

April 2015

FPF2496

IntelliMAX™ 28 V, Over-Voltage, Over-Current Protection Load Switch with Adjustable Current-Limit Control

Features

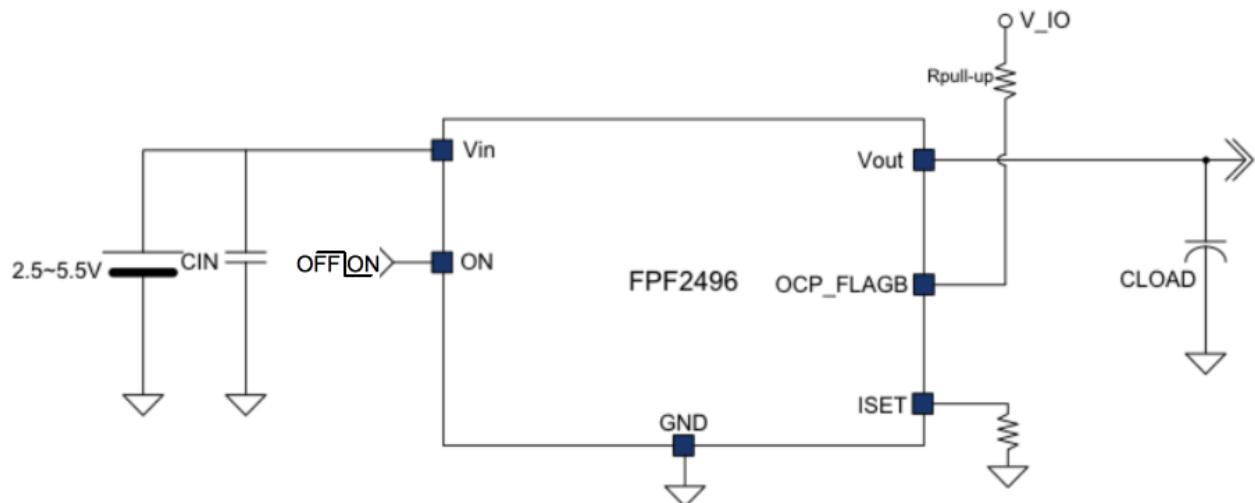
- V_{IN} : 3.5 V~5.5 V
- 28 V Absolute Ratings at V_{IN}
- Current Capability: 2.5 A
- Adjustable Current Limit: (Typ.) 0.1 A~2.5 A with 10% Accuracy
- R_{ON} : Maximum 100 mΩ at 5 V_{IN} and 1A I_{OUT}
- Input OVP: Min.=5.6 V, Typ.=5.8 V, Max.=6 V
- Output Discharge During Off State
- Open-Drain OVP on FLAGB
- Thermal Shutdown
- Under-Voltage Lockout (UVLO)
- True Reverse-Current Blocking (TRCB)
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
 - Human Body Model: >5.0 kV
 - Charged Device Model: >2.5 kV
 - IEC 61000-4-2 Air Discharge: >15 kV
 - IEC 61000-4-2 Contact Discharge: >8 kV

Applications

- Smart Phones, Tablet PCs
- Storage, DSLR, and Portable Devices

Description

The FPF2496 advanced load-management switch targets applications requiring a highly integrated solution. It disconnects loads powered from the DC power rail (<6 V) with stringent off-state current targets and high load capacitances (<100 μF). The FPF2496 consists of a slew-rate controlled low-impedance MOSFET switch (100 mΩ maximum) and integrated analog features. The slew-rate controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on power rails. FPF2496 has over-voltage and over-temperature protection.


The FPF2496 has a True Reverse-Current Blocking (TRCB) function that obstructs unwanted reverse current from V_{OUT} to V_{IN} during ON and OFF states. The exceptionally low off-state current drain (<2 μA maximum) facilitates compliance with standby power requirements. The input voltage range operates from 3.5 V to 5.5 V_{DC} to support a wide range of applications in consumer, optical, medical, storage, portable, and industrial-device power management systems. Switch control is managed by a logic input (active LOW) capable of interfacing directly with low-voltage control signal / General-Purpose Input / Output (GPIO) without an external pull-down resistor.

