

March 2013

FAN73711 High-Current, High-Side Gate Drive IC

Features

- Floating Channel for Bootstrap Operation to +600 V
- 4 A / 4 A Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- 3.3 V and 5 V Input Logic Compatible
- Output In-phase with Input Signal
- Under-Voltage Lockout for V_{BS}
- Built-In Shunt Regulator on V_{DD} and V_{BS}
- 8-Lead, Small Outline Package (SOP)

Applications

- High-Speed Gate Driver
- Sustain Switch Driver in PDP Application
- Energy Recovery Circuit Switch Driver in PDP Application
- High-Power Buck Converter
- Motor Drive Inverter

Description

The FAN73711 is a monolithic high-side gate-drive IC that can drive high-speed MOSFETs and IGBTs operating up to +600 V. It has a buffered output stage with all NMOS transistors designed for high pulse-current driving capability and minimum cross-conduction.

Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level-shift circuit offers high-side gate driver operation up to V_S =-9.8 V (typical) for V_{BS} =15 V. The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage.

The high-current and low-output voltage-drop feature makes this device suitable as a sustain and energy-recovery circuit switch driver in plasma display panel, motor drive inverter, switching power supply, and high-power DC-DC converter applications.

8-SOP

Ordering Information

Part Number	rt Number Operating Temperature Range		Packing Method			
FAN73711MX	40°C ~ 125°C	8-SOP	Tape and Reel			

Typical Application Diagrams

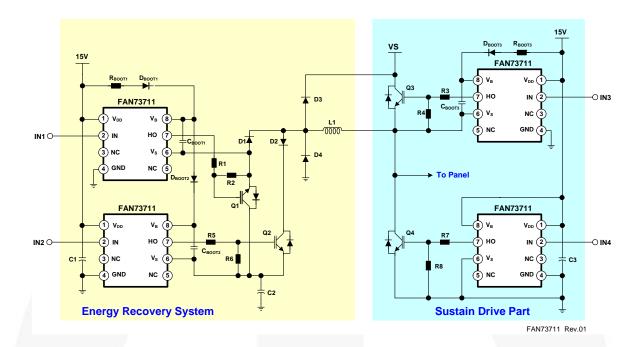


Figure 1. Floated Bi-Directional Switch and Half-Bridge Driver: PDP Application

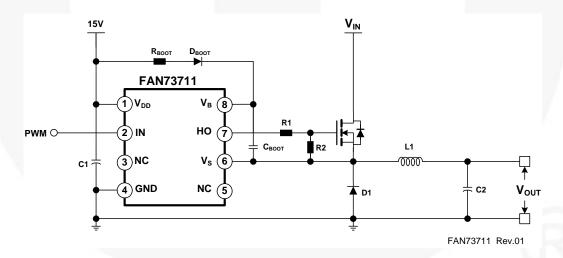
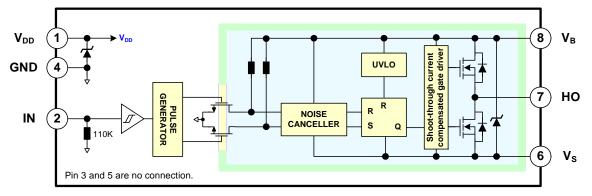



Figure 2. Step-Down (Buck) DC-DC Converter Application

Internal Block Diagram

FAN73711 Rev.01

Figure 3. Functional Block Diagram

Pin Configuration

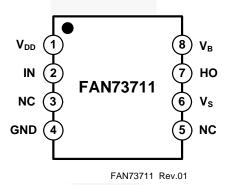


Figure 4. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description	
1	V_{DD}	Supply Voltage	
2	IN	Logic Input for High-Side Gate Driver Output	
3	NC	No Connection	
4	GND	Ground	
5	NC	No Connection	
6	V _S	High-Voltage Floating Supply Return	
7	НО	High-Side Driver Output	
8	V_{B}	High-Side Floating Supply	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Offset Voltage ⁽¹⁾	V _B -V _{SHUNT}	V _B +0.3	V
V _B	High-Side Floating Supply Voltage	-0.3	625.0	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V_{DD}	Low-Side and Logic Supply Voltage ⁽¹⁾	-0.3	V _{SHUNT}	V
V_{IN}	Logic Input Voltage	-0.3	V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
P_{D}	Power Dissipation ^(2,3,4)		0.625	W
θ_{JA}	Thermal Resistance		200	°C/W
T_J	Junction Temperature	-55	+150	°C
T _{STG}	Storage Temperature	-55	+150	°C

