

December 2013

FPAM30LH60 PFC SPM[®] 2 Series for 2-Phase Interleaved PFC

Features

- UL Certified No.E209024 (UL1557)
- 600 V 30 A 2-Phase Interleaved PFC with Integral Gate Driver and Protection
- Very Low Thermal Resistance Using Al₂O₃ DBC Substrate
- Full-Wave Bridge Rectifier and High-Performance Output Diode
- Optimized for 20kHz Switching Frequency
- Built-in NTC Thermistor for Temperature Monitoring
- Isolation Rating: 2500 V_{rms}/min

Applications

2-Phase Interleaved PFC Converter

Related Source

<u>Will Be Released</u>

General Description

The FPAM30LH60 is a PFC SPM[®] 2 module providing a fully-featured, high-performance Interleaved PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature a fullwave rectifier and high-performance output diodes for additional space savings and mounting convenience.

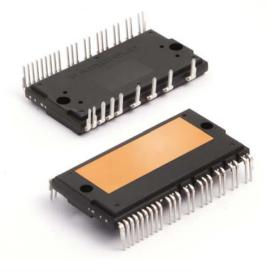
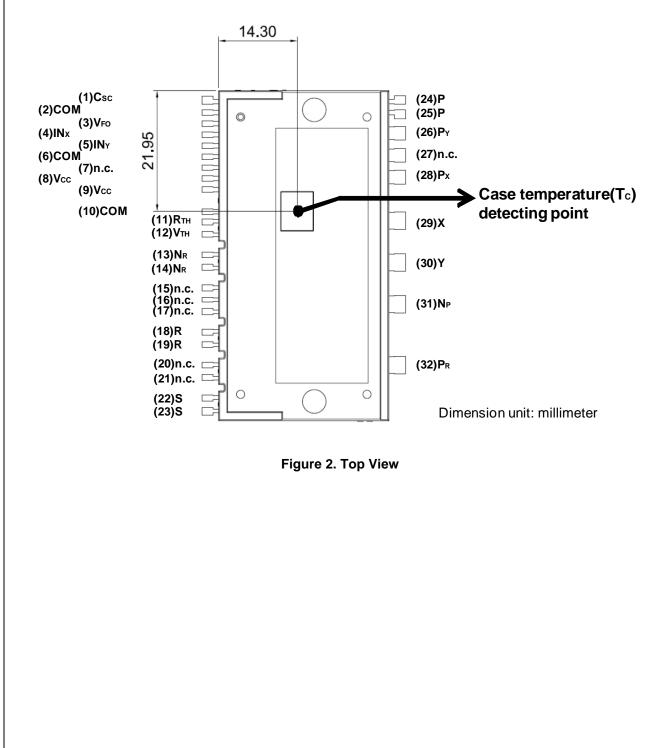
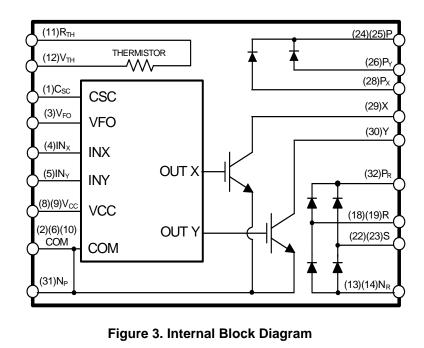


Fig. 1. Package Overview


Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FPAM30LH60	FPAM30LH60	S32EA-032	Rail	8

Integrated Drive, Protection and System Control Functions


- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- Fault signal: corresponding to OC and UV fault
- Built-in thermistor: temperature monitoring
- Input interface : active-HIGH interface, works with 3.3 / 5 V logic, Schmitt trigger input