The device is packaged in advanced, fully "green" compliant, 1.21 mm x 1.21 mm, Wafer-Level Chip-Scale Package (WLCSP).

Ordering Information

Part Number	Operating Temperature Range	Package	Top Mark
FPF2496UCX	-40 to 85°C	1.21 mm x 1.21 mm, Wafer-Level Chip-Scale Package (WLCSP)	TJ

Application Diagram

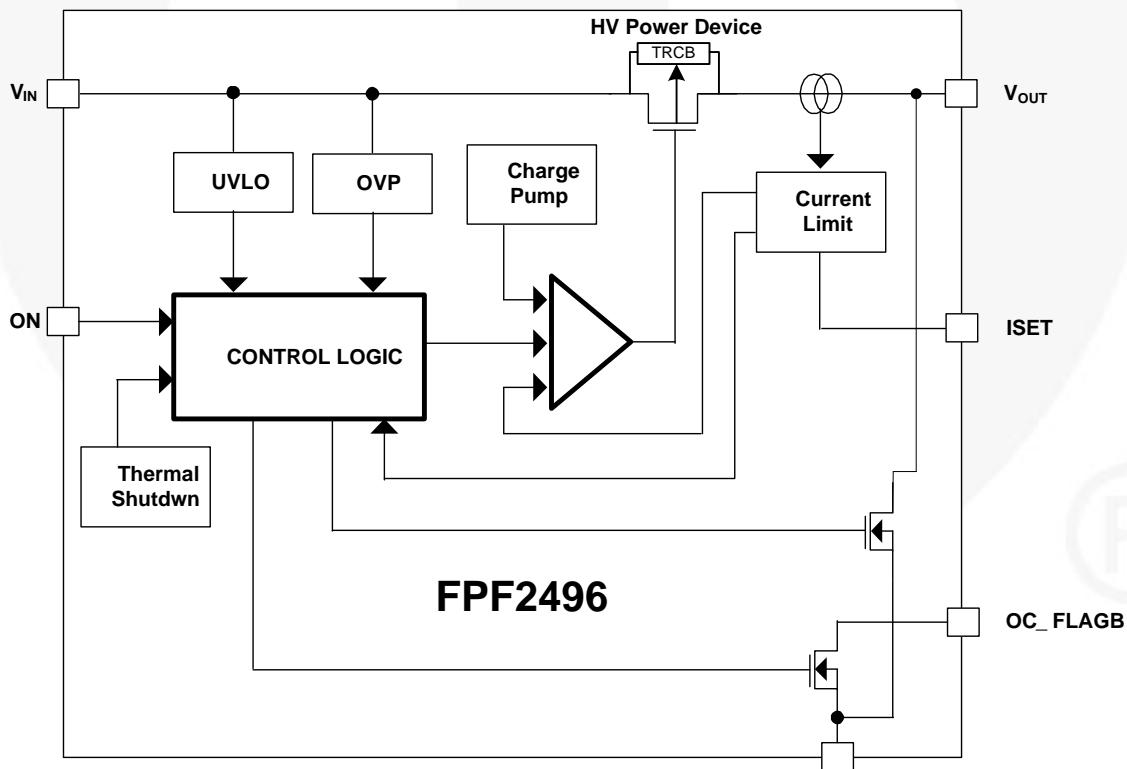


Figure 1. Typical Application

Note:

1. C_{IN} and C_{OUT} capacitors are recommended for improved device stability.

Block Diagram

Figure 2. Functional Block Diagram

Pin Configurations

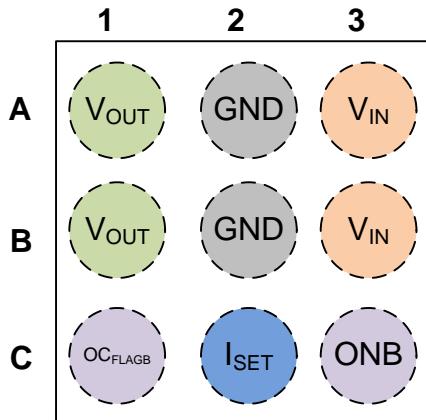


Figure 3. Pin Assignments (Top View)

