

Sample &

Buv

SN65HVD233-HT

SLLS933G -NOVEMBER 2008-REVISED JANUARY 2015

SN65HVD233-HT 3.3-V CAN Transceiver

Technical

Documents

1 Features

- Bus-Pin Fault Protection Exceeds ±36 V
- Bus-Pin ESD Protection Exceeds 16-kV Human Body Model (HBM)
- Compatible With ISO 11898
- Signaling Rates⁽¹⁾ up to 1 Mbps
- Extended –7-V to 12-V Common-Mode Range
- High-Input Impedance Allows for 120 Nodes
- LVTTL I/Os Are 5-V Tolerant
- Adjustable Driver Transition Times for Improved Signal Quality
- Unpowered Node Does Not Disturb the Bus
- Low-Current Standby Mode: 200 µA Typical
- Power-Up and Power-Down Glitch-Free Bus Inputs and Outputs
 - High-Input Impedance With Low V_{CC}
 - Monolithic Output During Power Cycling
- Loopback for Diagnostic Functions Available
- DeviceNet[™] Vendor ID #806
- (1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

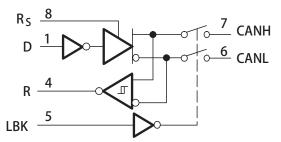
2 Applications

- Down-Hole Drilling
- High-Temperature Environments
- Industrial Automation
 - DeviceNet Data Buses
 - Smart Distributed Systems (SDS[™])
- SAE J1939 Data Bus Interfaces
- NMEA 2000 Data Bus Interfaces
- ISO 11783 Data Bus Interfaces
- CAN Data Bus Interfaces
- Controlled Baseline
- One Assembly or Test Site
- One Fabrication Site
- Available in Extreme (–55°C to 210°C) Temperature Range ⁽¹⁾
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
- Texas Instruments high-temperature products use highly optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures.
- (1) Custom temperature ranges available

3 Description

The SN65HVD233 is used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard, with the exception that the thermal shutdown is removed. As a CAN transceiver, the device provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the device features cross wire, overvoltage, and loss-of-ground protection to ± 36 V, with common-mode transient protection of ± 100 V. This device operates over a -7-V to 12-V common-mode range with a maximum of 60 nodes on a bus.


If the common-mode range is restricted to the ISO 11898 standard range of -2 V to 7 V, up to 120 nodes may be connected on a bus. This transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
	SOIC (8)	4.90 mm x 3.91 mm				
	CFP-HKJ (8)	6.90 mm x 5.65 mm				
SN65HVD233-HT	CFP-HKQ (8)	6.90 mm x 5.65 mm				
	CDIP SB (8)	40.64 mm x 10.04 mm				

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Functional Block Diagram

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Revi	ision History 2
5	Des	cription (Continued)3
6	Pin	Configuration and Functions 3
7	Spe	cifications6
	7.1	Absolute Maximum Ratings 6
	7.2	ESD Ratings 6
	7.3	Recommended Operating Conditions 6
	7.4	Thermal Information 7
	7.5	Driver Electrical Characteristics
	7.6	Receiver Electrical Characteristics 9
	7.7	Driver Switching Characteristics 10
	7.8	Receiver Switching Characteristics 11
	7.9	Device Switching Characteristics 11
	7.10	Typical Characteristics 13
8	Para	meter Measurement Information 15

4 Revision History

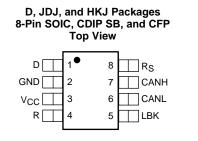
Cł	nanges from Revision F (August 2012) to Revision G	Page
•	Added Handling Rating table, Feature Description section, Device Functional Modes, Application and	
	Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation	
	Support section, and Mechanical, Packaging, and Orderable Information section	6

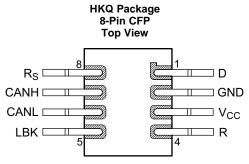
9	Deta	iled Description	20
		Overview	
	9.2	Functional Block Diagram	20
	9.3	Feature Description	20
	9.4	Device Functional Modes	. 22
10	App	lication and Implementation	24
	10.1	Application Information	
	10.2	Typical Application	. 24
11	Pow	er Supply Recommendations	26
12	Layo	out	26
	12.1	Layout Guidelines	26
	12.2	Layout Example	. 27
13	Devi	ice and Documentation Support	28
	13.1	Trademarks	28
	13.2	Electrostatic Discharge Caution	. 28
	13.3	Glossary	28
14	Mec	hanical, Packaging, and Orderable	
	Infor	mation	28

Copyright © 2008–2015, Texas Instruments Incorporated

www.ti.com

5 Description (Continued)


 R_s (pin 8) provides for three modes of operation: high-speed, slope control, or low-power standby mode. The high-speed mode of operation is selected by connecting R_s directly to ground, thus allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at R_s , because the slope is proportional to the output current of the pin. Slope control is implemented with a resistor value of 10 k Ω to achieve a slew rate of $145 V/v_{R}$ and a value of 100 k Ω to achieve a slew rate of


≠ 15 V/µs, and a value of 100 kΩ to achieve ≠ 2 V/µs slew rate. For more information about slope control, refer to the *Application and Implementation* section.

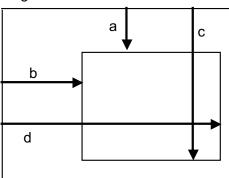
The SN65HVD233 enters a low-current standby mode, during which the driver is switched off and the receiver remains active if a high logic level is applied to R_s . The local protocol controller reverses this low-current standby mode when it needs to transmit to the bus.

A logic high on the loopback (LBK, pin 5) of the SN65HVD233 places the bus output and bus input in a highimpedance state. The remaining circuit remains active and available for the driver to receiver loopback, selfdiagnostic node functions without disturbing the bus.

6 Pin Configuration and Functions

HKQ as formed or HKJ mounted dead bug.

Pin Functions

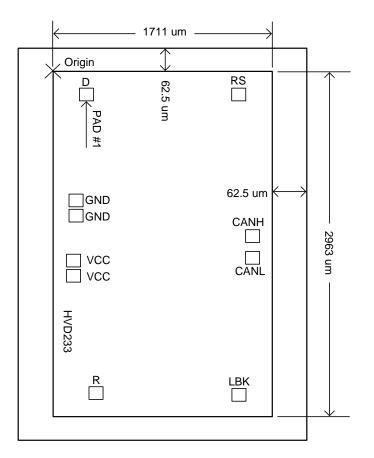

PIN		ТҮРЕ	DESCRIPTION				
NO.	NAME	TTPE	DESCRIPTION				
1	D	I	CAN Transmit Data input (Low for dominant and HIGH for recessive bus states)				
2	GND	Power	Ground connection				
3	VCC	Power	VCC				
4	R	0	CAN Receive data output				
5	LBK	I	LoopBack (Active high to enable controller loopback mode)				
6	CFANL	I/O	Low level CAN bus line				
7	CANH	I/O	High level CAN bus line				
8	Rs	l	High Speed, Slope control, and standby enable mode input.				