Pin Configuration

Pin Number	Pin Name	Pin Description	
1	C _{SC}	Signal Input for Over-Current Detection	
2,6,10	СОМ	Common Supply Ground	
3	V _{FO}	Fault Output	
4	IN _X	PWM Input for X IGBT Drive	
5	IN _Y	PWM Input for Y IGBT Drive	
7	N.C	No Connection	
8,9	V _{CC}	Common Supply Voltage of IC for IGBT Drive	
11	R _{TH}	Series Resistor for The Use of Thermistor	
12	V _{TH}	Thermistor Bias Voltage	
13,14	N _R	Negative DC-Link of Rectifier Diode	
15,16,17	N.C	No Connection	
18,19	R	AC Input for R-Phase	
20,21	N.C	No Connection	
22,23	S	AC Input for S-Phase	
24,25	Р	Output of Diode	
26	P _Y	Input of Diode	
27	N.C	No Connection	
28	P _X	Input of Diode	
29	Х	Output of X Phase IGBT	
30	Y	Output of Y Phase IGBT	
31	N _P	Negative DC-Link of IGBT	
32	P _R	Positive DC-Link of Rectifier Diode	

Internal Equivalent Circuit

FPAM30LH60 PFC SPM® 2 Series for 2-Phase Interleaved PFC

FPAM30LH60 PFC SPM® 2 Series for 2-Phase Interleaved PFC

Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified.)

Converter Part

Symbol	Parameter	Conditions	Rating	Unit
V _i	Input Supply Voltage	Applied between R - S	264	V _{rms}
V _{PN}	Output Voltage	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	450	V
V _{PN(Surge)}	Output Supply Voltage (Surge)	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	500	V
V _{CES}	Collector-emitter Voltage	Breakdown Voltage between X - N _P , Y - N _P	600	V
V _{RRM}	Repetitive Peak Reverse Voltage of FRD	Breakdown Voltage between P - P _X , P - P _Y	600	V
V _{RRMR}	Repetitive Peak Reverse Voltage of Rec- tifier	Breakdown Voltage between P _R - R, P _R - S, R - N _R , S - N _R	900	V
*I _F	FRD Forward Current	T _C = 25°C, T _J < 125°C	30	А
*I _{FSM}	Peak Surge Current of FRD	Non-Repetitive, 60 Hz Single Half-Sine Wave	300	А
*I _{FR}	Rectified Forward Current	T _C = 25°C, T _J < 125°C	30	А
*I _{FSMR}	Peak Surge Current of Rectifier	Non-Repetitive, 60 Hz Single Half-Sine Wave	300	А
± *I _C	Each IGBT Collector Current	T _C = 25°C, T _J < 125°C	30	А
± *I _{CP}	Each IGBT Collector Current(Peak)	$T_{C} = 25^{\circ}C, T_{J} < 125^{\circ}C,$ Under 1 ms Pulse Width	60	А
*P _C	Collector Dissipation	T _C = 25°C per IGBT	107	W
ТJ	Operating Junction Temperature	(1st Note 1)	-40 ~ 125	°C

1st Notes:

1. The maximum junction temperature rating of the power chips integrated within the PFC $\text{SPM}^{\textcircled{B}}$ product is 125°C.

2. Marking "*" is calculation value or design factor.

Control Part

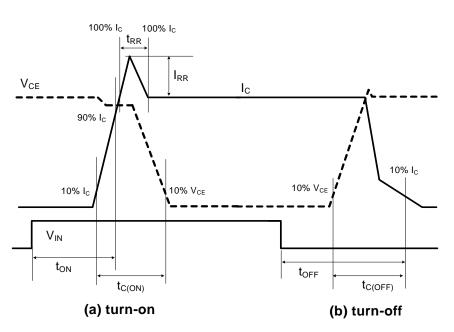
Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	20	V
V _{IN}	Input Signal Voltage	Applied between IN _X , IN _Y - COM	$-0.3 \sim V_{CC} + 0.3$	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	$-0.3 \sim V_{CC} + 0.3$	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	1	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3 ~ V _{CC} + 0.3	V

Total System

Symbol	Parameter	Conditions	Rating	Unit
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat-Sink Plate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction to Case Thermal	Each IGBT under Operating Condition	-	-	0.93	°C/W
R _{th(j-c)D}	Resistance	Each Diode under Operating Condition	-	-	1.42	°C/W
R _{th(j-c)R}		Each Rectifier under Operating Condition	-	-	0.74	°C/W