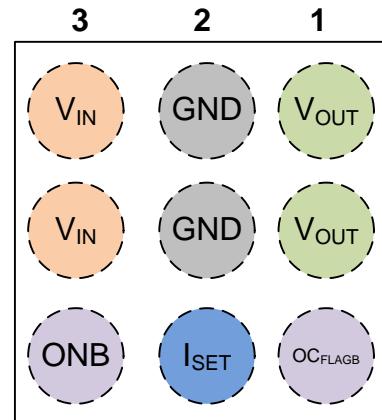


Figure 4. Pin Assignments (Bottom View)

Pin Description

Pin #	Name	Description		
A1, B1	V _{OUT}	Switch Output		
A3, B3	V _{IN}	Supply Input: Input to the power switch		
A2	GND	Ground (Device Ground)		
B2				
C3	ONB	ON/OFF Control Input: Active LOW; GPIO compatible	Logic HIGH	Switch Disable
			Logic LOW	Switch Enable
C1	OC _{FLAGB}	Fault Output: Active LOW, open-drain output that indicates an input over current. External pull-up resistor to V _{CC} is required.		
C2	I _{SET}	Current Limit Set Input: A resistor from I _{SET} to ground sets the current limit for the switch.		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters		Min.	Max.	Unit
V _{PIN}	V _{IN} to GND, V _{IN} to V _{OUT}		-0.3	28.0	V
	ONB, V _{OUT} , FLAGB, I _{SET} to GND		-0.3	6.0	
I _{SW}	Maximum Continuous Switch Current			2.75	A
t _{PD}	Total Power Dissipation at T _A =25°C			1.0	W
T _J	Operating Junction Temperature		-40	+150	°C
T _{STG}	Storage Junction Temperature		-65	+150	°C
Θ _{JA}	Thermal Resistance, Junction-to-Ambient (1-inch Square Pad of 2 oz. Copper)			95 ⁽²⁾	°C/W
				110 ⁽³⁾	
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012		5.0	kV
		Charged Device Model, JESD22-C101		2.5	
	IEC61000-4-2 System Level	Air Discharge (V _{IN} , V _{ON} , V _{OUT} to GND)		15	
		Contact Discharge (V _{IN} , V _{ON} , V _{OUT} to GND)		8	

Notes:

2. Measured using 2S2P JEDEC std. PCB.
3. Measured using 2S2P JEDEC PCB cold plate method.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
V _{IN}	Supply Voltage	3.5	5.5	V
T _A	Ambient Operating Temperature	-40	85	°C