SN65HVD233-HT SLLS933G – NOVEMBER 2008 – REVISED JANUARY 2015 TEXAS INSTRUMENTS

www.ti.com

Bare Die Information							
DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION				
15 mils.	Silicon with backgrind	GND	Al-Si-Cu (0.5%)				

Origin



Bond Pad Coordinates In Microns - Rev A

DESCRIPTION	PAD NUMBER	Α	В	С	D
D	1	86.40	157.85	203.40	274.85
GND	2	1035.05	69.75	1150.05	184.75
GND	3	1168.15	69.75	1283.15	184.75
VCC	4	1572.05	51.85	1687.05	166.85
VCC	5	1711.95	51.85	1826.95	166.85
R	6	2758.85	237.65	2873.85	352.65
LBK	7	2774.25	1429.985	2889.25	1544.95
CANL	8	1549.90	1544.95	1664.90	1659.95
CANH	9	1351.45	1544.95	1466.45	1659.95
RS	10	83.50	1429.95	198.50	1544.95

Copyright © 2008–2015, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT
V _{CC}	Supply voltage range	-0.3	7	V
	Voltage range at any bus terminal (CANH or CANL)	-36	36	V
	Voltage input range, transient pulse (CANH and CANL) through 100 Ω (see Figure 19)	-100	100	V
VI	Input voltage range (D, R, R _S , LBK)	-0.5	7	V
I _O	Receiver output current	-10	10	mA
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

7.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC	CANH, CANL, and GND	±16000	
V _(ESD)	Electrostatic discharge	JS-001, all pins ⁽¹⁾	All pins	±3000	V
		Charged device model (CDM), per JEDEC specificatio	±1000		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

$T_A = -55^{\circ}C$ to 210°C

			MIN	MAX	UNIT
V _{CC}	Supply voltage		3	3.6	V
	Voltage at any bus terminal (separate	ely or common mode)	-7	12	V
VIH	High-level input voltage	D, LBK	2	5.5	V
VIL	Low-level input voltage	D, LBK	0	0.8	V
V _{ID}	Differential input voltage		-6	6	V
	Resistance from R _S to ground	0	100	kΩ	
V _{I(Rs)}	Input voltage at R _S for standby		0.75 V _{CC}	5.5	V
	Lich lovel entruit entreast	Driver	50		~
I _{OH}	High-level output current	Receiver	-10		mA
		Driver		50	
IOL	Low-level output current	Receiver		10	mA
TJ	Operating junction temperature			212	°C
T _A	Operating free-air temperature ⁽¹⁾		-55	210	°C

(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

7.4 Thermal Information

			SN65HVD233-HT					
	THERMAL METRIC ⁽¹⁾	D	HJK/HKQ	JDJ	UNIT			
		8 PINS	8 PINS	8 PINS				
$R_{\theta J A}$	Junction-to-ambient thermal resistance	106.4	146.1	72.7				
R _{0JC(top)}	Junction-to-case (top) thermal resistance	55.8	23.7	3.1				
$R_{\theta JB}$	Junction-to-board thermal resistance	46.5	152.0	38.3	°C/W			
Ψ_{JT}	Junction-to-top characterization parameter	10.7	20.7	6.0				
Ψ _{JB}	Junction-to-board characterization parameter	45.9	93.1	26.9				

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SLLS933G - NOVEMBER 2008 - REVISED JANUARY 2015

7.5 Driver Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

		:D	TEST CONDITIONS	T _A = -	-55°C to	125°C	TA	= 175°	C ⁽¹⁾) $T_A = 210^{\circ}C^{(2)}$			UNIT
	PARAMETE	-R	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	Bus output	CANH	$D = 0 V, R_S = 0 V,$	2.45		V _{CC}	2.45		V_{CC}	2.45		V_{CC}	
V _{O(D)}	voltage (dominant)	CANL	See Figure 13 and Figure 14	0.5		1.25	0.5		1.25	0.5		1.25	V
	Bus output	CANH	$D = 3 V, R_S = 0 V,$		2.3			2.3			2.3		
Vo	voltage (recessive)	CANL	See Figure 13 and Figure 14		2.3			2.3			2.3		V
	Differential	output	$D = 0 V, R_S = 0 V,$ See Figure 13 and Figure 14	1.5	2	3	1.4	1.75	3	1.4	1.75	3	V
V _{OD(D)}	voltage (Do	ominant)	$D = 0 V, R_S = 0 V,$ See Figure 14 and Figure 15	1.1	2	3	1.1	1.47	3	1.1	1.47	3	v
V _{OD}	Differential voltage (Re		$D = 3 V, R_S = 0 V,$ See Figure 13 and Figure 14	-120		12	-120		12	-120		12	mV
	vollage (Ne	cessive)	$D = 3 V, R_S = 0 V, No$ load	-0.5		0.05	-0.5		0.8	-0.5		1.2	V
V _{OC(pp)}	Peak-to-peak common-mode output voltage		t See Figure 21		1			1			1		V
I _{IH}	High-level input curre	nt D, LBł	C D = 2 V	-30		30	-30		30	-30		30	μA
IIL	Low-level input curre	nt D, LBł	C D = 0.8 V	-30		30	-30		30	-30		30	μA
			V _{CANH} = -7 V, CANL open, See Figure 24	-250			-250			-250			
1	Short-circu	it output	V _{CANH} = 12 V, CANL open, See Figure 24			1			1			1	mA
l _{os}	current		V _{CANL} = -7 V, CANH open, See Figure 24	-1			-1			-1			
			V _{CANL} = 12 V, CANH open, See Figure 24			250			250			250	
Co	Output capacitance		See receiver input capacitance										
I _{IRs(s)}	R _S input cu standby	rrent for	$R_{S} = 0.75 V_{CC}$	-10			-10			-10			μA
	S	standby	$\label{eq:RS} \begin{array}{l} R_{S} = V_{CC}, \ D = V_{CC}, \\ LBK = 0 \ V \end{array}$		200	600		400	600		400	600	μA
I _{CC}	Supply current	ominant				6			6			6	m ^
	F	Recessive	D =t V_{CC} , No load, LBK = 0 V, R _S = 0 V			6			6			6	mA