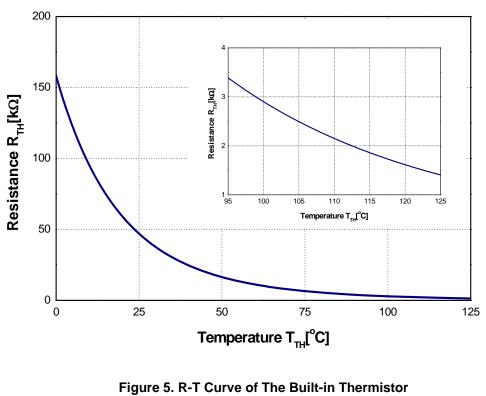

Electrical Characteristics ($T_J = 25^{\circ}C$, unless otherwise specified.)

Converter Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CE(SAT)}	IGBT Saturation Voltage	$V_{CC} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_{C} = 30 \text{ A}$	-	1.7	2.2	V
V_{FF}	FRD Forward Voltage	I _F = 30 A	-	1.9	2.4	V
V _{FR}	Rectifier Forward Voltage	I _{FR} = 30 A	-	1.10	1.25	V
I _{RR}	Switching Characteristic	$V_{PN} = 400 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 15 \text{ A},$	-	11	-	А
t _{RR}		$V_{IN} = 0 V \leftrightarrow 5 V$, Inductive Load (1st Note 3), per IGBT	-	41	-	ns
t _{ON}			-	700	-	ns
t _{OFF}			-	852	-	ns
t _{C(ON)}			-	104	-	ns
t _{C(OFF)}			-	102	-	ns
I _{CES}	Collector - Emitter Leakage Current	V _{CES} = 600 V	-	-	250	μA

1st Notes:

3. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.



FPAM30LH60
PFC S
SPM®
SPM® 2 Series for 2-F
for 2
-Phase Interle
Interleaved
ed PFC

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
IQCC	Quiescent V _{CC} Supply Current	V_{CC} = 15 V, IN _X , IN _Y - COM = 0 V, Supply current between V _{CC} and COM	-	-	2.65	mA
I _{PCC}	Operating V _{CC} Supply Current	V_{CC} = 15 V, f_{PWM} = 20 kHz, Duty = 50% Applied to One PWM Signal Input per IGBT Supply Current between V _{CC} and COM	-	-	6.0	mA
V _{FOH}	Fault Output Voltage	V_{SC} = 0 V, V_{FO} Circuit: 10 k Ω to 5 V Pull-up	4.5	-	-	V
V _{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 10 k Ω to 5 V Pull-up	-	-	0.5	V
V _{SC(Ref)}	Over-Current Protection Trip Level Voltage of CSC Pin	V _{CC} = 15 V	0.45	0.50	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level	10.5	-	13.0	V
UV _{CCR}	Voltage Protection	Reset Level	11.0	-	13.5	V
t _{FOD}	Fault-Out Pulse Width		30	-	-	μS
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _X , IN _Y - COM	2.6	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	Applied between IN _X , IN _Y - COM	-	-	0.8	V
R _{TH}	Resistance of Thermistor	at T _{TH} = 25°C (1st Note 4, Figure 5)	-	47	-	kΩ
		at T _{TH} = 100°C (1st Note 4, Figure 5)	-	2.9	-	kΩ

1st Notes:

4. T_{TH} is the temperature of thermister itself. To know case temperature (T_C), please make the experiment considering your application.

