60V self-protected low-side Intellifet™ MOSFET switch

V_{DS}=60V $500m\Omega$

1.1A (V_{IN} = 5V)

 $0.7A (V_{IN} = 5V)$

Summary

BSP75N

Continuous drain source voltage

On-state resistance Maximum nominal load current^(a)

Minimum nominal load current^(c)

Clamping energy 550mJ

Description

Self-protected low side MOSFET. Monolithic over temperature, over current, over voltage (active clamp) and ESD protected logic level functionality. Intended as a general purpose switch.

Features

Note:

Short circuit protection with auto restart •

- Over-voltage protection (active clamp)
- · Thermal shutdown with auto restart
- Over-current protection
- Input protection (ESD)
- High continuous current rating •
- Load dump protection (actively protects load)
- Logic level input

Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel
BSP75NTA	7	12mm embossed	1000

Device marking

BSP75N

IN

The tab is connected to the source pin and must

is recommended for best thermal performance.

be electrically isolated from the drain pin. Connection of significant copper to the drain pin

Functional block diagram

Applications

- Especially suited for loads with a high in-rush current such as lamps and motors.
- All types of resistive, inductive and capacitive loads in switching applications.
- μC compatible power switch for 12V and 24V DC applications.
- Automotive rated.
- Replaces electromechanical relays and discrete circuits.

Linear mode capability - the current-limiting protection circuitry is designed to de-activate at low Vds, in order not to compromise the load current during normal operation. The design maximum DC operating current is therefore determined by the thermal capability of the package/board combination, rather than by the protection circuitry. This does not compromise the products ability to self protect itself at low V_{DS} .

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Continuous drain-source voltage	V _{DS}	60	V
Drain-source voltage for short circuit protection $V_{IN} = 5V$	V _{DS(SC)}	36	V
Drain-source voltage for short circuit protection $V_{IN} = 10V$	V _{DS(SC)}	20	V
Continuous input voltage	V _{IN}	-0.2 +10	V
Peak input voltage	V _{IN}	-0.2 +20	V
Operating temperature range	T _j ,	-40 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Power dissipation at $T_A = 25^{\circ}C^{(a)}$	P _D	1.5	W
Power dissipation at $T_A = 25^{\circ}C^{(c)}$	P _D	0.6	W
Continuous drain current @ V _{IN} =10V; T _A =25°C ^(a)	Ι _D	1.3	А
Continuous drain current @ V _{IN} =5V; T _A =25°C ^(a)	I _D	1.1	А
Continuous drain current @ V _{IN} =5V; T _A =25°C ^(c)	I _D	0.7	А
Continuous source current (body diode) ^(a)	I _S	2.0	А
Pulsed source current (body diode) ^(b)	I _S	3.3	А
Unclamped single pulse inductive energy	E _{AS}	550	mJ
Load dump protection	V _{LoadDump}	80	V
Electrostatic discharge (human body model)	V _{ESD}	4000	V
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		40/150/56	

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	R_{\ThetaJA}	83	°C/W
Junction to ambient ^(b)	R_{\ThetaJA}	45	°C/W
Junction to ambient ^(c)	$R_{\Theta JA}$	208	°C/W

NOTES:

(a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 board with a high coverage of single sided 2oz weight copper. Allocation of 6cm² copper 33% to source tab and 66% to drain pin with tab and drain pin electrically isolated.
(b) For a device surface mounted on FR4 board as (a) and measured at t<=10s.