(1)

Minimum and maximum parameters are characterized for operation at $T_A = 175$ °C and production tested at $T_A = 125$ °C. Minimum and maximum parameters are characterized for operation at $T_A = 210$ °C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. (2)

7.6 Receiver Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	DAD		TEOT		T _A = -	55°C to	125°C	TA	= 175°	C ⁽¹⁾	T _A = 210°C ⁽²⁾			
	PARAME	TER	TEST CC	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IT+}	Positive- threshold	going input I voltage				620	900		600	900		600	900	mV
V _{IT-}	Negative input thre voltage		LBK = 0 V, See	LBK = 0 V, See Table 1		715		500	725		500	725		mV
V _{hys}	Hysteres (V _{IT+} – V	is voltage _{IT–})				100			140			140		mV
V _{OH}	High-leve voltage	el output	I _O = -4 mA, See	e Figure 18	2.4			2.4			2.4			V
V _{OL}	Low-leve voltage	l output	I _O = 4 mA, See	Figure 18			0.4			0.4			0.4	V
			CANH or CANL = 12 V		140		500	140		500	140		500	
I _I Bus inp	Ruc inpu	tourront	CANH or CANL = 12 V, $V_{CC} = 0 V$	Other bus pin = 0 V, D = 3 V,	200		600	200		700	200		800	μA
	Bus inpu	Current	CANH or CANL = -7 V	D = 3 V, LBK = 0 V, $R_{S} = 0 V,$	-610		-150	-610		-150	-610		-150	μΑ
			CANH or CANL = $-7 V$, V _{CC} = 0 V		-450		-130	-450		-130	-450		-130	
CI	Input cap (CANH c	oacitance or CANL)	Pin to ground, $V_I = 0.4 \sin (4E)$ D = 3 V, LBK =			45			55			55		pF
C _{ID}	Different capacita		Pin to pin, V _I = 0.4 sin (4E D = 3 V, LBK =			15			15			15		pF
R _{ID}	Different resistanc			0.1/	40		110	40		110	40		110	kΩ
R _{IN}	Input res (CANH c		D = 3 V, LBK = 0 V		20		51	19		51	18		51	kΩ
		Standby	$R_S = V_{CC}, D = V_{CC}$	V _{CC} , LBK = 0 V		200	600		400	600		400	600	μA
I _{CC}	Supply current	Dominant	D = 0 V, No loa LBK = 0 V	id, $R_{S} = 0 V$,			6			6			6	٣٨
00	ounon	Recessive	$D = V_{CC}$, No loa LBK = 0 V	ad, $R_S = 0 V$,			6			6			6	mA

(1) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C and are not chacterized or production tested at $T_A = 175^{\circ}$ C.

(2) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. SLLS933G-NOVEMBER 2008-REVISED JANUARY 2015

7.7 Driver Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	T _A = -	-55°C to	125°C	TA	= 175°	C ⁽¹⁾	T _A = 210°C ⁽²⁾			UNIT	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
		R _S = 0 V, See Figure 16		35	85		50			50			
t _{PLH}	Propagation delay time, low-to-high-level	R_S with 10 k Ω to ground, See Figure 16		70	125		75			75		ns	
	output	R_S with 100 k Ω to ground, See Figure 16		500	870		500			500			
	Propagation delay	R _S = 0 V, See Figure 16		70	120		70			70			
t _{PHL}	time, high-to-low-level	R_S with 10 k Ω to ground, See Figure 16		130	180		130			130		ns	
	output	R_S with 100 k Ω to ground, See Figure 16		870	1200		870			870			
		R _S = 0 V, See Figure 16		35			9			9			
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	R_S with 10 k Ω to ground, See Figure 16		60			35			35		ns	
		R_S with 100 k Ω to ground, See Figure 16		370			475			475			
t _r	Differential output signal rise time		20		70	20		75	20		75		
t _f	Differential output signal fall time	R _S = 0 V, See Figure 16	18		70	20		75	20		75	ns	
t _r	Differential output signal rise time	R_{S} with 10 kΩ to ground,	30		135	30		140	30		140		
t _f	Differential output signal fall time	See Figure 16	30		135	30		140	30		140	ns	
t _r	Differential output signal rise time	R_S with 100 kΩ to ground,	250		1400	250		1400	250		1400		
t _f	Differential output signal fall time	See Figure 16	350		1400	350		1400	350		1400	ns	
t _{en(s)}	Enable time from standby to dominant	See Figure 20		0.6	1.5		0.6	1.5		0.6	1.5	μs	

(1)

Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but not production tested at $T_A = 175^{\circ}$ C or 210°C. Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. (2)

www.ti.com

STRUMENTS

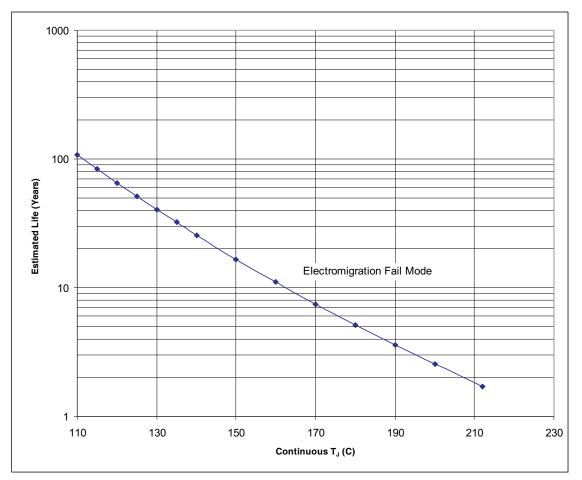
EXAS

7.8 Receiver Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A = -55°C to 125°C			T _A = 175°C ⁽¹⁾			$T_A = 210^{\circ}C^{(2)}$			UNIT
	PARAIVIETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to- high-level output			35	60		50	60		50	60	ns
t _{PHL}	Propagation delay time, high- to-low-level output	See Figure 18		35	60		45	60		45	60	ns
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})			7			5			5		ns
t _r	Output signal rise time			2	6.5		6.5	8		6.5	8	ns
t _f	Output signal fall time			2	6.5		6.5	9		6.5	9	ns

Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but not production tested at $T_A = 175^{\circ}$ C or 210°C. Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. (1)(2)