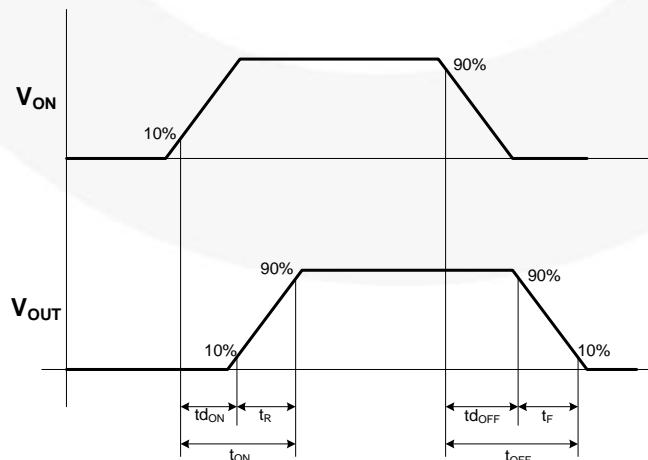
Electrical Characteristics

Unless otherwise noted; V_{IN} =3.5 to 5.5 V, T_A =-40 to +85°C; typical values are at V_{IN} =5 V and T_A =25°C.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Basic Operation						
V_{IN}	Input Voltage		3.5		5.5	V
$I_{Q(OFF)}$	Off Supply Current	$V_{ON}=GND, V_{OUT}=Open$		1	2	μA
$I_{SD(OFF)}$	Shutdown Current	$V_{IN}=5.5\text{ V}, V_{OUT}=0\text{ V}, V_{ON}=GND$		0.1	4.0	μA
I_Q	Quiescent Current	$I_{OUT}=0\text{ mA}$		65	100	μA
R_{ON}	On Resistance	$V_{IN}=5.0\text{ V}, I_{OUT}=1\text{ A}$		70	100	$m\Omega$
		$V_{IN}=3.7\text{ V}, I_{OUT}=1\text{ A}$		75	105	
V_{IH}	ONB Input Logic HIGH Voltage	$V_{IN}=3.5\text{ V to }5.5\text{ V}$	1.15			V
V_{IL}	ONB Input Logic LOW Voltage	$V_{IN}=3.5\text{ V to }5.5\text{ V}$			0.65	V
V_{IL_FLAG}	FLAGB Output Logic LOW Voltage	$V_{IN}=5\text{ V}, I_{SINK}=10\text{ mA}$		0.1	0.2	V
		$V_{IN}=3.5\text{ V}, I_{SINK}=10\text{ mA}$		0.15	0.30	
I_{FLAGB_LK}	FLAGB Output HIGH Leakage Current	$V_{IN}=5\text{ V}, \text{Switch On}$			1	μA
I_{ON}	ONB Input Leakage	$0\text{ V to }V_{IN}$			1.0	μA
R_{ON_PD}	Pull-Down Resistance at ONB Pin	$V_{IN}=3.5\text{~}5.5\text{ V}, V_{ON}=\text{HIGH}, T_A=-40\text{ to }85^\circ\text{C}$		14		$M\Omega$
RPD	Output Discharge R_{PULL_DOWN}	$V_{IN}=3.5\text{ V}, V_{ON}=0\text{ V}, I_{FORCE}=20\text{ mA}, T_A=-40\text{ to }85^\circ\text{C}$		100		Ω
Over-Voltage Protection						
V_{OVP_TRIP}	Input OVP Lockout	V_{IN} Rising Threshold	5.60	5.80	6.00	V
		V_{IN} Falling Threshold		5.50		
V_{OVP_HYS}	Input OVP Hysteresis			0.3		V
t_{OVP}	Response Time	$I_{OUT}=0.5\text{ A}, C_L=1\text{ }\mu\text{F}, T_A=25^\circ\text{C}, V_{IN}=5.5\text{ V to }6.0\text{ V}$	1			μs
Over-Current Protection						
I_{LIM}	Current Limit	$V_{IN}=5\text{ V}, R_{SET}=2100\text{ }\Omega, V_{OUT}>1.68\text{ V with 10\% Accuracy}$	450	500	550	mA
		$V_{IN}=5\text{ V}, R_{SET}=1070\text{ }\Omega, V_{OUT}>1.68\text{ V with 10\% Accuracy}$	900	1000	1100	
V_{UVLO}	Under-Voltage Lockout	V_{IN} Increasing		3.2		V
		V_{IN} Decreasing		3.0		
V_{UVLO_HYS}	UVLO Hysteresis			200		mV
V_{T_RCB}	RCB Protection Trip Point	$V_{OUT} - V_{IN}$		50		mV
V_{R_RCB}	RCB Protection Release Trip Point	$V_{IN} - V_{OUT}$		50		mV

Continued on the following page...