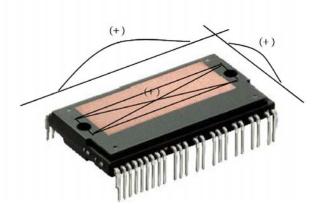
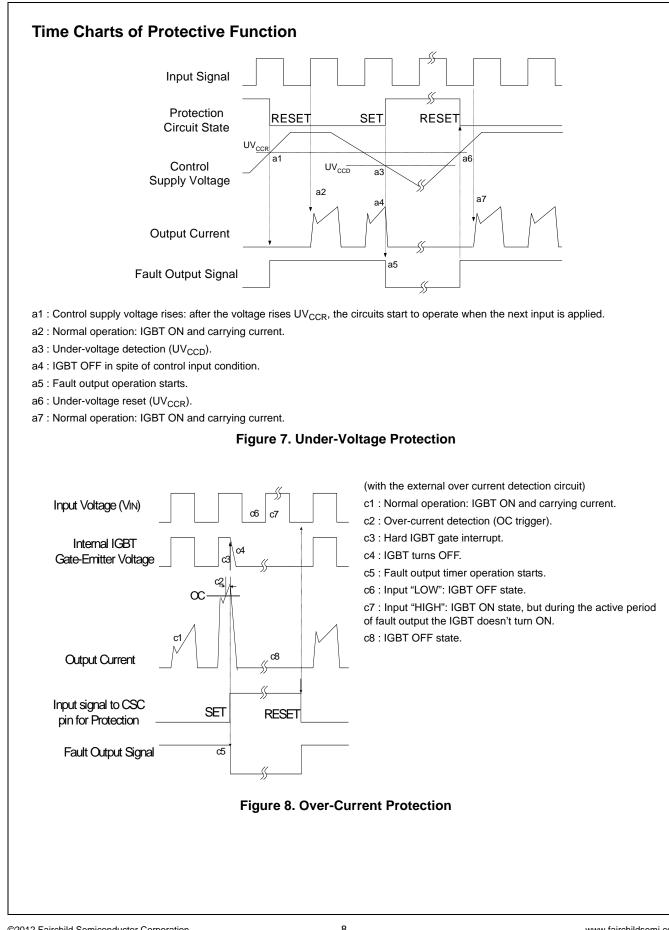
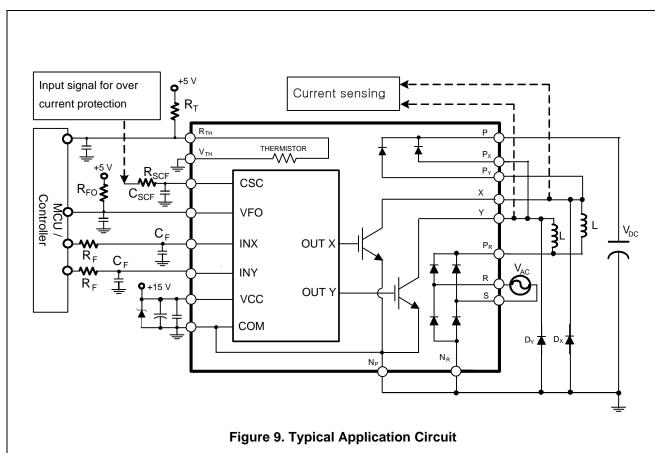
R-T Curve

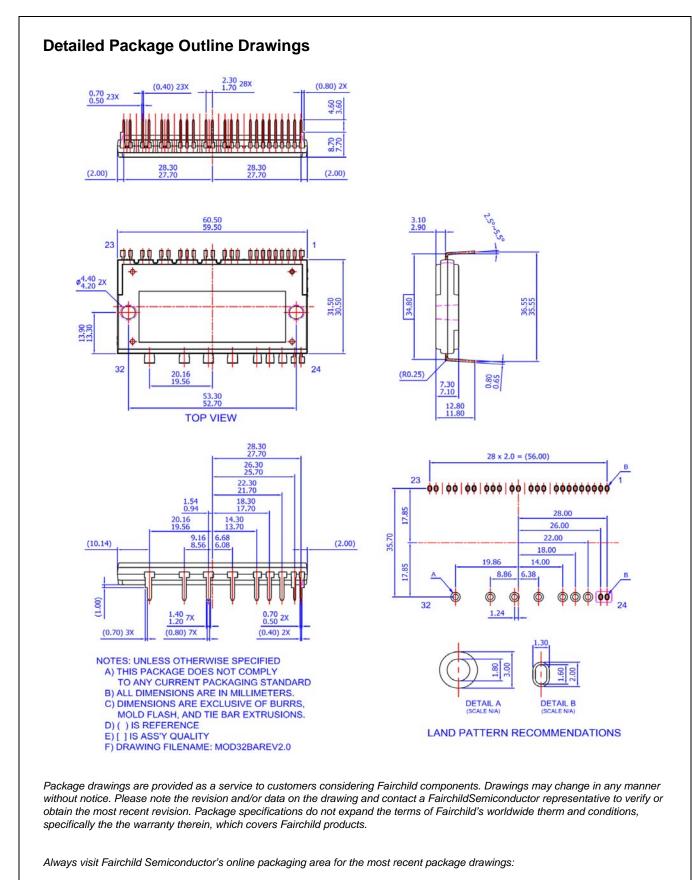
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vi	Input Supply Voltage	Applied between R - S	187	-	253	V _{rms}
l _i	Input Current	T_{C} < 100°C, V _i = 220 V, V _O = 360 V, f _{PWM} = 20 kHz per IGBT	-	-	21	A _{rms}
V _{PN}	Supply Voltage	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	-	-	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	13.5	15.0	16.5	V
dV _{CC} /dt	Supply Variation		-1	-	1	V / μs
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	-	-	1	mA
f _{PWM}	PWM Input Frequency	-40°C < T _J < 125°C per IGBT	-	20	-	kHz