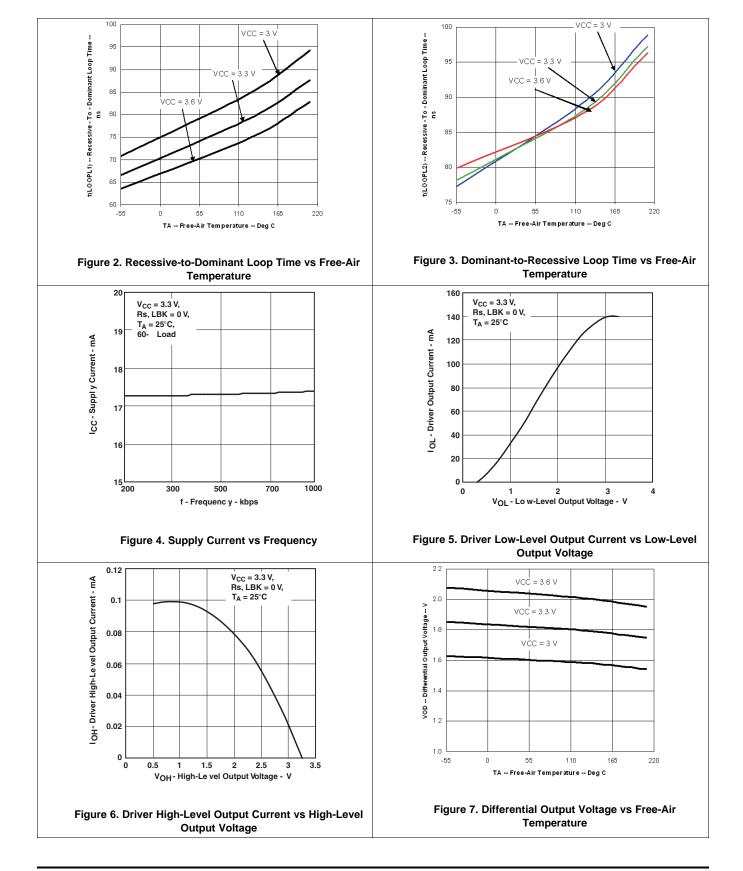

Production test limits with statistical guardbands are used to ensure high temperature performance.

7.9 Device Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A = -	55°C to	125°C	TA	= 175°	C ⁽¹⁾	TA	= 210°	C ⁽²⁾	UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _(LBK)	Loopback delay, driver input to receiver output	See Figure 23		7.5	15		12	15		12	15	ns
Total loop delay.		R _S = 0 V, See Figure 22		70	135		90	135		90	135	
d	driver input to receiver output,	R_S with 10 k Ω to ground, See Figure 22		105	190		115	190		115	190	ns
	recessive to dominant	R_S with 100 k Ω to ground, See Figure 22		535	1000		430	1000		430	1000	
	Total loop delay,	R _S = 0 V, See Figure 22		70	135		98	135		98	135	
t _(loop2)	driver input to receiver output,	R_S with 10 k Ω to ground, See Figure 22		105	105 190 150 1		190		150	190	ns	
	dominant to recessive	R_S with 100 $k\Omega$ to ground, See Figure 22		535	1100		880	1200		880	1200	

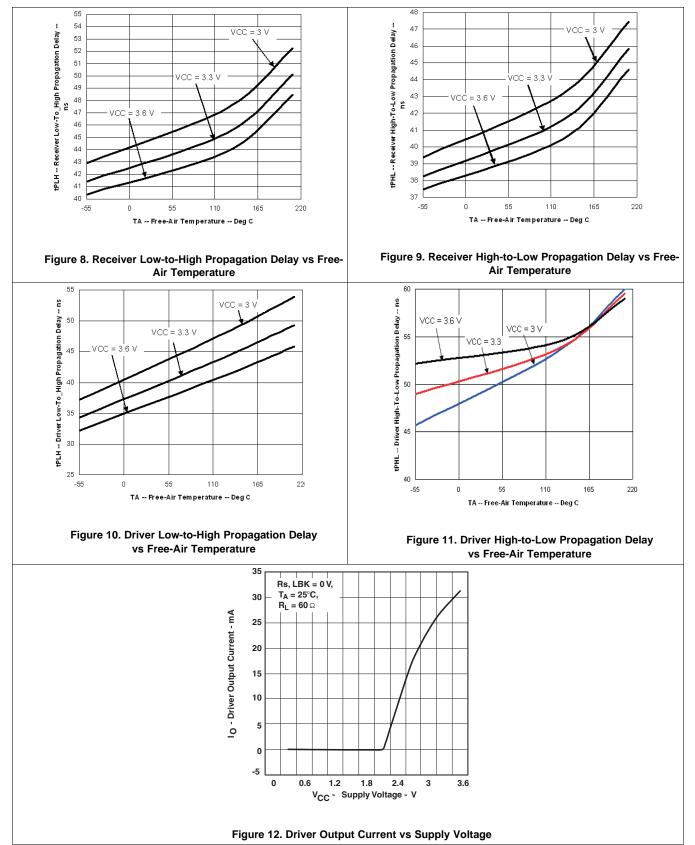
Minimum and maximum parameters are characterized for operation at T_A = 210°C but not production tested at T_A = 175°C or 210°C.
 Minimum and maximum parameters are characterized for operation at T_A = 210°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.



- See the Specifications for absolute maximum and minimum recommended operating conditions. Α.
- Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect В. life).

Figure 1. Operating Life Derating Chart SN65HVD233HD, SN65HVD233SJD, SN65HVD233SKGDA, SN65HVD233SHKJ, SN65HVD233SHKQ

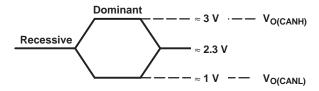
7.10 Typical Characteristics



SN65HVD233-HT SLLS933G – NOVEMBER 2008 – REVISED JANUARY 2015

www.ti.com

Typical Characteristics (continued)


Copyright © 2008–2015, Texas Instruments Incorporated

8 Parameter Measurement Information

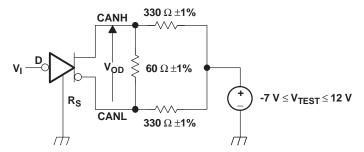
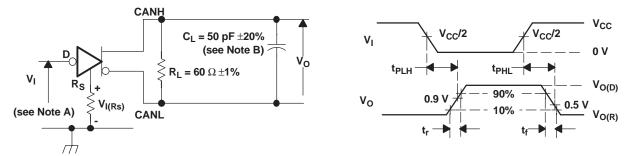



Figure 15. Driver V_{oD}

- A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) \leq 125 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .
- B. C_L includes fixture and instrumentation capacitance.