Notes:

- This IC contains a shunt regulator on V_{DD} and V_{BS}. This supply pin should not be driven by a low-impedance voltage source greater than the V_{SHUNT} specified in the Electrical Characteristics section.
- 2. Mounted on 76.2 x 114.3 x 1.6 mm PCB (FR-4 glass epoxy material).
- Refer to the following standards:
 JESD51-2: Integral circuits thermal test method environmental conditions, natural convection, and JESD51-3: Low effective thermal conductivity test board for leaded surface-mount packages.
- 4. Do not exceed power dissipation (P_D) under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

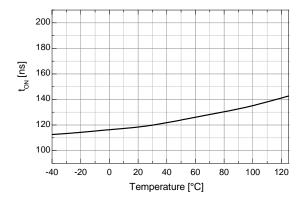
Symbol	Parameter	Min.	Max.	Unit
V _B	High-Side Floating Supply Voltage	V _S +10	V _S +20	V
V _S	High-Side Floating Supply Offset Voltage	6-V _{DD}	600	V
V _{HO}	High-Side Output Voltage	V _S	V_{B}	V
V _{IN}	Logic Input Voltage	GND	V_{DD}	V
V_{DD}	V _{DD} Supply Voltage		20	V
T _A	Operating Ambient Temperature	-40	+125	°C

Electrical Characteristics

 $V_{BIAS}(V_{DD}, V_{BS})$ =15.0 V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are relative to V_S and are applicable to the respective output HO.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
Power S	upply Section		1			
I _{QDD}	Quiescent V _{DD} Supply Current	V _{IN} =0 V or 5 V		25	70	μΑ
I _{PDD}	Operating V _{DD} Supply Current	f _{IN} =20 kHz, No Load		35	100	μΑ
Bootstra	apped Supply Section		1			
V _{BSUV+}	V _{BS} Supply Under-Voltage Positive-Going Threshold Voltage	V _{BS} =Sweep	8.0	9.0	10.0	V
V _{BSUV} -	V _{BS} Supply Under-Voltage Negative-Going Threshold Voltage	V _{BS} =Sweep	7.3	8.3	9.3	V
V _{BSHYS}	V _{BS} Supply Under-Voltage Lockout Hysteresis Voltage	V _{BS} =Sweep		0.7		V
I _{LK}	Offset Supply Leakage Current	V _B =V _S =625 V			10	μΑ
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5 V		60	120	μΑ
I _{PBS}	Operating V _{BS} Supply Current	C _{LOAD} =1000 pF, f _{IN} =20 kHz, rms Value		470	800	μА
Shunt R	egulator Section					
V _{SHUNT}	V _{DD} and V _{BS} Shunt Regulator Clamping Voltage	V _{DD} =Sweep or V _{BS} =Sweep I _{SHUNT} =5 mA	21	23	25	V
Input Lo	gic Section		1	l		
V _{IH}	Logic "1" Input Voltage		2.5			V
V_{IL}	Logic "0" Input Voltage				0.8	V
I _{IN+}	Logic Input High Bias Current	V _{IN} =5 V		40	65	μΑ
I _{IN-}	Logic Input Low Bias Current	V _{IN} =0 V			2	μΑ
R _{IN}	Input Pull-Down Resistance		90	110		ΚΩ
Gate Dri	ver Output Section	· ·				
V _{OH}	High Level Output Voltage (V _{BIAS} - V _O)	No Load			1.2	V
V_{OL}	Low Level Output Voltage	No Load			30	mV
I _{O+}	Output High, Short-Circuit Pulsed Current ⁽⁵⁾	V _{HO} =0 V, V _{IN} =5 V, PW ≤10 μs	3	4		Α
I _{O-}	Output Low, Short-Circuit Pulsed Current ⁽⁵⁾	V _{HO} =15 V,V _{IN} =0 V, PW ≤10 μs	3	4		Α
Vs	Allowable Negative V _S Pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V

