant		1.4			V
Input Logic-Low	V _{IL}	1.8V logic compliant				0.4	V
Input Leakage Current High	I _{IH}	$T_A = +25^{\circ}C$				1	μΑ
Input Leakage Current Low	I _{IL}	$T_A = +25^{\circ}C$				1	μΑ

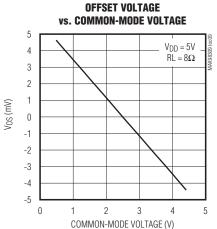
Note 2: All specifications are 100% tested at $T_A = +25$ °C; temperature limits are guaranteed by design.

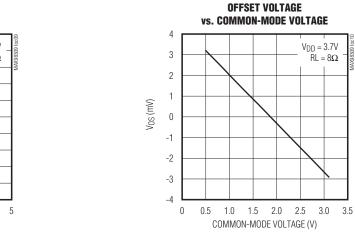

Note 3: Inputs AC-coupled to GND.

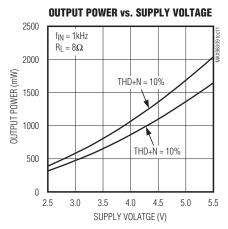
Note 4: Mode transitions controlled by SHDN.

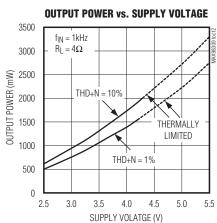
Note 5: Thermally limited by package.

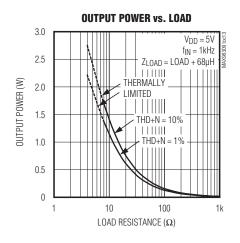
Mono 1.4W Class AB Audio Amplifiers

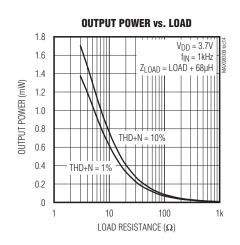

Typical Operating Characteristics

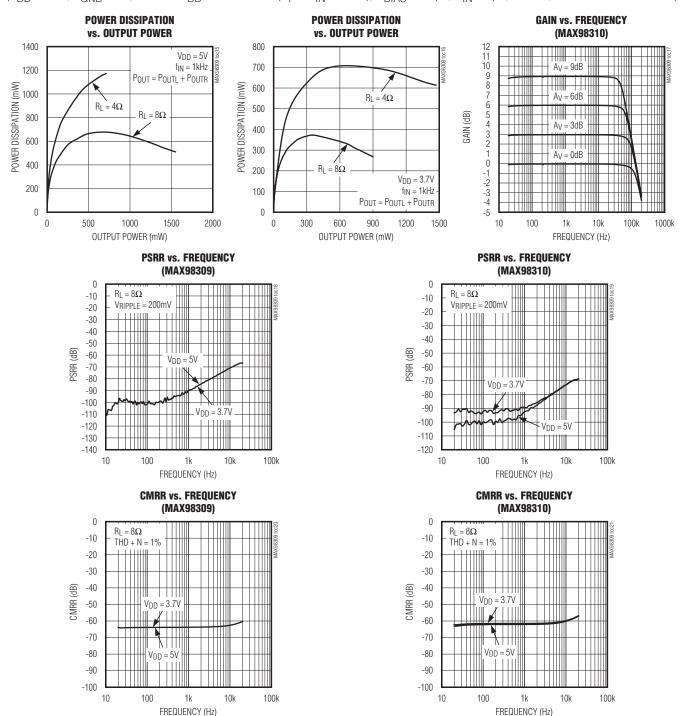



Mono 1.4W Class AB Audio Amplifiers


Typical Operating Characteristics (continued)

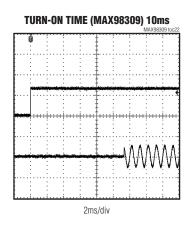

 $(V_{DD}=3.7V,\,V_{GND}=0V,\,\overline{SHDN}=V_{DD},\,GAIN=GND\,(R_F=R_{IN}=10k\Omega),\,C_{BIAS}=0.1\mu F,\,C_{IN}=1\mu F,\,no\,load,\,unless\,otherwise\,noted.)$