Figure 16. Driver Test Circuit and Voltage Waveforms

NSTRUMENTS

www.ti.com

XAS

Parameter Measurement Information (continued)

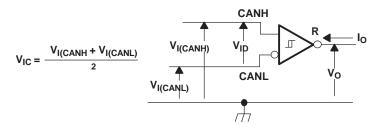
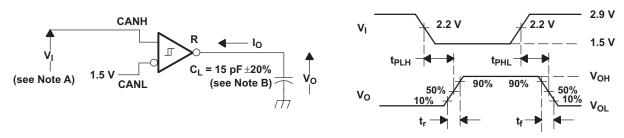
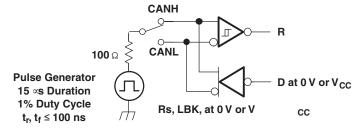



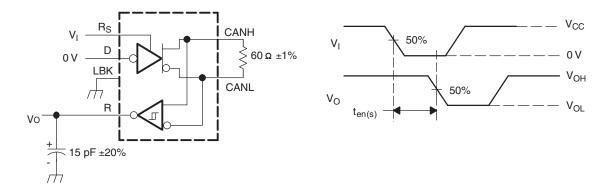
Figure 17. Receiver Voltage and Current Definitions



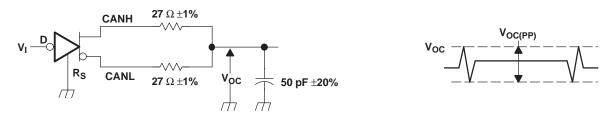
- A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) \leq 125 kHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
- B. C_L includes fixture and instrumentation capacitance.

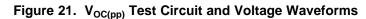
Figure 18. Receiver Test Circuit and Voltage Waveforms

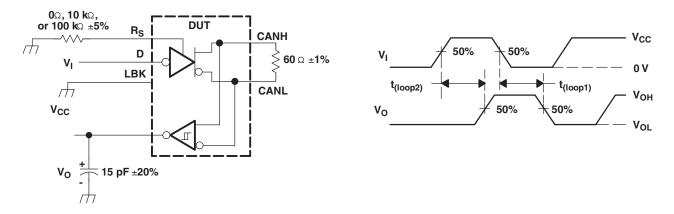
INP	UT	Ουτ	PUT	MEASURED							
V _{CANH}	V _{CANL}	I	R	V _{ID}							
–6.1 V	-7 V	L		900 mV							
12 V	11.1 V	L	V	900 mV							
-1 V	-7 V	L	V _{OL}	6 V							
12 V	6 V	L		6 V							
-6.5 V	-7 V	Н		500 mV							
12 V	11.5 V	Н		500 mV							
-7 V	-1 V	Н	V _{OH}	6 V							
6 V	12 V	н	1	6 V							
Open	Open	Н	1	Х							


Table 1. Differential Input Voltage Threshold Test

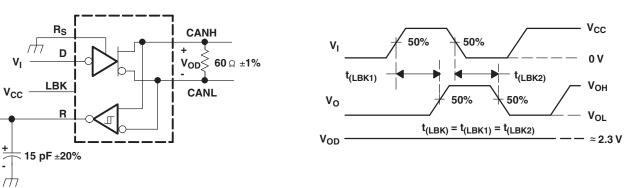
NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.






NOTE: All VI input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

NOTE: All V₁ input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.



NOTE: All V_I input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

Figure 22. T_(loop) Test Circuit and Voltage Waveforms

Vo

NOTE: All V_I input pulses are supplied by agenerator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

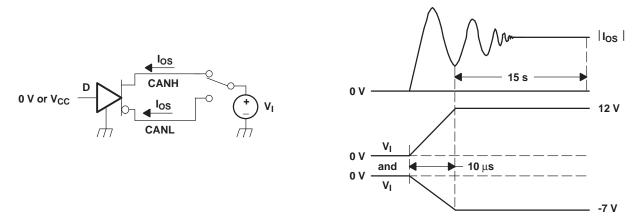
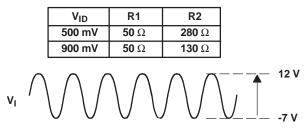



Figure 24. Ios Test Circuit and Waveforms

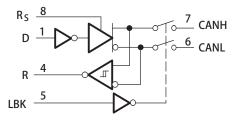
 $R = 25^{\circ}C$ $R2 \pm 1\%$ $R1 \pm 1\%$ V_{ID} CANH V_{ID} CANL $R2 \pm 1\%$ $R1 \pm 1\%$ V_{ac} V_{I} V_{I}

The R Output State Does Not Change During Application of the Input Waveform.

NOTE: All input pulses are supplied by a generator with $f \le 1.5$ MHz.

Figure 25. Common-Mode Voltage Rejection

9 Detailed Description


9.1 Overview

Controller Area Network (CAN) is a robust multi master-master, differential signaling, serial communications bus specified by the ISO 11898 family of standards. TI's SSN65HVD23x family of transceivers solve specialized networking requirements for various applications.

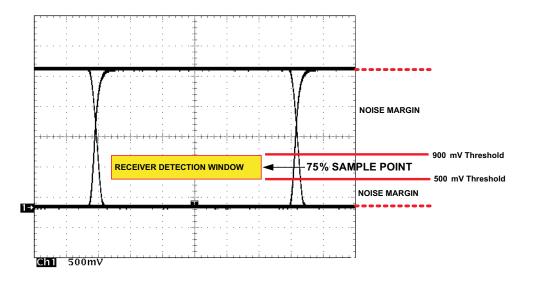
Table	2. Available	Options
-------	--------------	---------

ORDERABLE PART NUMBER	LOW-POWER MODE	SLOPE CONTROL	DIAGNOSTIC LOOPBACK	AUTOBAUD LOOPBACK
SN65HVD233HD				
SN65HVD233SJD				
SN65HVD233SKGDA	200-µA standby mode	Adjustable	Yes	No
SN65HVD233SHKJ				
SN65HVD233SHKQ				

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 ISO 11898 Compliance of SN65HVD23x Family of 3.3-V CAN Transceivers


Many users value the low power consumption of operating CAN transceivers from a 3.3-V supply. However, some are concerned about the interoperability with 5-V supplied transceivers on the same bus. This section analyzes this situation to address those concerns.

9.3.1.1 Differential Signal

CAN is a differential bus where complementary signals are sent over two wires, and the voltage difference between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage difference and outputs the bus state with a single-ended output signal.