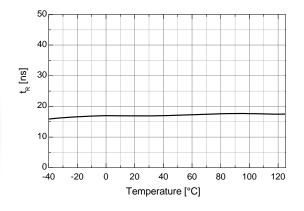
Note:


5. These parameters guaranteed by design.

Dynamic Electrical Characteristics

 $\rm V_{DD}{=}V_{BS}{=}15~V,~GND{=}0~V,~C_{LOAD}{=}1000~pF,~T_{A}{=}25^{\circ}C,~unless~otherwise~specified.$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-On Propagation Delay	V _S =0 V		150	210	ns
t _{off}	Turn-Off Propagation Delay	V _S =0 V		150	210	ns
t _r	Turn-On Rise Time			25	50	ns
t _f	Turn-Off Fall Time			15	40	ns


Typical Characteristics

200 180 180 140 120 100 -40 -20 0 20 40 60 80 100 120 Temperature [°C]

Figure 5. Turn-On Propagation Delay vs. Temperature

Figure 6. Turn-Off Propagation Delay vs. Temperature

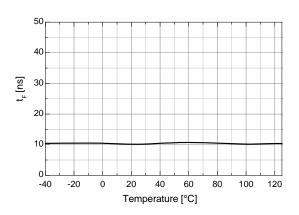
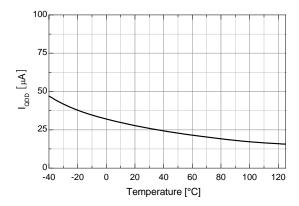



Figure 7. Turn-On Rise Time vs. Temperature

Figure 8. Turn-Off Fall Time vs. Temperature

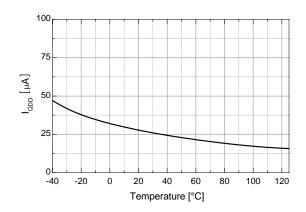
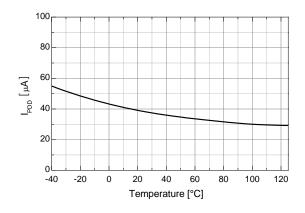
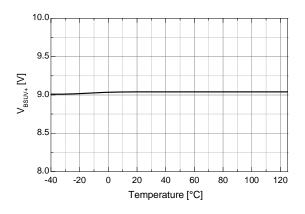



Figure 9. Quiescent V_{DD} Supply Current vs. Temperature

Figure 10. Quiescent V_{BS} Supply Current vs. Temperature


Typical Characteristics (Continued)

800 600 200 200 -40 -20 0 20 40 60 80 100 120 Temperature [°C]

Figure 11. Operating V_{DD} Supply Current vs. Temperature

Figure 12. Operating V_{BS} Supply Current vs. Temperature

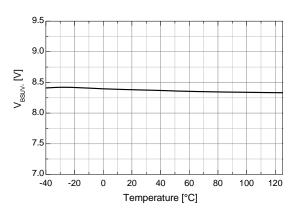
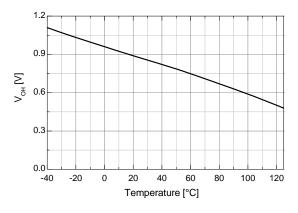



Figure 13. V_{BS} UVLO+ vs. Temperature

Figure 14. V_{BS} UVLO- vs. Temperature

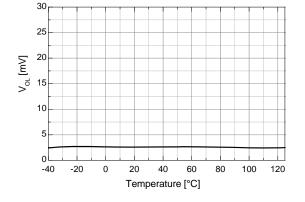
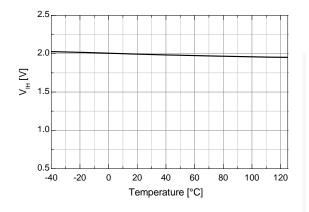



Figure 15. High-Level Output Voltage vs. Temperature

Figure 16. Low-Level Output Voltage vs. Temperature

Typical Characteristics (Continued)