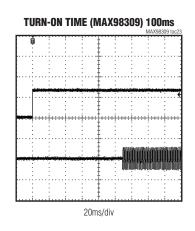


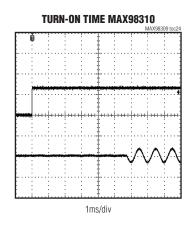


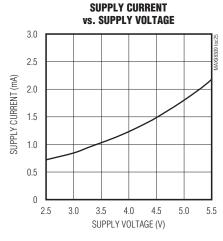
Mono 1.4W Class AB Audio Amplifiers

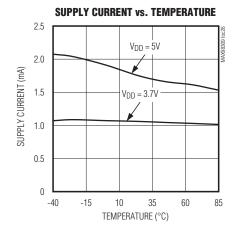
Typical Operating Characteristics (continued)

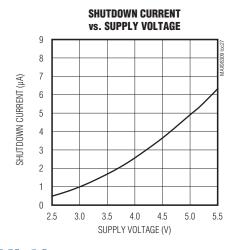

 $(V_{DD} = 3.7V, V_{GND} = 0V, \overline{SHDN} = V_{DD}, GAIN = GND (R_F = R_{IN} = 10k\Omega), C_{BIAS} = 0.1\mu F, C_{IN} = 1\mu F, no load, unless otherwise noted.)$

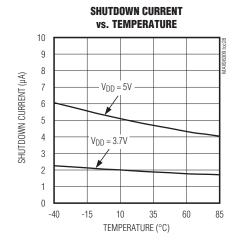


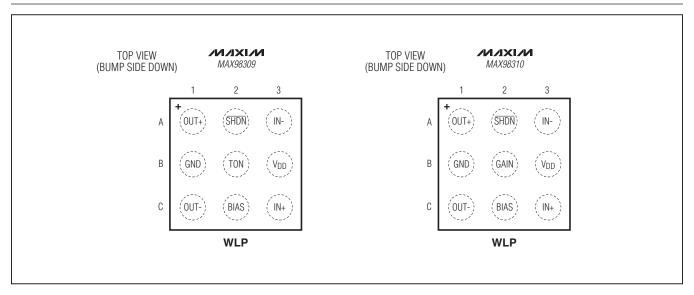

Mono 1.4W Class AB Audio Amplifiers


Typical Operating Characteristics (continued)


 $(V_{DD}=3.7V,V_{GND}=0V,\overline{SHDN}=V_{DD},GAIN=GND~(R_F=R_{IN}=10k\Omega),C_{BIAS}=0.1\mu F,C_{IN}=1\mu F,~no~load,~unless~otherwise~noted.)$







Mono 1.4W Class AB Audio Amplifiers

Pin Configurations

Pin Descriptions

P	IN	NAME	FUNCTION
MAX98309	MAX98310	NAIVIE	FUNCTION
A1	A1	OUT+	Amplifier Positive Output
A2	A2	SHDN	Active-Low Shutdown Input. Connect to GND to place the IC into shutdown. Connect to $V_{\rm DD}$ for normal operation.
А3	А3	IN-	Inverting Audio Input
B1	B1	GND	Ground
B2	_	TON	Turn-On Time Selection. Connect TON to GND for a 10ms turn-on time. Connect TON to $V_{\rm DD}$ for a 100ms turn on time.
_	B2	GAIN	Gain Select Input. See Table 1 for gain settings.
В3	В3	V_{DD}	Power Supply Input. Connect a 1µF capacitor from V _{DD} to GND.
C1	C1	OUT-	Amplifier Negative Output
C2	C2	BIAS	Common-Mode DC Bias Bypass. Connect a 0.1µF (min) capacitor to GND.
C3	C3	IN+	Noninverting Audio Input

Mono 1.4W Class AB Audio Amplifiers

Detailed Description

The MAX98309/MAX98310 mono 1.4W Class AB audio amplifiers offer low quiescent current while maintaining excellent SNR and low 0.008% THD+N. Both ICs feature excellent 90dB PSRR and state-of-the-art click-and-pop suppression.