Feature Description (continued)

Figure 26. Typical SN65HVD23x Differential Output Voltage Waveform

The CAN driver creates the difference voltage between CANH and CANL in the dominant state. The dominant differential output of the SN65HVD23x is greater than 1.5 V and less than 3 V across a $60-\Omega$ load. The minimum required by ISO 11898 is 1.5 V and the maximum is 3 V. These are the same limiting values for 5-V supplied CAN transceivers. The bus termination resistors drive the recessive bus state and not the CAN driver.

A CAN receiver is required to output a recessive state with less than 500 mV and a dominant state with more than 900-mV difference voltage on its bus inputs. The CAN receiver must do this with common-mode input voltages from -2 V to 7 V. The SN65HVD23x family receivers meet these same input specifications as 5-V supplied receivers.

9.3.1.1.1 Common-Mode Signal

A common-mode signal is an average voltage of the two signal wires that the differential receiver rejects. The common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. Obviously, the supply voltage of the CAN transceiver has nothing to do with noise. The SN65HVD23x family driver lowers the common-mode output in a dominant bit by a couple hundred millivolts from that of most 5-V drivers. While this does not fully comply with ISO 11898, this small variation in the driver common-mode output is rejected by differential receivers and does not affect data, signal noise margins, or error rates.

9.3.1.2 Interoperability Of 3.3-V CAN in 5-V CAN Systems

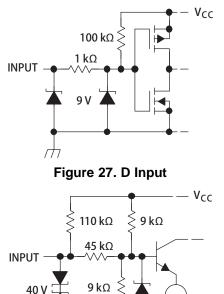
The 3.3-V–supplied SN65HVD23x family of CAN transceivers are electrically interchangeable with 5-V CAN transceivers. The differential output is the same. The recessive common-mode output is the same. The dominant common-mode output voltage is a couple hundred millivolts lower than 5-V–supplied drivers, while the receivers exhibit identical specifications as 5-V devices.

Electrical interoperability does not assure interchangeability however. Most implementers of CAN buses recognize that ISO 11898 does not sufficiently specify the electrical layer and that strict standard compliance alone does not ensure interchangeability. This comes only with thorough equipment testing.

9.4 Device Functional Modes

9.4.1 Function Tables

Table 3. Function Table (Driver)⁽¹⁾

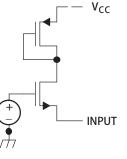
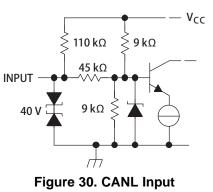

	DRIVER											
	INPUTS		OUTPUTS									
D	LBK	R _s	CANH	CANL	BUS STATE							
Х	Х	>0.75 V _{CC}	Z	Z	Recessive							
L	L or open	<0.22.1/	Н	L	Dominant							
H or open	Х	≤0.33 V _{CC}	Z	Z	Recessive							
Х	Н	≤0.33 V _{CC}	Z	Z	Recessive							

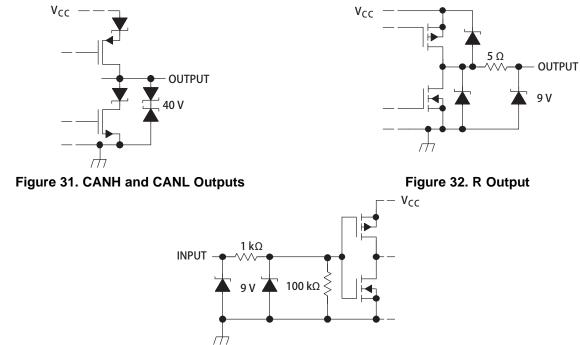
(1) H = high level, L = low level, Z = high impedance, X = irrelevant, ? = indeterminate

Table 4. Function Table (Receiver)

	RECEIVER											
	INPUTS											
BUS STATE	BUS STATE $V_{ID} = V_{(CANH)} - V_{(CANL)}$ LBKD											
Dominant	V _{ID} ≥ 0.9 V	L or open	Х	L								
Recessive	V _{ID} ≤ 0.5 V or open	L or open	H or open	Н								
?	$0.5 \text{ V} < \text{V}_{\text{ID}} < 0.9 \text{ V}$	L or open	H or open									
Х	X		L	L								
Х	X	H	Н	Н								

9.4.2 Equivalent Input and Output Schematic Diagrams


Figure 28. R_S Input

Ш

SN65HVD233-HT SLLS933G – NOVEMBER 2008 – REVISED JANUARY 2015

INSTRUMENTS

FXAS

www.ti.com

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 Diagnostic Loopback

The loopback (LBK) function of the SN65HVD233 is enabled with a high-level input to pin 5. This forces the driver into a recessive state and redirects the data (D) input at pin 1 to the received-data (R) output at pin 4. This allows the host controller to input and read back a bit sequence to perform diagnostic routines without disturbing the CAN bus. A typical CAN bus application is displayed in Figure 34.

If the LBK pin is not used, it may be tied to ground (GND). However, it is pulled low internally (defaults to a low-level input) and may be left open if not in use.

10.2 Typical Application

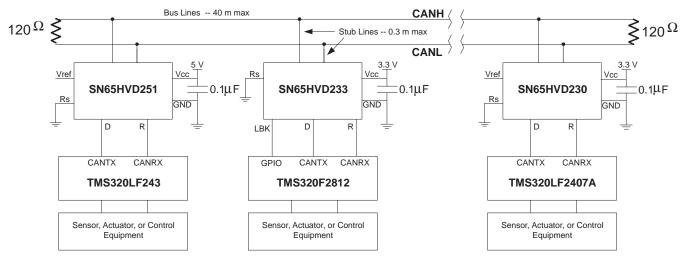


Figure 34. Typical SN65HVD233 Application

10.2.1 Design Requirements

The High-Speed ISO 11898 Standard specifications are given for a maximum signaling rate of 1 Mbps with a bus length of 40 m and a maximum of 30 nodes. It also recommends a maximum un-terminated stub length of 0.3 m. The cable is specified to be a shielded or unshielded twisted-pair with a 120-W characteristic impedance (ZO). The Standard defines a single line of twisted-pair cable with the network topology as shown in Figure 34. It is terminated at both ends with 120-W resistors, which match the characteristic impedance of the line to prevent signal reflections. According to ISO 11898, placing RL on a node should be avoided because the bus lines lose termination if the node is disconnected from the bus.

Typical Application (continued)

10.2.2 Detailed Design Procedure

BUS LENGTH (m)	SIGNALING RATE (Mbps)
40	1
100	0.5
200	0.25
500	0.10
1000	0.05

Table 5. Suggested Cable Length vs Signaling Rate

Basically, the maximum bus length is determined by, or rather is a trade-off with the selected signaling rate as listed in Table 5.