(c) For a device surface mounted on FR4 board with the minimum copper required for connections.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Static characteristics						
Drain-source clamp voltage	V _{DS(AZ)}	60	70	75	V	I _D =10mA
Off-state drain current	I _{DSS}		0.1	3	μA	V _{DS} =12V, V _{IN} =0V
Off-state drain current	I _{DSS}		3	15	μA	V _{DS} =32V, V _{IN} =0V
Input threshold voltage ^(*)	V _{IN(th)}	1	2.1		V	V _{DS} =V _{GS} , I _D =1mA
Input current	I _{IN}		0.7	1.2	mA	V _{IN} =+5V
Input current	I _{IN}		1.5	2.7	mA	V _{IN} =+7V
Input current	I _{IN}		4	7	mA	V _{IN} =+10V
Static drain-source on-state resistance	R _{DS(on)}		520	675	mΩ	V _{IN} =+5V, I _D =0.7A
Static drain-source on-state resistance	R _{DS(on)}		385	550	mΩ	V _{IN} =+10V, I _D =0.7A
Current limit ^(†)	I _{D(LIM)}	0.7	1.0	1.5	А	V _{IN} =+5V, V _{DS} >5V
Current limit ^(†)	I _{D(LIM)}	1.0	1.8	2.3	А	V _{IN} =+10V, V _{DS} >5V
Dynamic characteristics						
Turn-on time (V _{IN} to 90% I _D)	t _{on}		3.0	10	μS	R _L =22Ω, V _{DD} =12V, V _{IN} =0 to +10V
Turn-off time (V _{IN} to 90% I_D)	t _{off}		13	20	μs	R _L =22Ω, V _{DD} =12V, V _{IN} =+10V to 0V
Slew rate on (70 to 50% V_{DD})	$-dV_{DS}/dt_{on}$		8	20	V/µs	$R_L=22\Omega$, $V_{DD}=12V$, $V_{IN}=0$ to +10V
Slew rate off (50 to 70% $\mathrm{V}_\mathrm{DD})$	DV _{DS} /dt _{off}		3.2	10	V/µs	R _L =22Ω, V _{DD} =12V, V _{IN} =+10V to 0V
Protection functions ^(‡)			•	•		
Required input voltage for over temperature protection	V _{PROT}	4.5			V	
Thermal overload trip temperature	T _{JT}	150	175		°C	
Thermal hysteresis			1		°C	
Unclamped single pulse inductive energy T _j =25°C	E _{AS}	550			mJ	I _{D(ISO)} =0.7A, V _{DD} =32V
Unclamped single pulse inductive energy T _j =150°C		200			mJ	I _{D(ISO)} =0.7A, V _{DD} =32V
Inverse diode	1	L	1	l .	I.	
Source drain voltage	V _{SD}			1	V	V _{IN} =0V, -I _D =1.4A

Electrical characteristics (at T_{AMB} = 25°C unless otherwise stated)

NOTES:

(*) The drain current is limited to a reduced value when V_{DS} exceeds a safe level.

(†) Protection features may operate outside spec for $V_{\text{IN}}{<}4.5\text{V}.$

^(‡) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous, repetitive operation.

Application information

The current-limit protection circuitry is designed to de-activate at low V_{DS} to prevent the load current from being unnecessarily restricted during normal operation. The design max DC operating current is therefore determined by the thermal capability of the package/board combination, rather than by the protection circuitry (see graph on page 7 'Typical Output Characteristic'). This does not compromise the products ability to self protect at low V_{DS} .

The overtemperature protection circuit trips at a minimum of 150°C. So the available package dissipation reduces as the maximum required ambient temperature increases. This leads to the following maximum recommended continuous operating currents.

Minimum copper area characteristics

For minimum copper condition as described in note (c)

Max. ambient temperature T _{amb}	Maximum continuous current				
	V _{IN} = 5V	V _{IN} = 10V			
25°C @ V _{IN} = 5V	720	840			
70°C @ V _{IN} = 5V	575	670			
85°C @ V _{IN} = 5V	520	605			
125°C @ V _{IN} = 5V	320	375			

Large copper area characteristics

For large copper area as described in note (a)

Max. ambient temperature T _{amb}	Maximum continuous current			
	V _{IN} = 5V	V _{IN} = 10V		
25°C @ V _{IN} = 5V	1140	1325		
70°C @ V _{IN} = 5V	915	1060		
85°C @ V _{IN} = 5V	825	955		
125°C @ V _{IN} = 5V	510	590		

Typical characteristics

Package outline - SOT223

Conforms to JEDEC TO-261 AA Issue B

Dim.	Millin	neters	Inc	hes	Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
A	-	1.80	-	0.071	е	2.30	BSC	0.090	5 BSC
A1	0.02	0.10	0.0008	0.004	e1	4.60	BSC	0.181	BSC
b	0.66	0.84	0.026	0.033	E	6.70	7.30	0.264	0.287
b2	2.90	3.10	0.114	0.122	E1	3.30	3.70	0.130	0.146
С	0.23	0.33	0.009	0.013	L	0.90	-	0.355	-
D	6.30	6.70	0.248	0.264	-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	Americas	Asia Pacific	Corporate Headquarters		
Zetex GmbH Kustermann-park Balanstraße 59 D-81541 München	Zetex Inc 700 Veterans Memorial Highway Hauppauge, NY 11788 USA	Zetex (Asia Ltd) 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong	Zetex Semiconductors plc Zetex Technology Park, Chadderton Oldham, OL9 9LL United Kingdom		
Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com	Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@zetex.com	Telephone: (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com		

For international sales offices visit www.zetex.com/offices

 $\label{eq:constraint} Zetex \ products \ are \ distributed \ worldwide. \ For \ details, \ see \ www.zetex.com/salesnetwork$

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Issue 4 - September 2006

© Zetex Semiconductors plc 2006

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com