The ICs are offered with an internally fixed 0dB, 3dB, 6dB, and 9dB gain (MAX98310) or an externally set gain (MAX98309) through external resistors.

The MAX98309 features a 10ms or 100ms pin-selectable turn-on time, while the MAX98310 has a preset 5ms turnon time.

Bias

The ICs operate from a single 2.5V to 5.5V power supply and feature an internally generated common-mode bias voltage of V_{DD}/2 reference to ground. BIAS provides both click-and-pop suppression and sets the DC bias level for the audio outputs. Choose the value of the bypass capacitor as described in the BIAS Capacitor section. Do not connect external loads to BIAS as this can affect the overall performance.

Turn-On Time

The MAX98309 external gain amplifier features a selectable turn-on time for optimized click-and-pop performance. Connect TON to GND for a 10ms turn-on time. Connect TON to V_{DD} for a 100ms turn-on time. The MAX98310 has a preset 5ms turn-on time.

Shutdown Mode

The ICs feature a 1.8µA low-power shutdown mode that reduces guiescent current consumption. When the active-low shutdown mode is entered, the ICs' internal bias circuitry is disabled, the amplifier outputs go high impedance, and BIAS is driven to GND.

Click-and-Pop Suppression

The ICs feature Maxim's industry-leading click-andpop suppression circuitry. During startup, the amplifier common-mode bias voltage ramps to the DC bias point. When entering shutdown, the amplifier outputs are high impedance between both outputs. This scheme minimizes the energy present in the audio band.

Applications Information

BTL Amplifier

The ICs are designed to drive a load differentially, a configuration referred to as bridge-tied load, or BTL. The BTL configuration (Figure 1) offers advantages over the single-ended configuration, where one side of the load is connected to ground. Driving the load differentially doubles the output voltage compared to a single-ended amplifier under similar conditions.

Substituting 2 x V_{OUT(P-P)} for V_{OUT(P-P)} into the following equations yields four times the output power due to doubling of the output voltage:

$$V_{RMS} = \frac{V_{OUT (P-P)}}{2\sqrt{2}}$$

$$P_{OUT} = \frac{V_{RMS}2}{R_{I}}$$

Because the differential outputs are biased at midsupply, there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for single-ended amplifiers. These capacitors can be large, expensive, consume board space, and degrade lowfrequency performance.

Power Dissipation and Heatsinking

Under normal operating conditions, the ICs dissipate a significant amount of power. The maximum power dissipation is given in the Absolute Maximum Ratings or can be calculated by the following equation:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

where $T_{J(MAX)}$ is +150°C, T_A is the ambient temperature, and θ_{JA} is the reciprocal of the derating factor in C/W as specified in the Absolute Maximum Ratings.

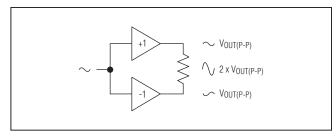


Figure 1. BTL Configuration

Mono 1.4W Class AB Audio Amplifiers

The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The maximum internal power dissipation for a given VDD and load is given by the following equation:

$$P_{D(MAX)} = \frac{2V_{DD}2}{\pi^2R_1}$$

If the internal power dissipation for a given application exceeds the maximum allowed for a given package, reduce power dissipation by increasing the ground plane heatsinking capability and the size of the traces to the device. See the Layout and Grounding section. Other methods for reducing power dissipation are to reduce V_{DD}, increase load impedance, decrease ambient temperature, reduce gain, or reduce input signal.

Thermal-overload protection limits total power dissipation in the MAX98309/MAX98310. When the junction temperature exceeds +160°C, the thermal protection circuitry disables the amplifier. Operation returns to normal once the die cools by 15°C.

Amplifier Gain Fixed Differential Gain (MAX98310)

The MAX98310 features four internally fixed differential gain options selectable by GAIN (Table 1). This simplifies design, decreases required application footprint size, and eliminates external gain-setting resistors.