A signaling rate decreases as transmission distance increases. While steady-state losses may become a factor at the longest transmission distances, the major factors limiting signaling rate as distance is increased are time varying. Cable bandwidth limitations, which degrade the signal transition time and introduce inter-symbol interference (ISI), are primary factors reducing the achievable signaling rate when transmission distance is increased.

For a CAN bus, the signaling rate is also determined from the total system delay – down and back between the two most distant nodes of a system and the sum of the delays into and out of the nodes on a bus with the typical 5ns/m prop delay of a twisted-pair cable. Also, consideration must be given the signal amplitude loss due to resistance of the cable and the input resistance of the transceivers. Under strict analysis, skin effects, proximity to other circuitry, dielectric loss, and radiation loss effects all act to influence the primary line parameters and degrade the signal.

A conservative rule of thumb for bus lengths over 100 m is derived from the product of the signaling rate in Mbps and the bus length in meters, which should be less than or equal to 50.

Signaling Rate (Mbps) × Bus Length (m) <= 50. Operation at extreme temperatures should employ additional conservatism.

10.2.2.1 Slope Control

The rise and fall slope of the SN65HVD233 driver output can be adjusted by connecting a resistor from R_s (pin 8) to ground (GND), or to a low-level input voltage (see Figure 35).

The slope of the driver output signal is proportional to the output current of the pin. This slope control is implemented with an external resistor value of 10 k Ω to achieve a \neq 15-V/µs slew rate, and up to 100 k Ω to achieve a \neq 2.0- V/µs slew rate (see Figure 36). Typical driver output waveforms with slope control are displayed in Figure 37.

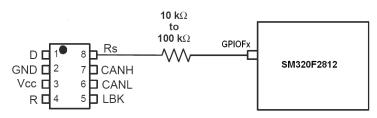


Figure 35. Slope Control/Standby Connection to DSP

10.2.2.2 Standby

If a high-level input (>0.75 V_{CC}) is applied to R_s, the circuit enters a low-current, *listen-only* standby mode, during which the driver is switched off and the receiver remains active. The local controller can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage >900 mV typical) occurs on the bus.

Copyright © 2008–2015, Texas Instruments Incorporated

SN65HVD233-HT

SLLS933G - NOVEMBER 2008 - REVISED JANUARY 2015

www.ti.com

10.2.3 Application Curves

11 Power Supply Recommendations

TI recommend to have localized capacitive decoupling near device VCC pin to GND. Values of 4.7 μ F at VCC pin and 10 μ F, 1 μ F, and 0.1 μ F at supply have tested well on evaluation modules.

12 Layout

12.1 Layout Guidelines

Minimize stub length from node insertion to bus.

Copyright © 2008–2015, Texas Instruments Incorporated

12.2 Layout Example

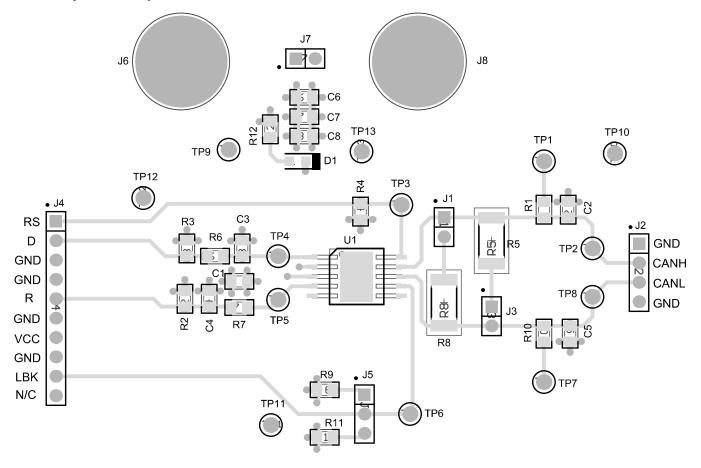


Figure 38. Layout Example

13 Device and Documentation Support

13.1 Trademarks

SDS is a trademark of Texas Instruments. DeviceNet is a trademark of Open DeviceNet Vendor Association. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

ISTRUMENTS

EXAS

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65HVD233HD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 175	233S	Samples
SN65HVD233SHKJ	ACTIVE	CFP	HKJ	8	1	TBD	Call TI	N / A for Pkg Type	-55 to 210	SN65HVD233S HKJ	Samples
SN65HVD233SHKQ	ACTIVE	CFP	HKQ	8	25	TBD	AU	N / A for Pkg Type	-55 to 210	HVD233S HKQ	Samples
SN65HVD233SJD	ACTIVE	CDIP SB	JDJ	8	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 210	SN65HVD233SJD	Samples
SN65HVD233SKGDA	ACTIVE	XCEPT	KGD	0	130	TBD	Call TI	N / A for Pkg Type	-55 to 210		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

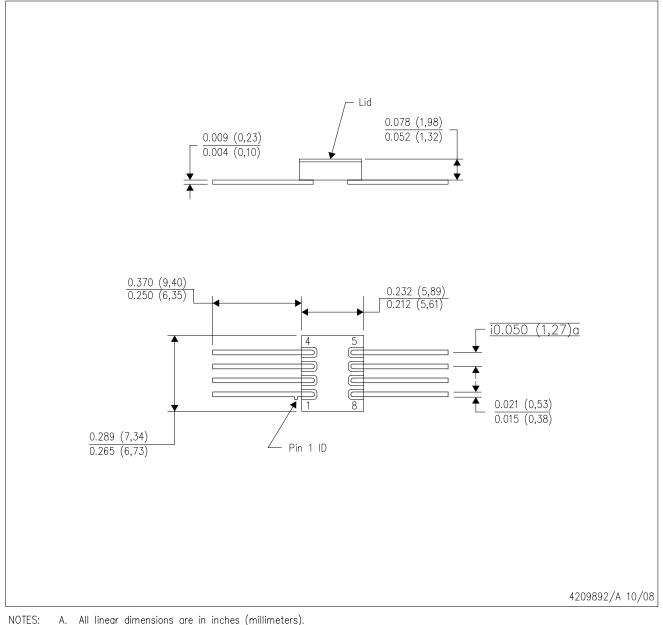
13-Sep-2014

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65HVD233-HT :