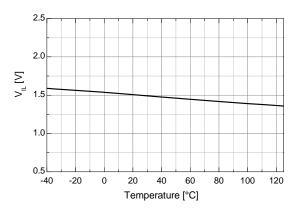
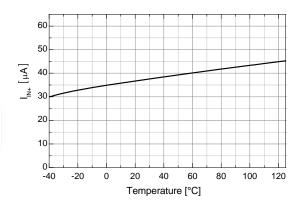



Figure 17. Logic High Input Voltage vs. Temperature

Figure 18. Logic Low Input Voltage vs. Temperature

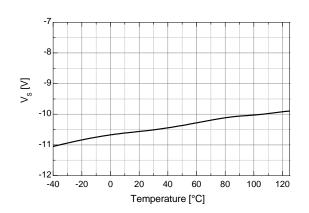


Figure 19. Logic Input High Bias Current vs. Temperature

Figure 20. Allowable Negative V_S Voltage vs. Temperature

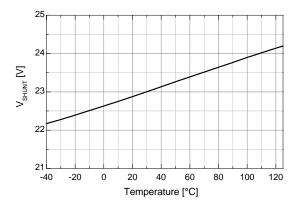


Figure 21. Shunt Regulator Clamping Voltage vs. Temperature

Switching Time Definitions

Timing Diagram

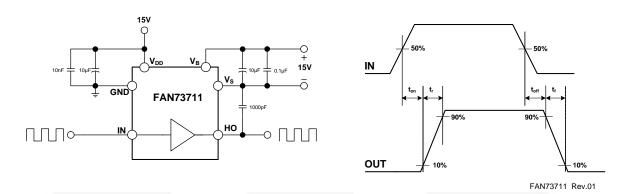


Figure 22. Switching Time Test Circuit and Waveform Definitions

Package Dimensions 1.27 0.65 1.75 5.60 6.30 5.70 3.75 PIN #1 ID 1.27 (0.35) \oplus 0.25 M C B A LAND PATTERN RECOMMENDATION **TOP VIEW** 1.80 1.35 1.75 С (8X) **OPTION A - BEVEL EDGE** ○ 0.10 C **FRONT VIEW OPTION B - NON BEVEL EDGE** NOTES: UNLESS OTHERWISE SPECIFIED BEVEL A. THIS PACKAGE CONFORMS TO JEDEC MS-012 **GAUGE** VARIATION A EXCEPT WHERE NOTED. R0.10 **PLANE** B. ALL DIMENSIONS ARE IN MILLIMETERS. 0.25 **SEATING** $\stackrel{\textstyle \checkmark}{\text{C}}$ OUT OF JEDEC STANDARD VALUE. **PLANE** D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS. E. LAND PATTERN AS PER IPC SOIC127P600X175-8M 4°-8° F. FILE NAME: MKT-M08B REV1 0.80 0.30 (1.04) **DETAIL "B"** SCALE 2:1

Figure 23. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPSTW 2Cool™ AccuPower™ F-PFS™ AX-CAP[®] FRFET[®] BitSiC™ Global Power Resource GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™ CorePOWER™ **CROSSVOLT**IM Gmax™ GTO™ CTLTM. Current Transfer Logic™ IntelliMAXTM DEUXPEED®

ISOPLANAR™ Dual Cool™ Making Small Speakers Sound Louder EcoSPARK® and Better™

EfficientMax™ MegaBuck MICROCOUPLER™ FSBCT MicroFET" MicroPak™ Fairchild[®] MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ mWSaver™ FAST[®] OptoHiT* FastvCore™ OPTOLOGIC®

PowerTrench® PowerXSTM Programmable Active Droop™

OFFT QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise¹

SmartMax™ SMART START

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET⁸ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET*

Sync-Lock™ SYSTEM GENERAL®

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO** TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC Ultra FRFET™ UniFET" **VCX**TM VisualMax™ VoltagePlus™ XSTM

OPTOPLANAR®

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

AMEYA360 Components Supply Platform

Authorized Distribution Brand:

Website:

Welcome to visit www.ameya360.com

Contact Us:

> Address:

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd Minhang District, Shanghai , China

> Sales:

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

Customer Service :

Email service@ameya360.com

Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com