External Differential Gain (MAX98309)

The MAX98309 features an external gain option. Resistors RF and RIN. See the Simplified Block Diagram and set the gain of the amplifier as follows:

$$A_V = \frac{R_F}{R_{IN}}$$

where A_V is the desired voltage gain. Hence, an R_{IN} of $10k\Omega$ and an R_F of $20k\Omega$ yields a gain of 2V/V or 6dB. RF can be either fixed or variable, allowing the use of a digitally controlled potentiometer to alter the gain under software control.

Table 1. Fixed Differential Gain

GAIN CONNECTION	GAIN (dB)
V_{DD}	0
GND	3
Unconnected	6
BIAS	9

Input Filter

The fully differential amplifier inputs can be biased at voltages other than midsupply. The common-mode feedback circuit adjusts for input bias, ensuring the outputs are still biased at midsupply. Input capacitors are not required as long as the input voltage is within the specified common-mode range listed in the Electrical Characteristics table.

If input capacitors are used, input capacitor CIN, in conjunction with the input resistor RIN, forms a highpass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN} C_{IN}}$$

Setting f-3dB too high affects the low-frequency response of the amplifier. Use capacitors with adequately low voltage coefficients, such as X7R ceramic capacitors with a high voltage rating. Capacitors with higher voltage coefficients result in increased distortion at low frequencies.

BIAS Capacitor

BIAS is the output of the internally generated $V_{DD}/2$ bias voltage. The BIAS bypass capacitor, CBIAS, improves PSRR and THD+N by reducing power supply and other noise sources at the common-mode bias node, and also generates the clickless/popless startup DC bias waveform for the speaker amplifiers. Bypass BIAS with a 0.1µF capacitor to GND. Larger values of CBIAS (up to 1µF) improve PSRR.

Supply Bypassing

Proper power-supply bypassing ensures low-noise, lowdistortion performance. Connect a 1µF ceramic capacitor from V_{DD} to GND. Add additional bulk capacitance as required by the application. Locate the bypass capacitor as close as possible to the device.

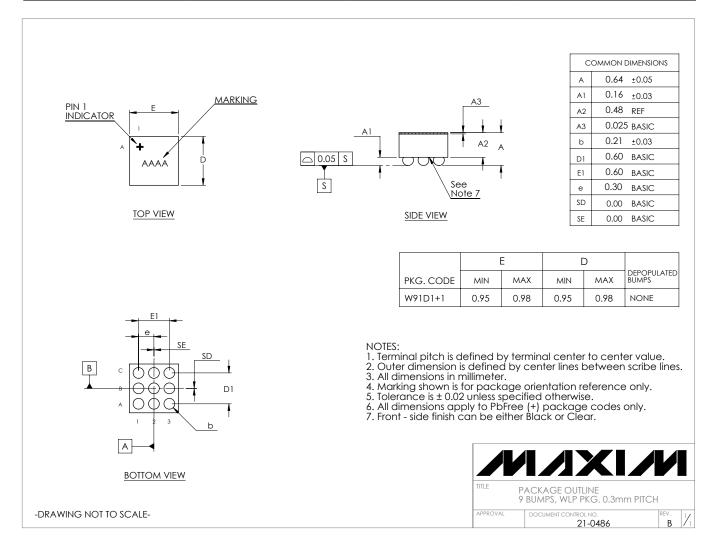
Layout and Grounding

Good PCB layout is essential for optimizing performance. Use large traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance and route heat away from the device. Good grounding improves audio performance, and prevents any digital switching noise from coupling into the audio signal.

Mono 1.4W Class AB Audio Amplifiers

Ordering Information

PART	TEMP RANGE	GAIN	PIN-PACKAGE	TOP MARK
MAX98309EWL+	-40°C to +85°C	External	9 WLP	+AIY
MAX98310EWL+	-40°C to +85°C	Fixed	9 WLP	+AIZ


⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Mono 1.4W Class AB Audio Amplifiers

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
9 WLP (0.3mm pitch)	W91D1+1	<u>21-0486</u>	Refer to Application Note 1891

Mono 1.4W Class AB Audio Amplifiers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/11	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com