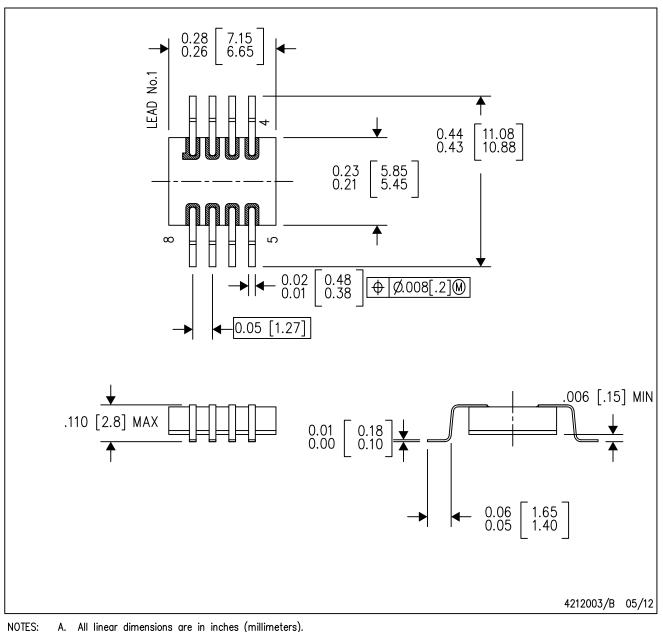

- Catalog: SN65HVD233
- Enhanced Product: SN65HVD233-EP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

HKJ (R-CDFP-F8)

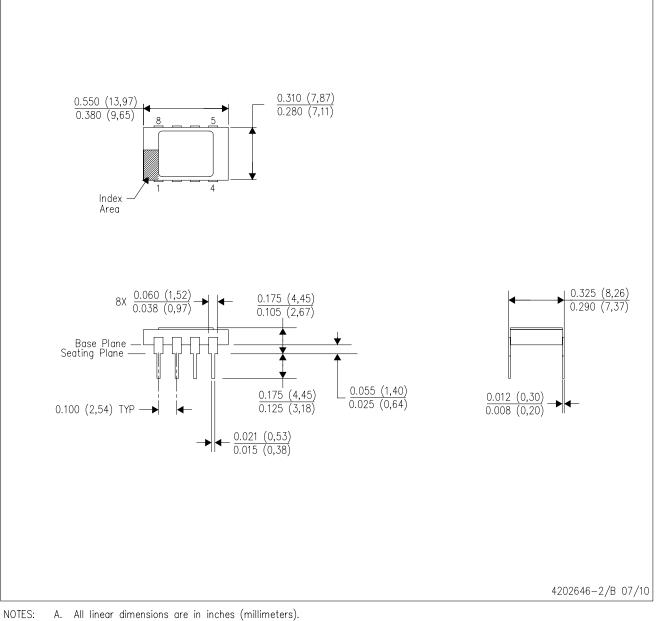
CERAMIC DUAL FLATPACK



- All linear dimensions are in inches (millimeters).
 - В. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid. D. The terminals will be gold plated.

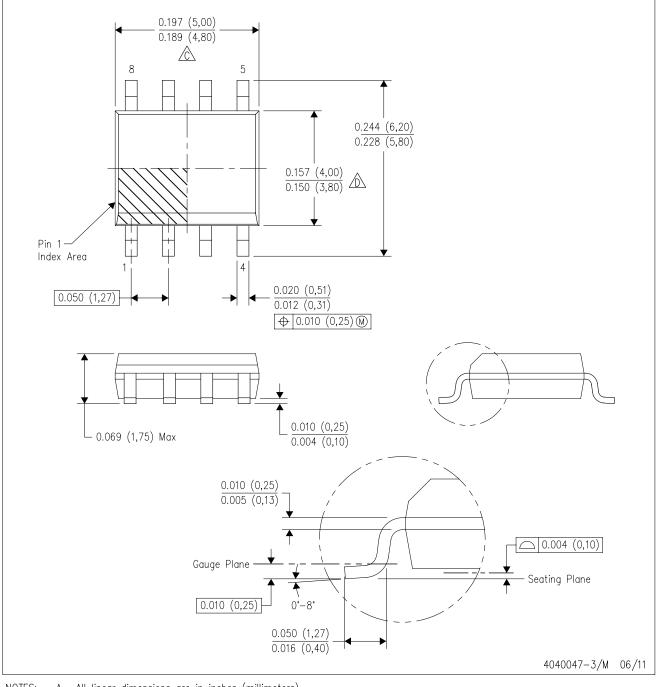
HKQ (R-CDFP-G8)

CERAMIC GULL WING



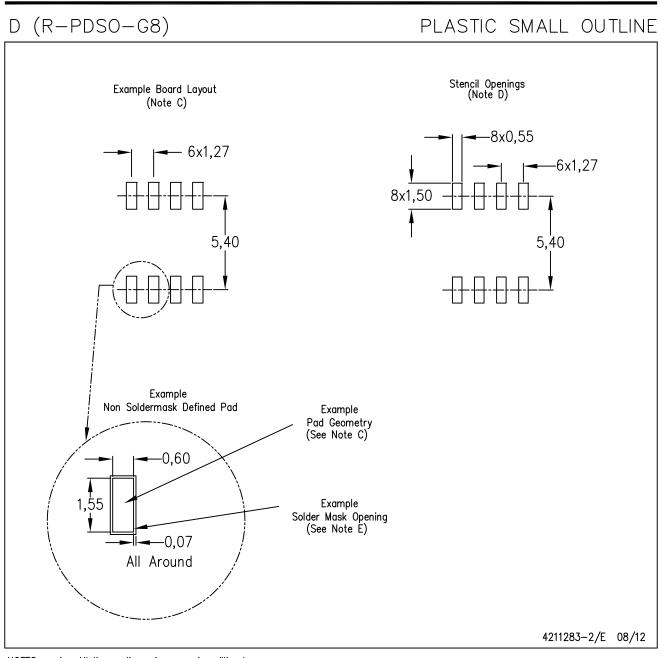
- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Β.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals will be gold plated.E. Lid is not connected to any lead.

CERAMIC DUAL IN-LINE PACKAGE



- B. This drawing is subject to change without notice.
- C. Ceramic quad flatpack with flat leads brazed to non-conductive tie bar carrier.
- D. This package is hermetically sealed with a metal lid.
- E. The leads are gold plated and can be solderdipped.
- F. Leads not shown for clarity purposes.
- G. Lid and heat sink are connected to GND leads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

- > Sales :
 - Direct +86 (21) 6401-6692
 - Email amall@ameya360.com
 - QQ 800077892
 - Skype ameyasales1 ameyasales2

> Customer Service :

Email service@ameya360.com

> Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com