Electrical Characteristics (Continued)


Unless otherwise noted; V_{IN} =3.5 to 5.5 V, T_A =-40 to +85°C; typical values are at V_{IN} =5 V and T_A =25°C.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Unit
V_{RCB_HYS}	RCB Hysteresis			100		mV
t_{RCB}	Default RCB Response Time	V_{IN} =5 V, V_{ON} =HIGH/LOW		2		μs
I_{RCB}	RCB Current	V_{ON} =0 V, V_{OUT} =5.5 V		14		μA
t_{HOCP}	Hard Over-Current Response Time	Moderate Over-Current Condition, $I_{OUT} \geq I_{LIM}$, $V_{OUT} \leq 0$ V		6		μs
t_{OCP}	Over-Current Response Time	Moderate Over-Current Condition, $I_{OUT} \geq I_{LIM}$, $V_{OUT} \leq V_{IN}$		7		μs
t_{OC_FLAG}	Over-Current Flag Response Time	When Over-Current Occurs to Flag Pulling LOW		8		ms
TSD	Thermal Shutdown	Shutdown Threshold		150		°C
		Return from Shutdown		130		
		Hysteresis		20		
Dynamic Characteristics						
t_{DON}	Turn-On Delay ^(4,5)	V_{IN} =5 V, R_L =100 Ω, C_L =1 μF, T_A =25°C		4.39		ms
t_R	V_{OUT} Rise Time ^(4,5)			7.26		ms
t_{ON}	Turn-On Time ^(4,7)			11.65		ms
t_{DOFF}	Turn-Off Delay ⁽⁵⁾			1.85		ms
t_F	V_{OUT} Fall Time ⁽⁵⁾			37.60		ms
t_{OFF}	Turn-Off Time ⁽⁷⁾			39.45		ms

Notes:

4. This parameter is guaranteed by design and characterization; not production tested.
5. t_{DON} / t_{DOFF} / t_R / t_F are defined in Figure 5 below.
6. $t_{ON}=t_R + t_{DON}$.
7. $t_{OFF}=t_F + t_{DOFF}$.

Timing Diagram

where:

t_{DON} = Delay On Time
 t_R = V_{OUT} Rise Time
 t_{ON} = Turn-On Time
 t_{DOFF} = Delay Off Time
 t_F = V_{OUT} Fall Time
 t_{OFF} = Turn Off Time

Figure 5. Timing Diagram

Operation and Application Description

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into discharge load capacitor; a capacitor must be placed in between the V_{IN} and GND pins. A high-value C_{IN} capacitor can be used to reduce the voltage drop in high-current applications.

Output Capacitor

An output capacitor should be placed between the V_{OUT} and GND pins. This capacitor prevents parasitic board inductance from forcing V_{OUT} below GND when the switch is on. This capacitor also prevents reverse inrush current from creating a voltage spike that could damage the device in the case of a V_{OUT} short.

Fault Reporting

Upon the detection of an over-current, OC_FLAGB signals the fault by activating LOW.

Current Limiting

The current limit ensures that the current through the switch does not exceed the maximum set value, while not limiting the minimum value. The current limit is adjustable through the selection of an external resistor connected to ISET. Information for selecting the resistor is found in the sections below. The device acts as a constant-current source when the load draws more than the maximum value set by the device until thermal shutdown occurs. The device recovers if the die temperature drops below the threshold temperature.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the switch off if the input voltage drops below the lockout threshold. With the ONB pin active, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

True Reverse-Current Blocking

The true reverse-current blocking feature protects the input source against current flow from output to input, whether the load switch is on or off.

Thermal Shutdown

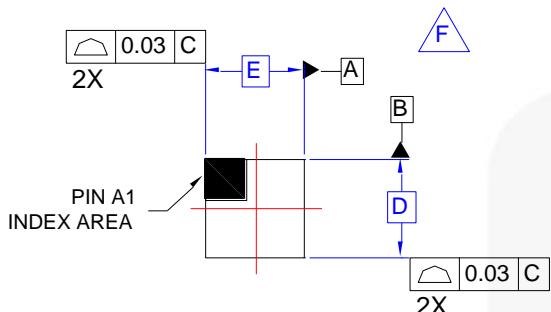
The thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature.