Recommended Operating Conditions (T_J = 25°C, unless otherwise specified.)

Mechanical Characteristics and Ratings

Parameter	C	Conditions		Тур.	Max.	Unit
Mounting Torque	Mounting Screw: M4	Recommended 0.98 N•m	0.78	0.98	1.17	N•m
		Recommended 10 kg•cm	8	10	12	kg•cm
Device Flatness	See Figure 6	See Figure 6		-	+150	μ m
Weight			-	32	-	g


Figure 6. Flatness Measurement Position

2nd Notes:

- 1. To avoid malfunction, the wiring of each input should be as short as possible(less than 2 ~ 3 cm).
- V_{FO} output is open-drain type. This signal line should be pulled up to the positive-side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA.
 Input signal is active-HIGH type. There is a 5 kΩ resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. R_FC_F constant should be selected in the range 50~150ns(recommended R_F = 100 Ω, C_F = 1 nF).
- 4. To prevent error of the protection function, the wiring related with R_{SCF} and C_{SCF} should be as short as possible.
- 5. In the over current protection circuit, please select the R_{SCF} , C_{SCF} time constant in the range 1.5 ~ 2 μ s.
- Each capacitors should be mounted as close to the PFC SPM[®] product pins as possible.
- 7. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the MCU / controller and the relays.
- 8. Internal NTC thermistor can be used for monitoring of the case temperature and protecting the device from the overheating operation. Select an appropriate resistor R_T according to the application.
- 9. It is recommended that anti-parallel diode(D_X ,D_Y) be connected with each IGBT.

http://www.fairchildsemi.com/dwg/MO/MOD32BA.pdf

FPAM30LH60 PFC SPM® 2 Series for 2-Phase Interleaved PFC

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerTM AX-CAP **BitSiCTM** Build it Now™ **CorePLUS™** CorePOWER CROSSVOLT CTLTh Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMaxTh ESBCTh Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore[™]

FRFET Global Power Resource[™] GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAXTM **ISOPLANAR**TM Making Small Speakers Sound Louder and Better MegaBuck™ MICROCOUPLER MicroFET^{IN} MicroPakTM MicroPak2™ MillerDrive[™] MotionMax[™] mWSaver OptoHiT™ **OPTOLOGIC®**

F-PFS"

0 PowerTrench[®] PowerXS[™] Programmable Active Droop™ QFET QSTM. Quiet Series[™] RapidConfigure™ \mathbf{O}^{M} Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax™ SMART START Solutions for Your Success™ SPM® STEAL THTM SuperFET SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS SyncFETTM

Sync-Lock™ SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM TinyBoost® TinyCalc™ TinyLogio® TINYOPTO™ TinyDower™ TinyPower™ TinyPower™ TinyPower™ TinyPower™ TinyWM™ TranSiC™ TraISC™ TRUECURENT® µSerDes™ Scopes*

VICT SerDes" UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR®

DISCLAIMER

FETBench™

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 166

AMEYA360 Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

> Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales :

- Direct +86 (21) 6401-6692
- Email amall@ameya360.com
- QQ 800077892
- Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com