Setting Current Limit

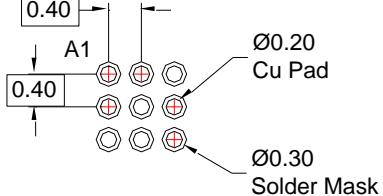
The current limit is set with an external resistor connected between the I_{SET} and GND pins. The resistor is selected using Table 1. Resistor tolerance of 1% or less is recommended

Table 1. Current Limit Settings by R_{SET} ⁽⁸⁾

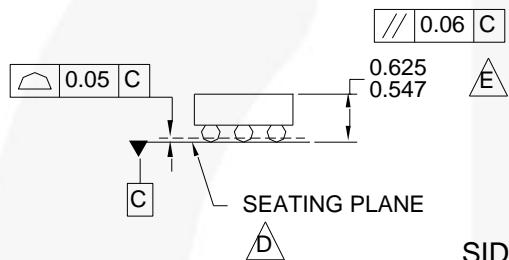
$R_{SET}\Omega$	Min. Current Limit (mA)	Typ. Current Limit (mA)	Max. Current Limit (mA)
420	2250	2500	2750
469	2020	2250	2407
528	1800	2000	2200
604	1570	1750	1920
680	1350	1500	1650
866	1125	1250	1375
1070	900	1000	1100
1200	810	900	990
1330	720	800	880
1500	630	700	770
1740	540	600	660
2100	450	500	550
2320	405	450	495
2550	360	400	440
2940	315	350	385
3400	370	300	330
4020	225	250	275
4990	180	200	220
6490	135	150	165
9530	90	100	110

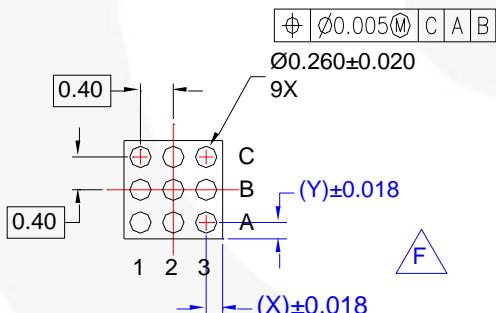
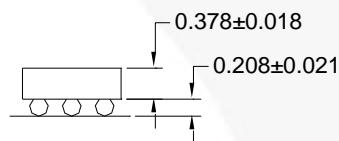

Note:

- Table values based on 1% tolerance resistor.


Board Layout

For best performance, all traces should be as short as possible. The input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces for V_{IN} , V_{OUT} , GND helps minimize parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.


Physical Dimensions



TOP VIEW

LAND PATTERN RECOMMENDATION
(NSMD PAD TYPE)

SIDE VIEWS

BOTTOM VIEW

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- E. PACKAGE NOMINAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- G. DRAWING FILNAME: MKT-UC009ABrev2

Product-Specific Dimensions

Product	D	E	X	Y
FPF2496	1210 μm ±30 μm	1210 μm ±30 μm	205 μm	205 μm

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda®
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
 Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FPS™

F-PFS™
FRFET®
Global Power Resource™
GreenBridge™
Green FPs™
Green FPs™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid®
MTI®
MTx®
MVN®
mWSaver®
OptoHi™
OPTOLOGIC®

OPTOPLANAR®
 Power Supply WebDesigner™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
 Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

 SYSTEM GENERAL®
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*
μSerDes™
 μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™
仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT [HTTP://WWW.FAIRCHILDSEMI.COM](http://WWW.FAIRCHILDSEMI.COM). FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I74

AMEYA360

Components Supply Platform

Authorized Distribution Brand :

Website :

Welcome to visit www.ameya360.com

Contact Us :

➤ Address :

401 Building No.5, JiuGe Business Center, Lane 2301, Yishan Rd
Minhang District, Shanghai , China

➤ Sales :

Direct +86 (21) 6401-6692

Email amall@ameya360.com

QQ 800077892

Skype ameyasales1 ameyasales2

➤ Customer Service :

Email service@ameya360.com

➤ Partnership :

Tel +86 (21) 64016692-8333

Email mkt@ameya360.com